

July 26, 2017

Michelle Kaysen United States Environmental Protection Agency, Region 5 Mail Code LU-9J 77 West Jackson Boulevard Chicago, Illinois 60604

RE: Revised Semiannual Soil Vapor Extraction System Operations, Maintenance, and Monitoring Report, October 2015 through March 2016, Hartford Petroleum Release Site, Hartford, Illinois

Dear Ms. Kaysen,

On behalf of Apex Oil Company, Inc. (Apex), 212 Environmental Consulting, LLC (212 Environmental) submitted the draft Semiannual Soil Vapor Extraction System Operations, Maintenance, and Monitoring Report, October 2015 through March 2016, Hartford Petroleum Release Site to the United States Environmental Protection Agency (USEPA) and Illinois Environmental Protection Agency (Illinois EPA) on September 9, 2016. The report summarized routine maintenance and monitoring activities related to the operation of the soil vapor extraction system at the Hartford Petroleum Release Site conducted between October 1, 2015 and March 31, 2016.

The USEPA and Illinois EPA provided comments to 212 Environmental regarding the draft report via correspondence dated November 22, 2016. On April 6, 2017, the USEPA, Illinois EPA, Apex, and 212 Environmental met via teleconference to discuss the comments and the forthcoming revisions to the report. A response to comments, as well as the revised Semiannual Soil Vapor Extraction System Operations, Maintenance, and Monitoring Report, October 2015 through March 2016, Hartford Petroleum Site, Hartford, Illinois, is provided with this correspondence.

Apex and 212 Environmental appreciate your continued engagement with this project. If you have any questions or require additional information, please contact me at (513) 430-1766.

Sincerely,

Paul Michalski, P.G. Senior Hydrogeologist

Jordy Federko, Apex Oil Company, Inc. CC:

> Tom Miller, Illinois Environmental Protection Agency Chris Cahnovsky, Illinois Environmental Protection Agency

Apex Response to Preliminary Technical Review Comments on Semiannual Soil Vapor Extraction System Operations, Maintenance, and Monitoring Report; October 2015 Through March 2016 Hartford Petroleum Release Site, Hartford, Illinois

Comment Number	Sub-Section, Page, Paragraph	Topics of Discussion	Comments / Recommended Revisions
Tumber	1 age, 1 aragraph	General	
G-1	EPA provided a number of general comments on soil vapor extraction (SVE) well designs during its review of the <i>Vapor Collection System Operation, Maintenance, and Monitoring Plan (July 2015)</i> . Comments 1, 2 and 3 in Section 1.0 Introduction below remain applicable for this reporting period.		
	Company, Inc. installed six soil vapor extraction (SVE) wells and connected three existing SVE wells to the vapor collection system installed at the		
G-2	N/A	N/A Prior to modification of the document, Apex should present to EPA proposed modifications. Following these discussions, Apex should then develop a work plan memorandum for EPA's technical review and approval.	
General	Apex's response to comments and revisions to the Semiannual Soil Vapor Extraction System Operations, Maintenance, and Monitoring Report; October 2015 Through March 2016 (Semiannual SVE OMM Report, October 2015 through March 2016) were discussed with the USEPA and Illinois EPA during the meeting on April 6, 2017.		
		Section 1.0 Introduction	
1	1.1 Page 1-2 Para 2 and Table 1	Re: "There are also an additional 11 wells that while connected, are not considered part of the SVE system including five wells that were installed within the Main Sand stratum for the Area A multiphase extraction pilot test (wells MPE-A001 through MPE-A005). These additional wells may be operated as conditions allow."	Table 1 lists 26 wells that are not considered part of the SVE system. Modify the report to clarify the total number of wells that are not considered part of the system and provide rationale for all wells, or each well, as applicable.

Response to Comment No. 1	During the reporting period there were 26 wells previously listed in Table 1 that were not considered to be part of the SVE system as follows: • Wells HSVE-002S, HSVE-002D, HSVE-011S, HSVE-011D, HSVE-025S, HSVE-026S, and HSVE-027S were previously plugged and abandoned. • Wells HSVE-005S and HSVE-005D have been replaced with well HSVE-005R. • Wells HSVE-006S and HSVE-006D were replaced with well HSVE-006R. These wells remain in place but are not operated. • Wells HSVE-006R2 and HSVE-104 were installed but never connected to the vapor collection system. Well HSVE-104 was connected to the SVE system in June 2017. • Wells HSVE-013 through HSVE-016 were installed within the sewer line pipe bedding along East Watkins Street and no longer routinely operated. • Well HSVE-028D is not useable due to a collapsed well screen. • Well HSVE-031S has not been operated since installation according to historical data.			
		is a one-inch probe collocated with well HSVE-031D and is not		
		is a horizontal vapor extraction well and is not operated.		
	• Wells MPE-A001 t occluded and cannot	hrough MPE-A005 were installed within the Main Sand stratum f be operated.	for the Area A multiphase extraction pilot test and are typically	
	HSVE-008S and HS	Subsequent to submittal of the <i>Semiannual SVE OMM Report</i> , <i>October 2015 through March 2016</i> , it was determined that the control vaults for wells HSVE-008S and HSVE-008D were previously removed making these wells inoperable. As such, these wells are no longer considered part of the SVE system. Table 1 and the text included in Section 1.1 have been revised accordingly.		
2	1.1 Page 1-2 Para 3	Re: "The extraction wells connect to horizontal conveyance lines through a series of 32 control vaults (V1 through V32). The control vaults are of different sizes, but are generally larger than the extraction well vaults. Fifteen of the vaults also contain sample/vacuum ports. The conveyance lines are connected to the Main Header within the Main Vault that extends to the east beneath the railroad right-of-way and to the thermal treatment system located on the Premcor Refinery."	Modify the report with a schematic drawing, either existing or newly developed using a conventional process and instrumentation diagram format, which illustrates the SVE transmission line connections, diameters and valve configurations. Such a diagram would be helpful for better coordination of the SVE system maintenance and for EPA's reviews of SVE system configuration operations.	
Response to Comment No. 2	The piping and instrumentation diagrams were included with the <i>Final Vapor Collection System Operation, Maintenance, and Monitoring Plan</i> (Trihydro 2015). The P&ID diagrams will also be included as Appendix A.			
3	Para 2 and Figure 2	Re: "Each thermal oxidizer has a 5 HP combustion air blower and a 7.5 HP tertiary air fan. A motor operated valve on the tertiary air fan opens when the combustion temperature exceeds a high temperature set point."	Revise Figure 2 to show the 7.5 HP tertiary blower.	
Response to Comment No. 3	Figure 2 provides a general schematic of the thermal treatment system. Detailed drawings of the thermal treatment system are provided within the VCS Operating and Maintenance Plan (URS 2014).			

4	1.1.3 Page 1-4 Para 1 and Table 1	Re: "The depth of the stinger can be adjusted to depress the water level in the extraction well. The stinger designs, summarized on Table 1"	Modify Table 1 to add a column that indicates the most current stinger depths, and the depth to water/groundwater elevation, so that the amount of drawdown created by the stinger can be ascertained. Open for discussion if the frequency of stinger adjustments is too high for a meaningful response.
Response to Comment No. 4	_	the April 6, 2017 meeting, stinger adjustments are performed at a of the summary tables included as Appendix B of the Semiannual S	• • • • • • • • • • • • • • • • • • • •
5	1.1.3 Page 1-5 Para 3	Re: "Typical stinger configurations are shown on Figure 4. The current SVE system does not have an oil- water separator and LNAPL cannot not be recovered. Therefore, wells that historically or currently have measurable LNAPL are not operated with a stinger and only vapor is extracted when the water table is low enough to allow recovery."	Modify the report to indicate that this operational limitation reinforces the need to develop a remedial framework that results in effective removal of LNAPL, as well as other contaminant phases.
Response to	_	the meeting on April 6, 2017, the multiphase remedy is currently be	
Comment No. 5		onitoring of the SVE system. Comments related to the multiphase on-going meetings between Apex and the Agencies.	remedy will not be addressed herein but instead will be
	discussed as part of	Section 2 Vapor Collection System	
6	2.1 Page 2-1 Para 1 and Table 1	Re: "During periods of high groundwater levels, the system was operated using as many of the approximately 114 extraction wells that are installed in the shallow stratum and currently considered part of the system. In addition, the four wells considered part of the SVE system that are screened within the Main Sand stratum (HSVE-004R, HSVE-105D, HSVE-106D, and HSVE-107D) and five multiphase extraction wells that are not considered part of the SVE system (MPE-A001 through MPE-A005) were operated as conditions allowed."	Provide an existing or newly-developed map showing wells in and out of operation.

Response to Comment No. 6	The operability of individual SVE wells is dependent on subsurface conditions (i.e., groundwater elevation, soil moisture content, etc.) and as a result varies significantly over time. The operability of a well is currently described within the following figures and tables within the <i>Semiannual SVE OMM Report, October 2015 through March 2016</i> : • Figure 5 depicts the percent each well is operating over the reporting period. • Figure 7 graphically presents the number of wells operating each week over the reporting period. • Appendix B summarizes operations within each SVE well. Operating wells are reported with a header valve position that is greater than 0% (with the exception of SVE wells that contain a straw stinger). This indicates that the extraction well had an applied vacuum at the time the measurement was collected. For wells with a straw stinger, the main header valve position is reported at 0%, as the vacuum is directed through the straw stinger. In these cases, the straw stinger valve position would indicate whether the well was operational and a vacuum was applied. The header valve position is provided in column W and the straw stinger valve position is provided in column X. In addition, Apex has modified Table 1 to include the percent operation of each well over the reporting period.		
7	Table 2	Table 2 includes flow rate and flame ionization detector (FID) measurements from each SVE well, but does not include wellhead vacuum measurements. Because of water, sediment, and the long distances to the SVE wells, wellhead vacuum is likely to vary significantly and is likely valuable data for evaluating the SVE system effectiveness.	Modify Table 2 to show wellhead vacuum for each SVE well.
Response to Comment No. 7	mass recovery rates	ole 4) has been updated to provide the wellhead vacuums recorded from the individual extraction wells. Wellhead vacuum measurem reported in Column U of the summary tables included as Appendi	ents collected from each operating extraction well over the
8	2.1 Page 2-1 Para 2 and Table 2	Re: "When groundwater trigger elevations were reached in at least three of the trigger monitoring locations, the system was optimized for mass recovery by shutting down those wells with low TVPH concentrations (less than 100 ppmv), as well as those wells with low flow rates."	Modify the table with an additional column(s) to: (1) indicate which SVE wells specifically were turned on or off in response to the groundwater trigger events and (2) describe how (specifically) the system was reconfigured when the groundwater triggers were reached.
Response to Comment No. 8	During the meeting on April 6, 2017, it was discussed that the rationale for adjusting individual extraction wells is multifaceted given the multiple inputs (screen occlusion, vapor extraction rate, TVPH concentration, water recovery rate, etc.) that are considered simultaneously. Additional effort will be made to document the rationale for individual well adjustments in future semiannual reports.		
9	2.1 Page 2-1	Re: "Groundwater elevations were below the trigger criteria within three of the five monitoring wells"	This Section states that when conditions in the trigger wells are met, extraction is focused at those wells with higher TVPH and flowrates. Does this always translate to a shift from shallow wells to deeper wells, or, does it vary? Include in the text what was observed during times when the system was operated for additional mass recovery, compared to a vapor barrier/mitigation operation.

Response to Comment No. 9	As discussed during the meeting on April 6, 2017, there is not a dramatic shift from vapor recovery in shallow extraction wells to deeper extraction wells when groundwater trigger conditions are met. As described in Apex's response to Comment No. 8 there are many inputs that are considered when making adjustments to individual wells and these changes tend to result in gradual changes in the overall system operations during periods when groundwater elevations are above the triggers versus periods when they are below triggers with TVPH concentrations being one of the variables considered.		
10	2.1 Page 2-2	Re: "There are many conditions that may influence the operability of an extraction well including occlusion of the well screen with groundwater and reduced permeability associated with increasing water content within the vadose zone."	Modify the report to indicate that this operational limitation reinforces the need to develop a remedial framework that results in more effective vapor removal, as well as other contaminant phases. Provide a map that indicates which well screens are and/or have been known to be impacted by occlusion or reduced permeability from increased water content within the vadose zone.
Response to Comment No. 10	Please refer to Apex vapor extraction wel	's response to Comment No. 5 regarding the multiphase remedy ar ls.	nd Comment No. 6 regarding operability within the individual
11	2.1 Page 2-2 Para 1 Bullet 1	Re: "Operating Vacuum: The target operating vacuum is between 80 and 120 inches of water (in- H2O), provided that occasionally this may be reduced to prevent occlusion of the well screen and allow for extraction of soil vapor from the well."	Modify the report to indicate the actual operating vacuum of each SVE well. Provide maps and/or cross-sections along streets that illustrate the minimum and maximum known ranges of zone of influence (ZOI) based on measured vacuum. Or indicate that such figures will be developed as part of the Combined Effectiveness Monitoring Plan.
Response to Comment No. 11	Operating vacuum for each SVE well is provided in the summary tables included as Appendix B. As discussed during the meeting on April 6, 2017, vacuum is only a single line of evidence which should be used to evaluate the influence of the individual vapor extraction wells over time. Other parameters including the distribution of oxygen and volatile petroleum hydrocarbons should also be considered when evaluating the zone of influence. While vacuum measurements have been recorded during historical effectiveness monitoring events (including those that occurred between October 2015 and March 2016) within the vapor monitoring probes and multipurpose monitoring points, the data is not considered useable for the purpose of evaluating the zone of influence within individual extraction wells. First, pressure measurements were collected using a Dwyer Series 475 Metz 111 manometer or an Ashcroft 2074® Digital Pressure Gauge. These devices are capable of measuring vacuum with a resolution of 0.1 inches of water (in-H2O). However, a vacuum in the range of 0.025 to 0.035 in-H2O is generally sufficient to maintain pneumatic control and prevent vapor intrusion into structures (USEPA 2008). Second, many of the monitoring locations were not installed with a competent surface seal (e.g., ball valve or air tight cap) resulting in ambient air leakage and inaccurate vacuum measurements. In order to improve the vacuum and pressure measurements during effectiveness monitoring events, Apex has purchased a Dwyer Series HM35		
12	2.1 Page 2-2 Para 1 Bullet 2	Re: "The flowrate under these operating vacuums has been between 8 and 80 scfm, which were used as benchmarks for operating individual wells."	Modify the report to clarify how the benchmarks for flowrate were established and used.

Response to Comment No. 12	As discussed during the meeting on April 6, 2017, flowrates between 8 and 80 scfm were used as "benchmarks" by previous consultants as documented in the historical Agency-approved work plans. These "benchmarks" were adopted by Apex when assuming operations of the vapor collection system in April 2015. It is well understood that the current methods for measuring vapor flowrates results in inaccurate estimates. Due to the inaccuracies associated with flowrate measurements, low flowrates are more closely scrutinized when making well adjustments. The following text will be inserted after the second bullet in Section 2.1 to provide additional clarification: "In practice, given the inaccuracies associated with flowrate measurements (further discussed in Section 2.3.1) low flowrates are evaluated more closely than higher flowrates. When low (or no) flowrate is observed, further evaluation is conducted to determine the cause, such as well screen occlusion or transmission line blockage. If the flowrate cannot be increased, the well may be shut down until conditions improve or maintenance can be completed." It should be noted that Apex has completed redesign and testing for modifying the wellheads, controls, and methods used to measure flowrates. Apex is currently retrofitting wellhead and controls within extraction wells primarily located in SVE Effectiveness Zone 1. These modifications will allow for a more accurate method of measuring vapor extraction and water recovery rates from the SVE wells in the future.		
13	2.1 Page 2-2 Para 2	Re: "It is important to note that while in theory, shutting down extraction wells with low TVPH concentrations would allow focused mass removal, in practice this is not always possible as the blowers do not have variable speed capability. Therefore, some wells with lower TVPH concentrations may continue to be operated to maintain airflow within the operating blowers. To alleviate this and obtain greater operational flexibility, Apex has replaced sheaves on two of the four blowers, which allows for a range of airflow from the individual blowers (between 600 scfm from Blower No. 4 to 850 scfm from Blower No.1)."	Modify the report to explain why replacing sheaves, or other optimization action, was not undertaken for the remaining two of four blowers. In addition, provide rationale for not upgrading the system to variable frequency drives (VFD) for the blowers. Also explain why additional SVE wells were not considered as a mechanism to operate the blowers at their greatest capacity while recovering as much mass as possible.
Response to Comment No. 13	As discussed on April 6, 2017, installation of VFDs was considered as one option for improving operation of the thermal treatment system. However, replacing the sheaves was determined to be more cost effective, in light of future redesign of the treatment system. Installation of VFDs will be considered as part of the redesign. Replacing sheaves on two of the four blowers allows Apex to operate the system over a broad range of air flowrates. The text within Section 2.1 has been modified to include the operating flowrate for each blower.		
14	2.1.1 Page 2-2 Para 1 and Figure 5	Re: "Figure 5 provides a summary of the percent of time that each extraction well was operating during the reporting period."	It is difficult to discern from Figure 5 which wells were in operation and for what length of time. Modify the report via inclusion of a table that lists percent of operational times for individual wells.
Response to Comment No. 14	Please refer to Apex'	s response to Comment No. 6 regarding operability within the ind	lividual vapor extraction wells.
15	2.1.1 Page 2-3 Para 1	Re: description of wells that were not operated due to occlusion	Besides the Main Sand wells in Z1 and the wells within Z6, explain why the remaining shallow wells are not under consideration for replacement. Or, explain how other recommendations, in this plan or others, will address the need.

Response to Comment No. 15	In accordance with the Agency-approved work plans, designs, and specifications, Apex completed the installation of six additional SVE wells (HSVE-108 through HSVE-113), as well as connection of three additional existing SVE wells (HSVE-001D, HSVE-030S, and HSVE-104) to the vapor collection system during the second quarter 2017. The effectiveness of the SVE system will continue to be monitored to determine the need for additional SVE wells to mitigate the vapor intrusion pathway and enhance mass recovery within the shallow stratum.		
16	2.2 Page 2-3 and 2-4	Re: "Field screening was conducted by collecting soil vapor samples within a Tedlar® bag and field screening the samples for TVPH and methane concentrations using a ThermoScientific TVA1000B flame ionization detector (FID)."	1. Modify the document to explain the method used to differentiate between TVPH and methane. 2. Recommend conducting FID measurements with and without a granular activated carbon (GAC) filter to differentiate between TVPH (i.e. nonmethane hydrocarbons) and methane. 3. While the TVA1000B FID also includes a photoionization detector (PID), it was agreed during the 11/16/16 meeting in Edwardsville, IL that use of a PID was not required provided that FID measurements were conducted according to item No. 2 above.
Response to Comment No. 16	A GAC filter has been used to differentiate between TVPH and methane concentrations within soil vapor samples. The TVPH and methane concentrations in samples collected from the extraction wells during the reporting period are provided in Columns L and P, respectively within the summary table included as Appendix B. The collection of PID measurements has recently been discontinued. The following text will be added to this section of the report: "A granulated activated carbon (GAC) filter is attached to the FID to obtain the methane concentration. The petroleum hydrocarbon concentration (PHC) is then estimated by subtracting the methane concentration from the TVPH concentration."		
17	2.2.1 Page 2-4 Paragraph 2	Re: "Flowrate measurements estimated using pitot tubes are only performed within the Phase I and II extraction wells and involves the insertion of a pitot tube into the well casing parallel to the flow direction."	Modify the document to more clearly state the manufacturer and model number of the pitot tube and the method of measurement, and include calculations.
Response to Comment No. 17	The manufacturer and model of the pitot tube, as well as the method of collecting measurements and estimating the flowrate were added to this section.		
18	2.2.1 Page 2-5 Para 1	Re: "Apex is currently being developing future flowrate measurements, including use of a portable flowrate meter and water knockout."	Prior to implementation, Apex should present to EPA proposed modified flow measurement methods. Following these discussions, Apex should then develop a work plan memorandum for EPA's technical review and approval.
Response to Comment No. 18	Design drawings and description of the modified flow rate measurement methods were provided to the Agency on March 13, 2017. Per the Agency request, subsequent testing of the modified flow rate measurement methods was conducted within four modified extraction wells during the second quarter of 2017.		

19	2.2.2 Page 2-5 Para 1 and Tables 2 and 3	Re: "The first approach involved summing the mass removal rate from each of the individual extraction wells using the following inputs: The TVPH concentration (C) measured monthly from each extraction well using a ThermoScientific TVA1000B FID."	As was discussed in the 11/15/16 meeting in Edwardsville, IL, there is a significant difference in the mass removal rates derived for the SVE wells versus at the thermal treatment unit. The mass removal rates for SVE wells provided in Section 2.2.2 were calculated using the FID-based readings of TVPH listed in Table 2; whereas, the mass removal rates for the thermal treatment system provided in Section 3.1 were calculated using the TVPH concentrations derived from laboratory analysis results listed in Table 3. An independent evaluation of the data sets showed that, on average, the mass removal rates calculated using FID readings from the SVE wells were consistently up to four times (4x) higher than those based on the laboratory analytical results. Per the 11/15/16 discussions, identify the range of variation between the two data sets and explain any related implications on overall remedy evaluation or performance.
Response to Comment No. 19	individual extraction hydrocarbons within not collected from to measurements of Phonass recovery rate of the rate estimated by sufficiently the recovery rates based. Conversely, the recovery rate and are therefore contained and the laboration of	the meeting on April 6, 2017, the purpose of estimating recovery in wells over time. For instance, a reduction in recovery rates over in the shallow stratum near an extraction well or it could point to make individual extraction wells for laboratory analyses. Therefore, HC are used. Similarly, the PHC estimated from field screening refor the SVE system, as reported in Section 2.2.2 (revised Section 2 mming the rates from the individual extraction wells does not continuarily attributed to inaccurate flowrate measurements within the don field screening results of PHC was previously requested by the tion System Operation, Maintenance, and Monitoring Plan (Tribovery rate estimates reported in Section 3.1 are based on the analytical results are included on Figure 11 (revised Figure 1) anticipated poor correlation between the field measured PHC mass reall evaluation of the performance of the SVE system.	time could indicated a depletion of the mass of petroleum naintenance issues within an extraction well. Vapor samples are to evaluate mass recovery on a well-by-well basis, field screening esults from the Main Header was used to calculate the cumulative 2.2.3). As noted in this section, the cumulative mass recovery relate with the mass recovery rate calculated from the Main extraction wells. It should be noted that this comparison in mass ne USEPA and Illinois EPA, and therefore included within the ydro 2015). Attical results for samples that are collected from the Main Header, 2 (revised Section 2.2.3). Therefore, recovery rate estimates 3) and are also used for reporting annual air emissions to the
20	2.2.2 Page 2-7	Recommended SVE wells	EPA provided separate comment via email on 11/17/16 (attached).
Response to Comment No. 20	Please refer to Apex	x's response to Comment No. 15 regarding the evaluation, design,	and installation of additional extraction wells at the Hartford Site.

21	2.3 Page 2-8 Para 1 Re: "Additional valves may be replaced within the nine extraction wells with documented leaks that exceed 10 in-H2O (including HSVE-003D, HSVE-017D, HSVE-018D, HSVE-022, HSVE-023D, HSVE-024S, HSVE-035, HSVE-078, and HSVE-084) as part of well reconfiguration activities over the coming year." Modify the document to provide additional information regarding the size and causes of these leaks.
Response to Comment No. 21	The text included in Section 2.3 (revised Section 2.2.3) will be revised to state: "The valves connecting the individual wells to the transmission system occasionally leak due to normal wear attributed to exposure to groundwater within the extraction wells and rainwater accumulating within the control vaults. Valves were replaced in the transmission lines connecting wells HSVE-024D (formerly had a 4-inch butterfly valve) and HSVE-099 (formerly had a 2-inch gate valve) to the transmission lines. The valves at these two extraction wells were leaking and therefore replaced with a brass 2-inch gate valve. Well HSVE-024D was reconfigured to reduce the 4-inch transmission line to 2-inch line as it was determined that for consistency, ease of operation, and cost, all replacement valves will be 2-inch diameter gate valves. Additional valve replacement will be conducted as part of the well reconfiguration activities, prioritizing those wells with the highest measured leakage. A summary of wells with leaking valves and the degree of leakage is summarized on Table 3."
22	Table 2 Re: "TOTAL MASS REMOVAL BASED ON SVE MAIN HEADER MEASUREMENTS" Modify the "TVPH" and "Flow Rate" data in Table 2, as applicable, to address the apparent confusion between the data in the SVE main header and in the columns. Modify the document to clarify whether the TVPH value is derived from FID readings and includes methane, which is not a petroleum hydrocarbon. Use of the term TVPH should only refer to C2 to C5 constituents, and should not include methane, which should be reported separately.
Response to Comment No. 22	Please refer to Apex's response to Comment No. 19 regarding estimation of mass recovery rates. It should be noted that the mass recovery estimates in Section 2 were calculated using PHC by subtracting the methane concentration from the TVPH concentration. Table 2 (revised Table 4) and any corresponding text have been modified accordingly.
23	Table 2 and Table 3 Re:"TOTAL MASS REMOVAL BASED ON SVE MAIN HEADER" last row on Table 2 and "TVPH Recovery Rate" Column on Table 3. The mass removal rates in Table 2 are grossly inconsistent with the same estimates in Table 3. For example, for October 2015, the mass removal rate in the SVE main header in Table 2 is 1,807 lbs/day while it is an average of 380 lbs/day in Table 3. Revise document to provide the correct TVPH recovery rate and provide reasons or explanations for this discrepancy.
Response to Comment No. 23	Please refer to Apex's response to Comment No. 19 regarding estimation of mass recovery rates.

		Section 3.0 Thermal Treatment System	ı
24	3.1 Page 3-1 Para 2	Re: "As described in Section 2.2.2 and summarized in Table 4."	Modify the report to either correct the table numbering, or to include a Table 4; which appears to be missing from the report.
Response to Comment No. 24	References to the rev	ised tables, including those in Section 3.1, will be corrected throu	ighout the report.
25	Page 3-1 Para 2	Re: "Daily hydrocarbon mass recovery rates varied from 6 to 165 gallons per day with a calculated total hydrocarbon vapor removal of approximately 11,750 gallons during the reporting period."	As was discussed in the 11/15/16 meeting in Edwardsville, IL, modify the document to recalculate mass removal of 11,750 gallons. Modify the report to indicate that this operational performance reinforces the need to develop a remedial framework that results in more effective vapor removal, as well as other contaminant phases
Response to Comment No. 25	Please refer to Apex's	s response to Comment No. 5 regarding the multiphase remedy ar	nd Comment No. 19 regarding estimation of mass recovery rates.
26	Table 3 and Figure 11	Re: "Figure 11 presents a comparison of the hydrocarbon mass recovery rate to the Mississippi River and groundwater elevation within the Rand stratum (as reported in monitoring point MP-29C)."	Based on the descriptions provided in Section 3.1 and Table 3, the mass removal rates in Figure 11 are estimated based on weekly analytical samples collected from the main header. As was discussed in the 11/15/16 meeting in Edwardsville, IL, it is recommended to include an explanation of how the daily mass removal rates in Table 3 and Figure 11 and the totals were calculated. For example, explain how weekly samples and flow measurements were converted to monthly mass removal rates. It is recommended that the calculations be more transparent for review by project stakeholders.

Response to Comment No. 26	The following text w	rill replace the second paragraph in Section 3.1:		
	"Samples are collected weekly from the Main Header and submitted to Eurofins-AirToxics located in Folsom, California for analysis of total petroleum hydrocarbons (TPH) ranging from C2 to C10 via USEPA method TO-3, speciated volatile petroleum hydrocarbons via USEPA method TO-15, as wel as methane, potential energy reported in (BTUs), and specific gravity via ASTM 1945. The mass recovery rate (in units of pounds per day) for the SVE system is estimated using the TPH laboratory analytical results and the corresponding flowrate on the day the sample was collected using the following equation (USEPA 1989):			
	M=C×Q×MW×1.58	1E-07×24 hours/day		
	 Where: M = Mass recovery rate (pounds per hour) C = TPH concentration (ppmv) Q = Vapor extraction flowrate (scfm) MW = Molecular weight of (lb/lb-mole) The mass recovery rate is converted to equivalent gallons per day of gasoline as follows: M (gallons/day)=M(pounds/hour)*((24 hours/day)/ρ) Where: M = mass recovery rate (pounds per hour or gallons per day) ρ = density of LNAPL (pounds per gallon, assumed to be 6.08) The mass recovery rate is assumed to apply to the day the sample was collected and the days following until the next sample is collected for la analysis. Hydrocarbon mass recovery rates varied from 6 to 165 gallons per day with a calculated total hydrocarbon vapor removal of approximate to the content of the c			
27	12,932 gallons during the reporting period. 3.2.1 Re: "A total of approximately 249,900 gallons of water was Modify the report to confirm the methods used to transfer the			
	Page 3-2 Para 2	transferred to the WRWTP for treatment and disposal during seven separate events over the course of the reporting period."	249,900 gallons of water to the WRWTP for treatment. Note: Given the high volume of water, the relatively high cost, and the high environmental footprint of batch-shipping water via truck, it is recommended that an alternate disposal method be discussed for potential future application; for example, a treatment system with continuous or batch discharge to the storm sewer.	
Response to Comment No. 27		Fill be added to Section 3.2.1: "Water is then transferred to the Will." As discussed during the meeting on April 6, 2017, redesign trent system.	•	

		4.0 Effectiveness Monitoring	
28	4.1 Page 4-1 Para 1	Re: "If TVPH concentrations exceed 10 ppmv within indoor air or 350 ppmv within the sub-slab probe, then: (1) a soil vapor sample is collected with a Tedlar bad for additional field screening, and (2) indoor air and soil vapor samples may also be collected for laboratory analysis."	As was discussed in the 11/15/16 meeting in Edwardsville, IL, provide a decision matrix which will be used to determine when an indoor air sample will be collected for laboratory analysis. Indoor air samples should be analyzed for the full suite of VOCs and TVPH by TO-15 so that concentrations of individual compounds can be compared to risk screening levels and to better confirm if the source is from the petroleum plume or a household indoor air source. The decision matrix should include the rationale for why either the existing 10 ppmv/350 ppmv action levels are protective of chronic exposure to petroleum constituents or new risk-based action levels should be provided.
Response to Comment No. 28	A figure depicting	the vapor intrusion pathway decision flowchart has been added as I	Figure 15.
29	4.1.1 Page 4-3	Re: "Overall the weekly in-home effectiveness monitoring results demonstrate that the mitigation measures (primarily operation of the SVE system) are effective at preventing migration of volatile petroleum related constituents into the structures where a completed pathway has previously been documented."	Delete this statement or modify the report to indicate that these conclusions are uncertain and that additional efforts to confirm the effectiveness of mitigation systems will be addressed in the Combined Effectiveness Monitoring Work Plan.
Response to Comment No. 29	This statement wil	l be deleted as requested.	
30	4.1.2 Page 4-5 Para 4	Re: "Overall the quarterly in-home effectiveness monitoring results demonstrate that the mitigation measures (primarily operation of the SVE system) are effective at preventing migration of volatile petroleum related constituents into structures at the Hartford Site."	Delete this statement or modify the report to indicate that these conclusions are uncertain and that additional efforts to confirm the effectiveness of mitigation systems will be addressed in the <i>Combined Effectiveness Monitoring Work Plan</i> .
Response to Comment No. 30	This statement wil	l be deleted as requested.	•

31	4.2.1 and 4.2.2	Section 4.2.1 Re: "There were 2 locations (1%) in which a pressure was measured versus 46 locations with a vacuum (33%) and 92 locations (66%) in which there was not a pressure or a vacuum measured." Section 4.2.2 Re: "There were only 13 locations (10%) in which a pressure was measured versus 71 locations with a vacuum (52%) and 51 locations (38%) in which there was not a pressure or a vacuum measured.	The fourth quarter of 2015 and first quarter 2016 found vacuum responses at only 33 and 52 percent of the vapor monitoring points, respectively This lack of vacuum influence suggests that the regional SVE system ZOI does not fully extend throughout the area. As was discussed in the 11/15/16 meeting in Edwardsville, IL, modify the document to display the vapor monitoring point vacuum data spatially (in conjunction with SVE wellhead vacuum data) to support the evaluation of the SVE system's effectiveness. Provide maps and/or crosssections along streets that illustrate the minimum and maximum known ranges of ZOI based on measured vacuum.		
Response to Comment No. 31	Please refer to Apex's response to Comment No. 11 regarding the use of vacuum as a line of evidence for evaluating the zone of influence of the individual extraction wells.				
32	Figures 8 and 9	None of the vapor monitoring point locations are labeled.	Modify Figures 8 and 9 to include vapor monitoring point labels.		
Response to Comment No. 32	Figures 8 and 9 (revised Figures 9 and 11) were modified to include labels for the monitoring locations.				
33	Figures 8 and 9	The green background for zero values makes this figure difficult to read	Consider using a color scale where zero values correlate to white, so the figure is easier to read.		
Response to Comment No. 33	As discussed during USEPA and Illinois	the meeting on April 6, 2017, Figures 8 and 9 (revised Figures 9 ϵ EPA.	and 11) have been revised per recommendations from the		
34	Figures 8 and 9	Aside from HSVE-99, there appears to be little correlation between the vapor monitoring point TVPH concentration and the mass removal rates. This may be partially because this figure compares TVPH with mass removal rate—it may be more meaningful to compare vapor monitoring point TVPH with SVE well TVPH.	Consider preparing a figure that shows a comparison of SVE extraction well soil vapor concentrations to vapor monitoring point soil vapor concentrations.		
Response to Comment No. 34					
Section 5.0 River Stage Triggered Events					
	N/A	No comments	No recommendations		
<u> </u>	N/A	Section 7.0 References No comments	No recommendations		
Appendix A Rout		System Monitoring Results, October 2015-March 2016	170 recommendations		
	N/A	No comments	No recommendations		

rippendix D Therm	nai 4 reatment Systei	m Water Quality Discharge Reports					
	N/A	No comments	No recommendations				
Appendix C Thermal Treatment System Vibration Analysis Reports							
N/A No comments No recommendations							
Appendix D Weekly In-Home Monitoring Results							
	N/A No comments No recommendations						
,	Appendix E Quarterly In-Home Monitoring Results						
35		309 N Olive SS-2 (lines 135 and 136) show that a Tedlar bag	Recommend that FID, lower explosive limit (LEL), and oxygen				
	QrtlyIn-	sample was collected on February 9, 2016 and February 11,	measurements be collected immediately before and after Tedlar				
	- 11	2016, however, no FID or PID readings were collected on these	bag sample collection. These data are important for use in				
E	E1" 309 N Olive SS-2	dates.	evaluating the effectiveness and accuracy of the field				
			instruments in comparison with the Tedlar bag results.				
			Additionally, the Tedlar bag results in column H through M, do				
			not appear to show laboratory analytical results for TVPH or				
			BTEX. Modify Table to show the Tedlar bag analytical results.				
Response to	desponse to As discussed during the meeting on April 6, 2017, Tedlar bags are not submitted for laboratory analyses but rather are used to perform field screening						
Comment No. 35	of TVPH and methar	ne concentrations using an FID, %LEL using a four gas meter, as	well as oxygen and carbon dioxide concentrations using a				
	multigas meter. There were not any modifications to the table included in revised Appendix G.						
Appendix F Region	nal Effectiveness Mo	onitoring Results					
36	Regional	Re: "Static Pressure/ Vacuum (in-H2O)" Column E	The static pressure/vacuum measurements would be more				
	Effectiveness		valuable if they could be compared to historical results and if				
	Monitoring Results		they were presented spatially, so their location could be viewed				
	Table		in relation to active SVE wells, structures and geological				
			features.				
Response to	-	s response to Comment No. 11 regarding the use of vacuum as a l	ine of evidence for evaluating the zone of influence of the				
Comment No. 36	individual extraction	wells.					
37	Regional	Re: Columns K (Methane), Column L (Total Hydrocarbons),	Modify Tables to provide details regarding the manner in which				
	Effectiveness	Column M (Petroleum Hydrocarbons), and Column O (Volatile	these data were obtained (i.e. FID with GAC filter, PID				
	Monitoring Results	Organic Chemicals). These headings are not clear and	measurements, etc.); apply this procedure consistently				
	Table	inconsistent with terminology used elsewhere in the report.	throughout the report and in future reports.				
Response to	The requested inform	nation will be add to the notes in the table included as revised App	pendix C.				
Comment No. 37							
Appendix G River	Stage Triggered Mo	onitoring Event Results					
	N/A	No comments	No recommendations				

REVISED

SEMIANNUAL SOIL VAPOR EXTRACTION SYSTEM OPERATIONS, MAINTENANCE, AND MONITORING REPORT OCTOBER 2015 THROUGH MARCH 2016

HARTFORD PETROLEUM RELEASE SITE HARTFORD, ILLINOIS

July 26, 2017

APEX OIL COMPANY, INC.

8235 Forsyth Boulevard St. Louis, Missouri 63105

212 ENVIRONMENTAL CONSULTING, LLC

2021 Auburn Avenue
Third Floor Suites
Cincinnati, Ohio 45219

TABLE OF CONTENTS

INTRO	DUCTIO	ON	1-1		
1.1.	SVE SY	SVE SYSTEM CONFIGURATION			
	1.1.1.	Phase I and II	1-4		
	1.1.2.	Phase III	1-4		
	1.1.3.	Stingers	1-5		
1.2.	REPOR	RT ORGANIZATION	1-6		
VAPOR	R COLLI	ECTION SYSTEM	2-1		
2.1.	OPERA	ATIONS OVERVIEW	2-1		
	2.1.1.	Operating Wells	2-2		
	2.1.2.	Seasonal Conditions	2-3		
2.2.	ROUTI	NE AND NON-ROUTINE MAINTENANCE	2-4		
	2.2.1.	Stingers	2-4		
	2.2.2.	Line Sweeping	2-4		
	2.2.3.	Valve Replacement	2-4		
2.3.	ROUTI	NE SVE SYSTEM MONITORING	2-5		
	2.3.1.	Vapor Extraction Flowrate	2-5		
	2.3.2.	Mass Removal Rate	2-8		
2.4.	REGIO	ONAL EFFECTIVENESS MONITORING	2-9		
	2.4.1.	Fourth Quarter 2015	2-10		
	2.4.2.	First Quarter 2016	2-10		
2.5.	SUMM	ARY OF SVE SYSTEM AND EFFECTIVENESS MONITORING	2-10		
THERN	MAL TR	EATMENT SYSTEM	3-1		
3.1.	OPERA	ATIONS AND MONITORING RESULTS	3-1		
3.2.	ROUTI	NE MAINTENANCE	3-2		
	3.2.1.	Water Management	3-2		
	3.2.2.	Sediment Accumulation Management	3-3		
	3.2.3.	Vibration Analyses	3-4		

TABLE OF CONTENTS CONTINUED

3.3.	NON-R	OUTINE MAINTENANCE	3-5
IN-HO	ME MO	NITORING	4-1
4.1.	ROUTI	NE IN-HOME MONITORING	4-1
	4.1.1.	Weekly	4-1
	4.1.2.	Quarterly	4-3
4.2.	RIVER	STAGE TRIGGERED MONITORING	4-6
	4.2.1.	EBMP-26	4-6
	4.2.2.	EBMP-27	 4- 7
	4.2.3.	EBMP-28	 4- 7
REFER	ENCES		5-1

FIGURES LIST

- 1. Hartford Vapor Collection System Layout
- 2. Thermal Treatment System Layout
- **3.** Typical Extraction Wellhead Completion Detail
- 4. Typical Stinger Detail
- 5. Summary of Extraction Well Percent Operation
- **6.** Summary of River Stage and Groundwater Elevation in the Rand Stratum
- 7. Weekly Summary of Operating Extraction Wells
- 8. Rationale for Well Adjustments Based on Open Screen and Flow Measurements
- 9. Distribution of Total Volatile Petroleum Hydrocarbons and Mass Recovery Rate, North Olive Stratum, November 2015
- 10. Distribution of Oxygen, North Olive Stratum, November 2015
- 11. Distribution of Total Volatile Petroleum Hydrocarbons and Mass Recovery Rate, North Olive Stratum, February 2016
- **12.** Distribution of Oxygen, North Olive Stratum, February 2016
- 13. Thermal Treatment System Mass Recovery Rate
- 14. In-Home and Effectiveness Monitoring Networks
- 15. Vapor Intrusion Pathway Decision Flowchart

TABLES LIST

- 1. Extraction Well and Stinger Detail Summary
- 2. Thermal Treatment System Operations Data Summary
- 3. Summary of Extraction Wells with Leaking Control Valves
- 4. Extraction Flow Rate and Mass Removal Estimates
- 5. Interim In-Home Monitoring Network

APPENDICES LIST

- A. Vapor Collection System Piping and Instrumentation Diagrams
- **B.** Routine Vapor Collection System Monitoring Results, October 2015 March 2016
- C. Regional Effectiveness Monitoring Results
- **D.** Thermal Treatment System Water Quality Discharge Reports
- **E.** Thermal Treatment System Vibration Analysis Reports
- **F.** Weekly In-Home Monitoring Results
- G. Quarterly In-Home Monitoring Results
- **H.** River Stage Triggered Monitoring Event Results

SECTION 1.0 INTRODUCTION

This report summarizes the operations, monitoring, and maintenance (OMM) of the soil vapor extraction (SVE) system located in Hartford, Illinois for the operational period from October 2015 through March 2016. The SVE system consists of a network of vapor extraction wells (Table 1) connected through a series of transmission pipelines and valves, (referred to as the vapor collection system) across the northern portions of the Village of Hartford (Hartford Site). The vapor collection system connects to a single 12-inch pipeline (referred to as the Main Header) near the intersection of North Olive and East Elm Streets that extends to the east beneath the railroad right-of-way to a series of four thermal oxidizers located on the Premcor Refinery (referred to as the thermal treatment system). Figure 1 shows the general location of the SVE extraction wells and transmission piping, as well as the SVE Effectiveness Zones (Zones 1 through 6) established for the purpose of evaluating the system performance. Extraction well completion details are summarized on Table 1. Appendix A contains the piping and instrumentation diagrams for the SVE system.

The Hartford Working Group had operated the SVE system including the vapor collection and thermal treatment components since 2005, with the exception of the period from mid-2009 to September 2013, during which Apex Oil Company, Inc. (Apex) was responsible for OMM of the vapor collection system components only. On September 18, 2014, the United States Environmental Protection Agency (USEPA) sent Apex and the Hartford Working Group a letter describing reassignment of activities at the Hartford Site, which included OMM of the SVE system. Apex assumed OMM of the collection system components in April 2015 and operation of the thermal treatment system in June 2015. Apex submitted the draft *Vapor Collection System Operation, Maintenance, and Monitoring Plan, Hartford Petroleum Release Site, Hartford, Illinois (VCS OMM Plan)* to the USEPA on June 10, 2015. The *VCS OMM Plan* (Trihydro 2015) was finalized on September 4, 2015; incorporating the USEPA comments (dated July 24, 2015) and Apex's response (dated August 20, 2015). The following additional plans were also adhered to following transition of the vapor collection system components from the Hartford Working Group on April 1, 2015:

- Regional effectiveness monitoring, which includes quarterly screening within selected locations
 was performed in accordance with the Effectiveness Monitoring Plan, Hartford Hydrocarbon Plume
 Site, Hartford, Illinois (URS 2014c).
- In-home monitoring, including weekly and quarterly screening of indoor air and sub-slab soil vapor within select homes across the Hartford Site, was performed in accordance with the final

- Interim In-Home Effectiveness Monitoring Plan, Hartford Petroleum Release Site, Hartford, Illinois (Trihydro 2014).
- River stage triggered monitoring was performed in accordance with the triggers and methods described in the final *Interim In-Home Effectiveness Monitoring Plan (Trihydro 2014)*, as well as the *System Operation and Maintenance Response to River Rise, Groundwater Related and Sub-slab Triggers, Hartford Area Hydrocarbon Plume Site* (URS 2014b).

1.1. SVE SYSTEM CONFIGURATION

The SVE system was installed during three separate phases. As summarized on Table 1, there were 116 extraction wells considered to be part of the vapor extraction systemand 28 wells that were not considered to be part of the SVE system during the reporting period. The following is a summary of the wells that were not considered to be a part of the system:

- Wells HSVE-002S, HSVE-002D, HSVE-011S, HSVE-011D, HSVE-025S, HSVE-026S, and HSVE-027S were previously plugged and abandoned.
- Wells HSVE-005S and HSVE-005D were replaced with well HSVE-005R
- Wells HSVE-006S and HSVE-006D were replaced with well HSVE-006R. These wells remain in place but are not operated.
- Wells HSVE-006R2 and HSVE-104 were installed but never connected to the vapor colleciton system. Well HSVE-104 was connected to the SVE system in June 2017.
- Wells HSVE-008S and HSVE-008D are inoperable as the control vaults were previously removed.
- Wells HSVE-013 through HSVE-016 were installed within the Village of Hartford combined sewer line pipe bedding along East Watkins Street and no longer routinely operated.
- Well HSVE-028D is not useable due to a collapsed well screen.
- Well HSVE-031S has not been operated since installation according to historical data.
- Well HSVE-031DP is a one-inch probe collocated with well HSVE-031D and is not operated.
- Well HSVE-032H is a horizontal vapor extraction well and is not operated.
- Wells MPE-A001 through MPE-A005 were installed within the Main Sand stratum in order to conduct multiphase extraction pilot testing in Area A. These well are typically occluded and cannot be operated unless groundwater conditions within the Main Sand are unconfined and the well screens are exposed within the extraction wells.

As identified on Table 1, wells were generally installed within the shallow strata beneath the Hartford Site. Wells installed during Phases I and II were typically installed as nested pairs with an "S" indicating the shallow well and "D" identifying the deeper vapor recovery well. The shallow wells are usually screened within the North Olive stratum. The deep wells are typically screened within the Rand, Main Silt, and Main Sand strata but can have longer screen intervals that also extend into the shallower strata and clay lenses. In cases where nested wells were installed, the deep intervals generally overlap with the shallow intervals. Cross sections showing the screen interval for the extraction wells relative to the lithology and historical light non-aqueous phase liquid (LNAPL) distribution are provided in the VCS OMM Plan (Trihydro 2015).

The extraction wells connect to horizontal conveyance lines through a series of 32 control vaults (V1 through V32). The control vaults differ in size, but are generally larger than the extraction well vaults. Fifteen of the control vaults contain sample/vacuum ports. The horizontal conveyance lines converge within the Main Vault near the intersection of North Olive and East Elm Streets, and continue to the east, via the Main Header's single 12-inch pipeline, beneath the railroad right-of-way to the TTUs located on the Premcor Refinery. A schematic diagram of the thermal treatment system is shown on Figure 2.

System vacuum is induced using one or more of the four 75 horsepower (HP) belt drive blowers (B-1 through B-4). Typically, no more than three blowers are operated simultaneously depending on the number of extraction wells being operated and the cumulative flow rate through the SVE system. Recovered vapors are passed through a 470-gallon condensate tank followed by a 1,000-gallon aboveground vapor-liquid separator, as well as four individual 240 gallon vapor-liquid separators prior to each of the four blowers.

After passing through the vapor-liquid separators and blowers, the recovered vapor is treated via four thermal oxidizers (TO-1 through TO-4). Each thermal oxidizer has a 5 HP combustion air blower and a 7.5 HP tertiary air fan. The combustion air blower introduces ambient air to the burner that mixes with natural gas to maintain the flame. The burner creates a ring of flame around the port through which recovered vapor enters the combustion chamber. A motor operated valve on the tertiary air fan opens when the combustion temperature exceeds a high temperature set point (1,600 degrees Fahrenheit). This can occur during periods when total volatile petroleum hydrocarbon (TVPH) concentrations (including methane) in the recovered soil vapor are elevated, which last occurred during low water table conditions in February 2013. The Federally Enforceable State Operating Permit requires that the combustion temperature in each operating thermal oxidizer

remains above 1,400 degrees Fahrenheit. The actual operating temperature is adjusted to approximately 1,460 degrees Fahrenheit to allow for normal temperature fluctuations. The thermal treatment system will shut down if the operating temperature drops below 1,405 degrees Fahrenheit, to eliminate the potential for a violation of the permitted temperature limits.

The individual blowers have maximum flow capacities ranging from approximately 750 to 840 standard cubic feet per minute (scfm). Each thermal oxidizer is capable of processing up to 1,000 scfm with a TVPH concentration of up to 50,000 parts per million by volume (ppmv), while achieving a destruction efficiency of 99 percent. Normally, two or three blowers and thermal oxidizers are operated to maintain the desired vapor extraction rates from the operating wells.

1.1.1. PHASE I AND II

Wells HSVE-001 through HSVE-030 were generally installed between 2004 and 2006 as part of the Phase I and Phase II modifications to the vapor collection system and consist of a 4-inch diameter well connected to 4-inch diameter conveyance line. The individual well, valves, flow meters, and sample/vacuum ports are located in a single 4-foot by 4-foot steel vault. Some of the Phase I and II wells have been modified to allow for more accurate measurement of the flowrate by installing a 4-inch by 4 inch by 2-inch tee on the well. A 2-inch diameter line is connected to the tee for field measurements. The 2-inch line then increases to 4-inches and connects to the SVE conveyance lines. Typical wellhead configuration for the extraction wells installed during Phase I and II are shown on Figure 3.

1.1.2. PHASE III

Extraction wells HSVE-031 through HSVE-104 were installed during the Phase III expansion between 2006 and 2011. Extraction wells HSVE-105 through 107 were installed as nested pairs in late 2014. The Phase III and more recent extraction wells were constructed with a small radius vault for the wellhead and a separate 4-foot by 4-foot steel control vault to house the valves, flow meter, and sample ports. The Phase III wells were installed with a 4-inch by 4-inch by 2-inch tee allowing connection of a 2-inch line that extends from the wellhead to the control vault. This 2-inch line then increases to 4-inches as it exits the control vault and connects to the SVE conveyance lines. Typical wellhead configuration for the extraction wells installed during the Phase III expansion and later are shown on Figure 3.

1.1.3. STINGERS

The SVE system was initially designed to solely recover vapor. However, after startup of the system, it was determined that groundwater levels would increase within many of the extraction wells under typical system vacuum, which led to screen occlusion and limited vapor recovery. Therefore, many of the extraction wells were retrofitted to allow for the installation of a stinger and extraction of groundwater as part of normal operations. A stinger is a small diameter hose or pipe that is inserted into the recovery well, which allows for simultaneous extraction of groundwater and soil vapor. This configuration, typically referred to as multiphase extraction (MPE), or more specifically as two phase extraction (TPE), allows for dewatering and prevents occlusion of the screen within the extraction well during system operation. As groundwater begins to rise due to the applied vacuum, both groundwater and vapor are extracted through the stinger. The depth of the stinger can be adjusted to depress the water level in the extraction well. The stinger designs, summarized on Table 1, vary from well to well but generally can be described as follows:

- Flow Tube Flow tubes consist of a 2-inch polyvinyl chloride (PVC) stinger that is installed several feet into the 4-inch well casing. Flow tubes were only installed in the Phase I and II wells and many of the flow tubes have been replaced with Viton® Seal stingers, described below.
 Currently, only 13 of the extraction wells contain flow tubes.
- Straw Stinger Several of the extraction wells were designed with a 0.5-inch flexible hose that tees from the SVE conveyance line within the well control vault into the extraction well vault. The 0.5-inch flexible hose is then extended through the well cap and into the well casing down to the upper portions of the water table, serving as a stinger. At the bottom of the flexible hose, a piece of 1-inch section of PVC pipe is connected to the flexible hose. Water is extracted using an airlift technique wherein air moving at high velocity entrains water droplets at the air-water interface and conveys them upward into the horizontal conveyance line. The terminal end of each stinger consists of a beveled tip, which allows for continued airflow at high velocity and reduces the likelihood of deadheading (i.e., no movement of air or water). Vacuum for the straw stinger and the well casing is controlled separately in this design. This same approach was used on the recently installed wells on West Birch and West Arbor Streets (HSVE-105S/D, HSVE-106S/D, and HSVE 107S/D) using a 1-inch diameter flexible hose. Currently, 17 wells have straw stingers installed.
- <u>Viton® Seal Stingers</u> Viton® Seal stingers are between 0.75 and 1.5-inch diameter PVC stingers that are installed through a Viton® seal. Viton® is a chemical and heat resistant polymer that is used to create an airtight seal with the well casing and around the stinger. The Viton® seal is placed near the top of the well casing, below the tee, where vacuum is applied to the extraction

well. Similar to the straw stinger design, the stinger extends to the water table and the tip of the stinger is cut at a 45-degree angle to assist with initial mixing of air and water. All of the fluid and vapor is carried through the stinger to the top of the well above the Viton® seal and is conveyed through the 2-inch line that connects the wellhead to the control vault. Currently there are 50 wells with Viton® Seal Stingers.

Typical stinger configurations are shown on Figure 4. The current SVE system does not have an oil-water separator and LNAPL cannot not be recovered. Therefore, wells that historically or currently have measurable LNAPL are not operated with a stinger and only vapor is extracted when the water table is low enough to allow recovery.

In a subset of the extraction wells that have been retrofitted with a stinger, a port has also been installed to allow dilution air to be introduced into the casing with the intent of improving the flow of extracted vapors. Extraction wells with dilution ports are noted on Table 1.

1.2. REPORT ORGANIZATION

The remainder of this report is organized as follows:

- Section 2.0 provides a description of the OMM activities for the vapor collection system a discussion of the system monitoring results (flow rates, mass removal rates, and effectiveness monitoring), and a summary of maintenance activities performed on the vapor collection system components during the reporting period.
- Section 3.0 includes a summary of the thermal treatment system operation and monitoring activities conducted over the reporting period, as well as routine and non-routine maintenance items.
- Section 4.0 describes the routine in-home monitoring results including weekly, quarterly, and river stage triggered events,

SECTION 2.0 VAPOR COLLECTION SYSTEM

This section summarizes the routine OMM activities performed on the vapor collection system components between October 2015 and March 2016. Operation of the system was conducted in accordance with the *VCS OMM Plan* (Trihydro 2015).

2.1. OPERATIONS OVERVIEW

Operation of the vapor collection system was focused on preventing vapor intrusion into structures when the groundwater table was high and was optimized for mass recovery when groundwater was below trigger elevations in the Rand stratum. During periods of high groundwater levels, the system was operated using as many of the extraction wells that are installed in the shallow stratum and currently considered part of the system. During periods of low groundwater levels, vapor extraction is generally focused on wells with total volatile petroleum hydrocarbon concentrations above 100 ppmv.

There are many conditions that may influence the operability of an extraction well including occlusion of the well screen with groundwater and reduced permeability associated with increasing water content within the vadose zone. These conditions may occur as a result of a rise in the Mississippi river stage, increase in the groundwater elevation, as well as local precipitation events. Therefore, operations within each of individual extraction wells is adjusted weekly, (including applied vacuum and stinger position) based on the routine monitoring data. In general, the operational criteria employed was as follows (based on historic operating parameters):

- Operating Vacuum: The target operating vacuum is between 80 and 120 inches of water (in-H₂O), provided that occasionally this may be reduced to prevent occlusion of the well screen and allow for extraction of soil vapor from the well.
- <u>Flowrate</u>: The flowrate under these operating vacuums has been between 8 and 80 scfm, which were historically used as benchmarks for operating individual wells.

In practice, given the inaccuracies associated with flowrate measurements (further discussed in Section 2.3.1), low flowrates are evaluated more closely than higher flowrates. When low (or no) flowrate is observed, further evaluation is conducted to determine the cause, such as well screen occlusion or transmission line blockage. If the flowrate cannot be increased, the well may be shut down until subsurface conditions improve or maintenance can be completed.

The VCS OMM Plan (Trihydro 2015) also includes operating parameters for conditions when trigger elevations are met. Once groundwater trigger conditions are present in three of the five trigger monitoring locations in the Rand stratum, extraction is generally focused at those extraction wells with higher TVPH concentrations (greater than 100 ppmv) and flowrates to optimize mass recovery. The following table provides a summary of the trigger monitoring locations and groundwater elevations:

Monitoring Location	SVE Effectiveness Zone	Trigger Elevation	
		(ft-amsl)	
MP-079B	Zone 1	406.0	
MP-039B	Zone 2	409.0	
HMW-044B	Zone 5	406.5	
MP-053B	Zone 5	406.5	
MP-029C	Zone 6	408.0	

Groundwater elevations were below the trigger criteria within three of the five monitoring wells between October 12 and December 16, 2015, and again beginning on February 19, 2016 through the end of the reporting period (March 31, 2016). It is important to note that while in theory, shutting down extraction wells with low TVPH concentrations would allow focused mass removal, in practice this is not always possible as the blowers do not have variable speed capability. Therefore, some wells with lower TVPH concentrations may continue to be operated to maintain airflow within the operating blowers. To alleviate this limitation and obtain greater operational flexibility, Apex has replaced sheaves on two of the four blowers (Blower No. 1 and Blower No. 4), to allow for variation in airflow from the originally designed 750 scfm, with the current airflow as follows:

- Blower No. 1 850 scfm
- Blower No. 2 and 3 750 scfm.
- Blower No. 4 600 scfm

2.1.1. OPERATING WELLS

Figure 5 and Table 1 provide a summary of the percent of time that each extraction well was operating during the reporting period. As depicted, there were 32 extraction wells that were online 100% of the time and another 62 wells that were online periodically (between 7% and 91% of the time). There were 22 extraction wells that were not operated due to well screen occlusion including:

- <u>Zone 1</u>: HSVE-105D and HSVE-107D
- <u>Zone 2</u>: HSVE-044 and HSVE-045
- <u>Zone 5</u>: HSVE-009S, HSVE-009D,
- Zone 6: HSVE-001S, HSVE-001D, HSVE-030S, HSVE-030D, HSVE-055, HSVE-056, HSVE-057, HSVE-059, HSVE-060, HSVE-063, HSVE-065, HSVE-066, HSVE-068, HSVE-069, HSVE-073, and HSVE-075

The wells located in Zone 1 (HSVE-105D and HSVE-107D) are screened within the Main Sand stratum while the remaining wells are screened within the shallower stratum. There were four wells in Zone 6 (HSVE-001S, HSVE-001D, HSVE 030S, and HSVE 030D) and 2 wells in Zone 5 (HSVE-009S and HSVE-009D) that were inoperable due to a blockage within the horizontal transmission line connecting these wells to the SVE horizontal conveyance lines. Additionally, extraction wells HSVE-057, HSVE-059, and HSVE-060 screened in the Rand stratum and located in Zone 6 were operated between March 1 and March 11, 2016 during an enhanced TPE test as described within the revised *Soil Vapor Extraction System Effectiveness Zone 6 Optimization Report, Hartford Petroleum Release Site, Hartford, Illinois (Zone 6 Optimization Report,* 212 Environmental 2016). These three extraction wells were otherwise inoperable and are thusly noted as such within this report.

2.1.2. SEASONAL CONDITIONS

Figure 6 provides a graphical summary of local precipitation events, Mississippi River elevation, and groundwater elevation within the Rand stratum (measured within monitoring point MP-029C). The river stage increased sharply in mid-November 2015 and remained above 405 feet above mean sea level (ft-amsl) during the remainder of the reporting period, except for a brief period in mid-February 2016. Groundwater elevations within the Rand stratum were also generally above 405 ft-amsl and exceeded the trigger elevation (408 ft-amsl in monitoring point MP-029C) from mid-December 2015 through early-March 2016.

As the river stage and groundwater elevations increased, fewer wells became operable due to occlusion of the well screen. Significant rainfall in November 2015 through January 2016 also resulted in reduced soil gas permeability and flow within many of the extraction wells across the Hartford Site. As shown on Figure 7, the maximum number of operating extraction wells was observed during the last week of November 2015 (87 wells), while the fewest number of operating wells was observed during the second week of January 2016 (57 wells). As the river and groundwater

elevations began to decrease in early March 2016, the number of wells that were operating increased. By the end of March 2016, 81 extraction wells were operating across the Hartford Site.

2.2. ROUTINE AND NON-ROUTINE MAINTENANCE

Maintenance activities performed between October 2015 and March 2016 were primarily related to stinger adjustments. Line sweeping and replacement of the valves connecting the extraction well to the vapor collection system was also conducted during the reporting period.

2.2.1. STINGERS

Adjustment and replacement of stingers was conducted weekly. Stinger positions were adjusted based on the protocol outlined on Figure 8, originally presented in the *VCS OMM Plan* (Trihydro 2015). In most cases, the stinger was raised to reduce the groundwater recovery rate and maximize vapor recovery as the groundwater elevations increased. Stingers were periodically replaced due to biofouling. Stinger adjustments are summarized in Appendix B.

2.2.2. LINE SWEEPING

Line sweeping was conducted five times during the reporting period. The water removal varied between 1,700 and 5,200 gallons per event, as summarized on Table 2. Following line sweeping, daily water recovery rates decreased but generally returned to pre-sweeping rates within three or four days. There was no noticeable increase in the system vacuum following any of the line sweeping events, although recovery within individual wells may have been improved.

2.2.3. VALVE REPLACEMENT

The valves connecting the individual wells to the transmission system occasionally leak due to normal wear attributed to exposure to water both within the wells and accumulating within the control vaults. Valves were replaced in the transmission lines connecting wells HSVE-024D (formerly had a 4-inch butterfly valve) and HSVE-099 (formerly had a 2-inch gate valve) to the system. The valves at these two extraction wells were leaking and therefore replaced with a brass 2-inch gate valve. Well HSVE-024D was reconfigured to reduce the 4-inch transmission line to 2-inch line as it was determined that for consistency, ease of operation, and cost, all replacement valves will be 2-inch diameter gate valves. Additional valve replacement will be conducted as part of the well reconfiguration activities, prioritizing those wells with the highest measured leakage. A summary of wells with leaking valves and the degree of leakage is summarized on Table 3.

2.3. ROUTINE SYSTEM MONITORING

Routine monitoring activities performed within the operating extraction wells during the reporting period included: (1) gauging fluid levels, (2) measuring vapor extraction flowrates and (3) field screening soil vapor within the individual extraction wells. Field screening was conducted by collecting soil vapor samples within a Tedlar® bag and field screening the samples for TVPH and methane concentrations using a ThermoScientific TVA1000B flame ionization detector (FID). A granulated activated carbon (GAC) filter is attached to the FID to obtain the methane concentration. The petroleum hydrocarbon concentration (PHC) is then estimated by subtracting the methane concentration from the TVPH concentration. Fixed gases (including oxygen and carbon dioxide) were also measured in soil vapor using a Landtec GEM 2000® multigas meter. Fluid levels were recorded biweekly while vapor recovery flowrate measurements and field screening of soil vapor was conducted monthly. The routine measurements collected from the extraction wells between October 2015 and March 2016 are provided in Appendix B.

2.3.1. VAPOR EXTRACTION FLOWRATE

The flowrates within each of the extraction wells were summed during each of the monthly events to estimate a total vapor extraction flowrate through the vapor collection system. This well-by-well estimate of the system flowrate is summarized in Table 4. The total flowrate through the system was also recorded daily at the Main Header. The total flowrate estimated by summing extraction rates from each well compared to the average flowrate recorded at the Main Header is provided in the following table.

Date Range	Well-by-Well Estimate of VCS Flowrate	Main Header Measured VCS Flowrate	
	(scfm)	(scfm)	
10/12/15-10/14/15	1,835	1,558	
11/16/15-11/19/15	1,641	1,419	
12/7/15-12/9/15	2,492	1,622	
1/11/16-1/14/16	2,177	1,078	
2/22/16-2/25/16	1,999	1,425	
3/21/16-3/24/16	2,017	1,425	

The total flowrate estimated by summing extraction rates from each operating well was always higher than the average flowrate measured at the Main Header. Flowrates are measured within the individual extraction wells using either: (1) a pitot tube or (2) an in-line venturi flow meter as follows:

- HSVE-001 through HSVE-030 (with the exception of HSVE-004R, HSVE-005R, HSVE-006R, and HSVE-021) – Dwyer Series 160 Straight Parallel Flow Pitot Tube
- HSVE-005R, HSVE-006R, HSVE-021, and HSVE-031 through HSVE-103 Preso Coin-3 In-Line Venturi
- HSVE-105S, HSVE-105D, HSVE-106S, HSVE-106D, and HSVE-107S, HSVE-107D Preso Model V-65 In-Line Venturi
- HSVE-004R Dwyer DS-300-3 Flow Sensor

These flowrate devices are used to measure the differential pressure which is then converted to a flowrate using the following formulas provided by the manufacturer:

Dwyer Series 160 Straight Pitot Tube:

$$Q = 1096.2 * C_p * \sqrt{\frac{\Delta P * (T + 460)}{1.325 * P_{abs}}} * A * \frac{P_{abs}}{29.92} * \frac{520}{T + 460}$$

Where:

Q = Flowrate (scfm)

C_p = Pitot Tube Coefficient (0.81, unitless)

 ΔP = Differential Pressure (in-H₂O)

T = Temperature (°F)

P_{abs} = Absolute Pressure (in-Hg)

A = Cross Sectional Area of Flow (ft^2)

Preso Coin-3, Preso Model V-65, and Dwyer DS-300-3

$$Q = C_1 * \sqrt{\frac{\Delta P * P_{abs}}{SG_s * (T + 460)}}$$

Where:

Q = Flowrate (scfm)

 C_1 = Flow Coefficient (unitless)

 ΔP = Differential Pressure (in-H₂O)

P_{abs} = Absolute Pressure (pounds per square inch area)

SG_s = Specific Gravity – assumed to be 1 (unitless)

T = Temperature (°F)

The flow coefficient (C₁) for the Preso Coin-3, Preso Model V-65, and Dwyer DS-300-3 is calculated via the following equation:

$$C_1 = 128.8 * K * D_i^2 * F_a$$

Where:

K = Flow Coefficient: 0.286 for Coin-3 and 0.6584 for Model V-65, and 0.64 for Dwyer DS-

300-3 (dimensionless)

D_i = Pipe Diameter (inches)

F_a = Thermal Expansion of Pipe – 1 up to 100°F (dimensionless)

The Dwyer Series 160 Straight Pitot Tube (used to measure flow at Phase I/II SVE wells HSVE-001 through HSVE-030, is approximately 3-feet long and designed for use within 4-inch ductwork for measuring air flow rate. Flowrate measurements estimated using the Dwyer Series 160 Straight Pitot Tube involves the insertion of a pitot tube into the well casing parallel to the flow direction. In cases where a Phase I/II well has been retrofitted with a Viton® stinger, the flowrate measurement is collected by inserting the pitot tube into the stinger. It is understood that these historical methods for collecting measurements from the Phase I and II extraction wells (particularly with respect to those wells retrofitted with a stinger) results in inaccurate flowrate measurements due to both the well configuration, as well as water present in the air stream.

The in-line Venturi devices (Preso Coin-3 In-Line Venturi and Preso Model V-65 In-Line Venturi) were not installed according to the manufacturer's recommendations, which required minimum straight length pipe to be installed on both sides of the Venturi. This improper installation leads to inaccurate flowrate measurements. Additionally, cleaning of the Venturi is labor intensive and has not been routinely performed which may result in additional inaccuracies. Finally, in many cases, there is groundwater entrained with recovered vapor. However, the flowrate calculations assume

that the recovered vapor does not contain water. Entrained water will result in overestimation of the air flow rate.

2.3.2. MASS REMOVAL RATE

The mass removal rate via the SVE system (calculated in pounds per day [lbs/day]), can be estimated using the following equation (USEPA 1989):

$$\textit{Mass Removal Rate} = \textit{C} \times \textit{Q} \times \textit{MW} \times 1.581\textit{E} - 07 \; \frac{\textit{lb} - \textit{mol min}}{\textit{ft}^3 \; \textit{ppmv hour}} \times 24 \; \textit{hours/day}$$

Where:

C = Petroleum hydrocarbon concentration in soil vapor (ppmv)

Q = Vapor extraction flowrate (scfm)

MW = Molecular weight of petroleum hydrocarbons (lb/lb-mole)

The mass removal rate for the SVE system was estimated via two approaches. The first approach involved summing the mass removal rate from each of the individual extraction wells using the following inputs:

- The petroleum hydrocarbon concentration from each extraction well, which is estimated by subtracting the methane concentration from the TVPH concentration. Methane and TVPH concentrations are measured monthly from the extraction wells using a ThermoScientific TVA1000B FID.
- The flowrate (Q) for each of the extraction wells that were operating at the time that methane and TVPH measurements were collected, as summarized on Table 4.
- The molecular weight (MW) was assumed to be 86.2 lb/lb-mole, which is the same value used by Eurofins-AirToxics (the analytical laboratory contracted for analysis of the Main Header vapor samples) for converting concentrations from volumetric based units (ppmv) to weight based units (milligrams per cubic meter [mg/m³]).

The well specific mass removal rates were summed to estimate the total mass removal rate from the SVE system as summarized in Table 4.

The second approach for estimating the mass removal rate utilizes the petroleum hydrocarbon concentration and flowrate measured in the Main Header. Flowrate is recorded daily and soil vapor

is screened weekly for TVPH and methane concentrations from the Main Header. The resultant petroleum hydrocarbon concentration and flowrate measurement collected closest in time to when field screening was conducted was used to estimate the SVE system mass recovery rate. A comparison of the total mass removal rate using these two approaches over the reporting period is provided in the following table:

	Estimated Total SVE System Mass Removal Rate (lbs/day)					
	October 2015	November 2015	December 2015	January 2016	February 2016	March 2016
Well-by-Well Approach	1,844	5,034	1,180	307	992	2,902
Main Header Approach	981	3,020	1,689	64	582	634

The mass removal rate estimated by summing the rates from each of the individual extraction wells does not correlate well with the mass removal rate calculated using measurements from the Main Header. This is primarily attributed to the inaccuracies associated with flowrate measurements as discussed in Section 2.2.1. There are several additional factors contributing to the differences in the estimated mass removals rates including:

- Leakage across extraction well control valves (summarized on Table 3) is not accounted for in the well-by-well approach but would be measured at the Main Header.
- Temporal fluctuations in the flowrate and TVPH concentrations measured in the extraction wells and Main Header, which may be difficult to capture with near instantaneous grab samples.

Irrespective of these differences, estimating mass removal rates within the individual extraction wells provides insights regarding the effectiveness of vapor recovery across a range of seasonal conditions.

2.4. REGIONAL EFFECTIVENESS MONITORING

Quarterly regional effectiveness monitoring was conducted in general accordance with the *Effectiveness Monitoring Plan* (URS 2014c) in November 2015 and February 2016. Quarterly monitoring included measuring the static pressure, conducting pneumatic tests, and gauging fluid levels within select monitoring locations. In addition, soil vapor samples were collected and field screened for TVPH, oxygen, carbon dioxide, methane, and LEL. Results from the regional effectiveness monitoring are provided in Appendix C and summarized in the following subsections.

2.4.1. FOURTH QUARTER 2015

The fourth quarter 2015 regional effectiveness monitoring was conducted between November 13 and 19, 2015 and included screening within 140 vapor monitoring points (VMP), vapor probes (VP), multipurpose monitoring points (MP), and monitoring wells (HMW). During this event, static pressure ranged from -7.39 to 0.14 in- H_2O . There were 2 locations (1%) in which a pressure was measured versus 46 locations with a vacuum (33%) and 92 locations (66%) in which there was not a pressure or a vacuum measured.

Pneumatic testing was performed to determine the competency of the monitoring locations and estimate soil gas permeability. None of the monitoring locations were compromised based on the pneumatic test results and the soil gas permeability ranged between 1.88E-10 and 1.98E-07 cm². These soil gas permeabilities are indicative of silty clays to fine sands. The range of soil gas permeability measured in the regional monitoring network was lower than the range measured within the sub-slab probes (2.52E-9 to 1.95E-5 cm²). However, there were not significant differences in the range of soil gas permeability measured in the clay units compared to the North Olive, Rand, and Main Silt stratum during the November 2015 event.

2.4.2. FIRST QUARTER 2016

First quarter 2016 regional effectiveness monitoring was conducted between February 2 through 7, 2016, and included vapor screening and pneumatic testing within 135 vapor monitoring points (VMP), vapor probes (VP), multipurpose monitoring points (MP), and monitoring wells (HMW). During this event, static pressure ranged from -8.74 to 6.00 in-H₂O. There were only 13 locations (10%) in which a pressure was measured versus 71 locations with a vacuum (52%) and 51 locations (38%) in which there was not a pressure or a vacuum measured. The soil gas permeability ranged between 3.96E-10 and 4.03E-08 cm² in February 2016 and were similar to those reported in November 2015.

2.5. SUMMARY OF SVE SYSTEM AND EFFECTIVENESS MONITORING

Distribution plots of TVPH and oxygen were developed using an interpolant model created in three dimensions (Leapfrog® Hydro). The model incorporated data collected from the vapor monitoring probes (VMP), vapor probes (VP), multipurpose monitoring points (MP), and monitoring wells (HMW) during quarterly effectiveness monitoring events (November 2015 and February 2016). A slicing plane was selected at a representative elevation for the North Olive Stratum (418.2 ft-amsl). Data

from monitoring locations with screen intervals located within +/- 3.3 feet of the slicing plane, which represents approximately 90% of data collected within the North Olive Stratum, are represented on the TVPH and oxygen distribution plots. The estimated mass recovery for SVE wells that were operating at the time of the effectiveness monitoring event are overlain on the TVPH distribution plots to correlate mass recovery rates with TVPH distribution. The TVPH and oxygen plots for November 2015 are provided as Figures 9 and 10, respectively and for February 2016 are depicted on Figures 11 and 12, respectively.

For the November 2015 event, shown on Figure 9, TVPH concentrations were highest along the northern portions of North Olive Avenue, along West Birch and West Cherry Streets, along East Date Street, and at the east end of the alley between East Elm Street and East Forest Street. During the February 2016 effectiveness monitoring event, depicted on Figure 11, the highest TVPH concentrations were detected along the northern portions of North Olive Street, between West Birch and West Cherry Streets, and along North Olive Avenue near East Elm Street. During both events, reduced oxygen concentrations (Figures 10 and 12) were generally observed across the entire northern portions of the Village of Hartford, with the greatest reductions in oxygen in soil vapor collected at locations with elevated TVPH concentrations. These results suggest that aerobic biodegradation of volatile petroleum hydrocarbons is occurring within vadose zone beneath the Hartford Site. Locations with higher mass recovery rates are generally collocated with elevated TVPH concentrations measured in soil vapor, with two exceptions.

- Elevated TVPH concentrations were measured in multipurpose monitoring point MP-083A located in the alley between West Birch and Cherry Streets in SVE Effectiveness Zone 1. An extraction well (HSVE-104) was previously installed adjacent to monitoring point MP-083A but was not connected to vapor collection system transmission lines. This well was connected to the vapor collection system during the second quarter 2017.
- 2. Elevated TVPH concentrations are observed in vapor monitoring point VMP-070 located in the alley between East Elm and Forest Streets beneath SVE Effectiveness Zone 5. Apex installed and connected an additional SVE well (HSVE-112) in this area during the second guarter 2017.

The thermal treatment system consists of four positive displacement blowers (B-1 through B-4) and four associated thermal oxidizers (TO-1 through TO-4) designed to recover and treat soil vapor extracted from beneath the Hartford Site (Figure 2). The system also has infrastructure (e.g., vapor-liquid separators, frac tanks) necessary to recover and store groundwater extracted from the vapor collection system during operations. The following sections describe the general operation, as well as specific monitoring and maintenance performed during the semiannual reporting period.

3.1. OPERATIONS AND MONITORING RESULTS

Between October 1, 2015 through March 31, 2016, the system was active (i.e., extracting and treating vapor) 99.8% of the time. The system was online for approximately 4,361 hours and offline for approximately 7 hours due to scheduled maintenance and shutdowns caused by heavy rain. Two blowers and associated oxidizers were operated during the reporting period. The daily flowrate measured at the Main Header (Table 2) ranged from a minimum of 805 scfm to a maximum of 1,745 scfm, with an average of approximately 1,450 scfm. The vacuum applied to the Main Header varied from 130 to 159 in-H₂O, with an average of 150 in-H₂O vacuum.

Samples are collected weekly from the Main Header and submitted to Eurofins-AirToxics located in Folsom, California for analysis of total petroleum hydrocarbons (TPH) ranging from C2 to C10 via USEPA method TO-3, speciated volatile petroleum hydrocarbons via USEPA method TO-15, as well as methane, potential energy reported in (BTUs), and specific gravity via ASTM 1945. The mass recovery rate (in units of pounds per day) for the SVE system is estimated using the TPH laboratory analytical results and the corresponding flowrate on the day the sample was collected using the following equation (USEPA 1989):

$$M = C \times Q \times MW \times 1.581E-07 \frac{lb - mol \cdot min}{ft^3 \cdot ppmv \cdot hour}$$

Where:

M = Mass recovery rate (pounds per hour)

C = TPH concentration (ppmv)

Q = Vapor extraction flowrate (scfm)

MW = Molecular weight of TPH (lb/lb-mole) assumed to be 86.2 lb/lb-mol

The mass recovery rate is converted to equivalent gallons per day of gasoline as follows:

$$M\left(\frac{gallons}{day}\right) = M\left(\frac{pounds}{hour}\right) * \left(\frac{24 hours/day}{\rho}\right)$$

Where:

M = Mass recovery rate (pounds per hour or gallons per day)

P = Density of LNAPL (pounds per gallon, assumed to be 6.08)

The mass recovery rate is assumed to apply to the day the sample was collected and the days following until the next sample is collected for laboratory analysis. Hydrocarbon mass recovery rates varied from 6 to 165 gallons per day with a calculated total hydrocarbon vapor removal of approximately 12,932 gallons during the reporting period.

Figure 13 presents a comparison of the hydrocarbon mass recovery rate to the Mississippi River and groundwater elevation within the Rand stratum (as reported in monitoring point MP-029C). There is a clear inverse relationship between the groundwater elevation in the Rand stratum and hydrocarbon mass recovery rate. As described in Section 2.1.2, as the river stage and water table increased, fewer wells became operable due to well screen occlusion. Several concurrent rainfall events in November and December 2015 also resulted in reduced soil gas permeability within the shallow strata, reducing flow and mass recovery across the vapor collection system.

3.2. ROUTINE MAINTENANCE

This section describes the routine maintenance activities including recovered groundwater and accumulated sediment management, as well as routine vibration analyses performed on the blowers and motors at the thermal treatment system.

3.2.1. WATER MANAGEMENT

As discussed in Section 2.0, the SVE system was originally designed to solely recover vapor and was not designed to recover, treat, and store groundwater. Subsequent to start-up, the thermal treatment system was modified to manage the extracted water. Recovered groundwater is initially recovered in a 470-gallon condensate tank (consisting of a 24-inch diameter capped steel pipeline)

installed below the Main Header where it enters the Premcor refinery (Figure 2). Accumulated groundwater in the Main Header drains into the condensate tank and is periodically pumped to an 18,000-gallon frac tank (Tank No. 1). Residual moisture in the extracted vapor is subsequently removed using a 1,000-gallon vapor-liquid separator located above ground, north of the blowers and oxidizers. The extracted vapor passes through the above ground vapor-liquid separator in a tangential flow pattern and is transferred to a 16,000-gallon frac tank (Tank No. 2) using two centrifugal electric pumps. Water removal through the condensate tank and 1,000-gallon vapor-liquid separator is effective enough that little water accumulates in the small separators (240 gallons each) installed at the inlet of each blower. The small amount of water that accumulates within the separators at each blower is transferred to Tank No. 2 as needed. Recovered groundwater within Tanks No. 1 and No. 2 are manually transferred to Tank No. 3 (a 16,000-gallon frac tank), as needed, to provide additional storage capacity. The total groundwater storage capacity is approximately 50,000 gallons.

As the maximum capacity is approached, a water sample is collected from Tank No. 3 and analyzed for volatile organic constituents, select polycyclic aromatic hydrocarbons, total lead, and ignitability. Based on the analytical results, the water is characterized as either hazardous or non-hazardous, and a discharge request is submitted to the Wood River Wastewater Treatment Plant (WRWTP). Water is then transferred to the WRWTP by tanker truck as there is no direct discharge from the TTUs to the WRWTP. A total of approximately 249,900 gallons of water was transferred to the WRWTP for treatment and disposal during seven separate events over the course of the reporting period. All of the water was characterized as non-hazardous. Daily water recovery rates varied from less than 300 gallons to 6,600 gallons. The water recovery rate is closely associated with precipitation events, groundwater elevations, as well as the stinger position within the extraction wells. Water recovery was elevated during the enhanced TPE test in March 2016 as discussed in the *Zone 6 Optimization Report* (212 Environmental 2016). Analytical reports for water samples collected from the thermal treatment system and the corresponding waste manifests for each event are provided in Appendix D.

3.2.2. SEDIMENT ACCUMULATION MANAGEMENT

Recovered groundwater contains entrained sediment that accumulates in portions of the Main Header piping, condensate tank, and vapor-liquid separator. The sediment consists primarily of clays and silts, in addition to iron scaling. The individual tanks and vapor-liquid separator, as well as a portion of the Main Header extending from North Olive Street to the below grade condensate tank are cleaned approximately every six to eight months. Sediment was removed from the below-grade

condensate tank and vapor-liquid separators on February 22, 2016. The amount of sediment removed is not easily quantifiable, but is estimated at a few cubic feet. The recovered sediment and water were transferred to Tank No. 1. Sediment in Tank No. 1 is periodically removed, characterized, and disposed offsite; however, the volume of sediment accumulation during the current reporting period did not warrant such activities.

3.2.3. VIBRATION ANALYSES

Vibration analyses of the four blowers and twelve electric motors associated with the thermal treatment system have historically been performed on a quarterly basis. Sensors are placed at several defined locations on a blower or motor and record the degree and direction of vibration over a range of frequencies. The data is graphed and interpreted by the contractor performing the analyses (BRI Inc.). Vibration analyses were conducted on December 16, 2015 and March 22, 2016. A summary of the results for these two events is included in Appendix E.

The purpose of these analyses is to identify potential problems with the mechanical equipment and conduct repairs prior to a failure. Vibration analyses have also assisted in identifying the need to balance blower fans on the thermal oxidizers, which are mounted directly on the shaft of the electric motors. It should be noted that vibration analyses of the 75-HP blowers have not been particularly helpful in identifying problems prior to a failure. The positive displacement blowers normally operate with a high level of vibration and isolating subtle changes indicative of a problem is difficult. For example, the vibration analyses conducted on July 1, 2015 did not indicate any problems with Blower B-3, which incurred a bearing failure on July 22, 2015. Conversely, historical blower vibration analyses have occasionally suggested potential problems but these symptoms disappear on subsequent analyses, and/or the blowers continued to operate for thousands of hours without incident.

The vibration analyses performed in December 2015 indicated possible problems with Oxidizer TO-4 tertiary fan bearings. In response, the motor was greased and the vibration decreased on the subsequent vibration analyses. The vibration analyses on March 22, 2016 indicated slightly excessive vibration on Oxidizer TO-1 tertiary and combustion fans and Oxidizer TO-2 tertiary fan. The motors were greased and vibration trends will be monitored. If the vibration on the fans do not decrease, balancing of the fans is recommended to avoid bearing damage.

3.3. NON-ROUTINE MAINTENANCE

There was no non-routine maintenance performed during the reporting period.

SECTION 4.0 IN-HOME MONITORING

This section summarizes the routine in-home monitoring activities and river stage triggered events performed at the Hartford Site between October 2015 and March 2016. Routine in-home monitoring is conducted on a weekly and quarterly basis within select structures, and river stage triggered events result in in-home monitoring at structures previously identified as vulnerable during high river stage conditions.

4.1. ROUTINE IN-HOME MONITORING

Routine in-home monitoring activities have been conducted in accordance with the final *Interim In-Home Effectiveness Monitoring Plan* (Trihydro 2014) to determine the effectiveness of mitigation measures in preventing migration of volatile petroleum related constituents into structures at the Hartford Site. A summary of the structures monitored as part of routine and river stage triggered events is provided on Table 5 and shown on Figure 14. Indoor air is field screened for TVPH and the lower explosive limit (LEL). Pressure measurements are recorded within the sub-slab soil vapor probes and soil vapor is field screened for TVPH, LEL, and oxygen concentrations. If TVPH concentrations exceed 10 ppmv within indoor air or 350 ppmv within the sub-slab probe, then: (1) a soil vapor sample is collected within a Tedlar® bag for additional field screening, and (2) indoor air and soil vapor samples may also be collected for laboratory analysis. The vapor intrusion pathway decision flowchart is depicted on Figure 15. The following sections summarize the interim in-home effectiveness monitoring results from weekly and quarterly monitoring activities conducted between October 1, 2015 and March 31, 2016.

4.1.1. WEEKLY

Twelve structures (previously documented as having a completed vapor intrusion pathway) had been identified for weekly in-home monitoring (Trihydro 2014). However, in April 2015, the owner of 125 West Birch Street and 125 West Birch Street (Rear) indicated that access to these structures would no longer be permitted on a weekly basis. In addition, weekly in-home monitoring was discontinued at 119 West Cherry Street per request from the homeowner in July 2015. The owners of these three structures have agreed to allow access during quarterly and river stage triggered monitoring events. The USEPA and Illinois EPA were provided notification of the change in monitoring frequency at the two structures on West Birch Street and the structure on West Cherry Street on April 22, 2015 and July 13, 2015, respectively.

A summary of the results from weekly in-home effectiveness monitoring collected between October 1, 2015 and March 31, 2016 are provided in Appendix F. The summary table included in Appendix F only includes results from a structure when TVPH concentrations were measured in at least one indoor air or soil vapor sample. If all the screening results were measured at 0.0 ppmv, then the indoor air and sub-slab field screening results for that weekly event were omitted from the summary table. The weekly monitoring results can be summarized as follows:

- TVPH was not detected (or in other words was measured at 0.0 ppmv) in indoor air and sub-slab soil vapor at any time during the reporting period within four structures including 119 West Date Street, 504 North Delmar, 516 North Delmar, and 715 North Delmar.
- TVPH was detected in indoor air eight times at 129 West Birch Street without a corresponding reading in the sub-slab vapor probes within the structure. The measured TVPH concentrations in indoor air did not exceed 10 ppmv and was attributed to alternate sources within the structure since TVPH was not detected at any time in the sub-slab vapor probes. Alternate sources could include but are not limited to leaks within natural gas lines, sewer gas present within the structure, cigarette smoke, cleaners, and ambient sources in outdoor air.
- TVPH was detected in a single sub-slab vapor probe (SS-3) located within 107 West Birch Street during a single in-home screening event (February 10, 2016). The TVPH concentration measured within the sub-slab vapor probe was 1.0 ppmv, and did not correlate to an increase in the elevation of the Mississippi River. TVPH was not detected in indoor air at 107 West Birch Street at any time during the reporting period.
- TVPH was measured at least once in indoor air and the sub-slab vapor probes within three structures over the reporting period including 117 West Birch Street, 507 North Olive Street, and 610 North Old St. Louis Avenue.
 - TVPH was consistently detected in indoor air at 117 West Birch Street (16 weekly events during the reporting period); however, in only three instances was TVPH concurrently detected within the sub-slab. These detections in the sub-slab occurred on October 28, 2015, November 11, 2015, and January 6, 2016. The sub-slab detections of TVPH in October and November did not coincide with a significant increase in river stage; however, the sub-slab detection of TVPH in January occurred during river stage triggered monitoring event EMBP-28. TVPH concentrations did not exceed the action level for indoor air (10 ppmv) and sub-slab vapor (350 ppmv) at any time during the reporting period. The consistent detection of TVPH in indoor air without corresponding sub-slab measurements has been attributed to alternate sources identified within the basement of

- the structure. The alternate sources include the furnace, animal urine and feces, laundry detergent, and various cleaners that are stored in the basement.
- events) installed at 507 North Olive Street during the reporting period. In general, TVPH was predominantly measured within probes SS-3 and SS-4; however, between February 10 and 17, 2016, there was a single detection in probe SS-1 and two detections in probe SS-2, which coincided with the highest TVPH concentrations detected in sub-slab vapor probe SS-4 (200 ppmv). TVPH concentrations were only detected in indoor air on February 10, 2016 over the reporting period. These detections did not coincide with an increase in river stage or significant precipitation event. TVPH concentrations measured at 507 North Olive Street did not exceed action levels in indoor air or soil vapor at any time during the reporting period. The consistent presence of TVPH within the sub-slab probes at 507 North Olive Street is attributed to operation of the sub-slab depressurization system. The suction pit for the system is located adjacent to sub-slab probes SS-3 and SS-4. In March 2016, the operating vacuum for the sub-slab depressurization system was reduced. Following the adjustment, TVPH concentrations decreased within each of the sub-slab probes.
- TVPH was detected in indoor air at 610 North Old St. Louis Avenue during nine weekly screening events; however, only four of these instances coincided with a detection in at least one sub-slab vapor probe. TVPH has been previously detected in indoor air within the structure and has been associated with the natural gas furnace. Three of the four detections of TVPH in the sub-slab probes occurred during or immediately following a river stage triggered monitoring event (EBMP-27 and EBMP-28). TVPH concentrations measured within 610 North Old St. Louis Avenue did not exceed action levels in indoor air or soil vapor at any time during the reporting period.

Overall the weekly in-home effectiveness monitoring results demonstrate that the mitigation measures (primarily operation of the SVE system) were effective at preventing migration of volatile petroleum related constituents into the structures that were sampled during this semiannual period.

4.1.2. QUARTERLY

Quarterly in-home effectiveness monitoring was conducted at the Hartford Site in November 2015 and February 2016, in accordance with the final *Interim In-Home Effectiveness Monitoring Plan* (Trihydro 2014). A summary of the field screening results from the two quarterly in-home

effectiveness monitoring events is provided in Appendix G-1. The summary table included in Appendix G-1 only includes results from a structure when TVPH was detected in at least one indoor air or soil vapor sample. If all the screening results were measured at 0.0 ppmv, then the indoor air and sub-slab field screening results for that event were omitted from the summary table. The quarterly field screening results can be summarized as follows:

- In November 2015, quarterly in-home effectiveness monitoring was conducted within 40 structures. TVPH concentrations measured during the quarterly screening event did not exceed action levels in indoor air or soil vapor within any structures. TVPH was detected in at least one measurement of indoor air and/or sub-slab vapor within ten structures during the monitoring event. Three structures had detections in indoor air that coincided with detections in the sub-slab probes including 117 West Birch Street, 119 West Birch Street, and 610 North Old St. Louis Avenue. As discussed in Section 4.1.1, TVPH detections at 117 West Birch Street and 610 North Old St. Louis are attributed to alternate sources identified within these structures. 119 West Birch Street is a duplex connected to 117 West Birch Street with a shared basement. As such, the alternate sources identified in 117 West Birch Street also influences the indoor air within 119 West Birch Street. The remaining six structures where TVPH was detected only in indoor air did not have concentrations that exceeded 10 ppmv, and the readings were attributed to alternate sources within the structures. TVPH was detected in sub-slab vapor probes within 507 North Olive Street without any detections in indoor air, and are attributed to operation of the sub-slab depressurization system, as described in Section 4.1.1.
- In February 2016, quarterly in-home effectiveness monitoring was conducted in 29 structures. During this event, TVPH was detected in indoor and/or sub-slab vapor probes within five structures. Only one structure, 507 North Olive Street, had TVPH detected in both indoor air and sub-slab vapor probes, attributed to operation of the sub-slab depressurization system, as discussed in Section 4.1.1. Three of the remaining four structures (107 West Birch Street, 119 West Birch Street, and 126 East Elm Street) did not have TVPH concentrations that exceeded action levels in indoor air or soil vapor. TVPH concentrations exceeded the action level at a single sub-slab probe (SS-2) within 309 North Olive Street on February 8, 2016. A soil vapor sample was collected in the a Tedlar® bag and the elevated TVPH concentrations were confirmed. Following adjustments to soil vapor extraction well HSVE-084 located on North Olive Street adjacent to 309 North Olive Street, the TVPH concentration within the sub-slab probe decreased below the action level within hours of the initial reading. The USEPA and Illinois EPA were provided notification regarding the elevated sub-slab reading within the structure on February 9, 2016. In response to the elevated reading, additional vapor screening was conducted

within the structure, as well as within an adjacent structure, 135 East Forest Street. TVPH was not detected in indoor air or sub-slab vapor within the adjacent structure on February 10, 2016. A final measurement within the sub-slab vapor probe at 309 North Olive Street was conducted on February 11, 2016, and the TVPH concentration was 0.0 ppmv.

In addition to field screening, static pressure was recorded and pneumatic tests were performed within each of the sub slab vapor probes during the quarterly effectiveness monitoring events. Pneumatic testing consists of measuring the differential pressure within the probe over increasing vapor extraction rates. A vacuum was imposed upon the probe inducing a flow rate low enough to minimize line losses (0.1, 0.2, and 0.5 liters per minute). The pneumatic test results are used to calculate the soil gas permeability and specific capacity of the material beneath the structure using equations provided in Johnson et al. (1990). Appendix G-2 provides a summary of the static pressure, soil gas permeability, and specific capacity estimates for the sub-slab probes tested within each of the structures during the quarterly events.

During the two quarterly monitoring events, static pressure ranged from -0.33 to 0.23 in-H₂O. A pressure was only recorded within 2 of the sub-slab probes (approximately 1% of the measurements), while a vacuum was reported in 38 of the probes (17%) during the two events. The soil gas permeability ranged between 2.52E-09 and 1.95E-05 square centimeters (cm²) and specific capacities ranged from approximately -166.65 to -0.03 cubic centimeters per second per inch of water (cm³/s·in H₂O). These results indicate that the materials located beneath structures at the Hartford Site range from fine grained mixtures of sand, silt, and clay (likely the A Clay) to clean sand and gravel mixtures (likely a fill material). Soil gas permeability measured in the sub-slab probes was generally consistent between the two quarterly monitoring events (generally no more than an order of magnitude increase or decrease between the two events). Changes in soil gas permeability are typically associated with changes in moisture content within the sediment or fill beneath a structure.

Overall the weekly in-home effectiveness monitoring results demonstrate that the mitigation measures (primarily operation of the SVE system) were effective at preventing migration of volatile petroleum related constituents into the structures that were sampled during this semiannual period. The data collected from 309 North Olive Street suggest that more rapid adjustments to the vapor extraction wells and stingers (as outlined on Figure 8) should be made when there are significant changes in the Mississippi River and groundwater elevation within the Rand stratum.

4.2. RIVER STAGE TRIGGERED MONITORING

Vapor intrusion events at the Hartford Site have been positively correlated with a rapid increase in the Mississippi River stage and advective movement of volatile petroleum related constituents associated with increasing groundwater elevations (Trihydro 2014). A river stage triggered event has previously been defined to occur when the elevation in the Mississippi River is equal to or greater than 410 ft-amsl (corresponds to a river stage of 14.5 feet) followed by an additional 2-foot rise over a 24-hour period. During a river stage triggered event, additional in-home monitoring is performed (as permitted) within the 34 structures (provided on Table 5) in accordance with the final *Interim In-Home Effectiveness Monitoring Plan* (Trihydro 2014) to evaluate whether vapor intrusion is occurring and to allow for adjustments to the SVE system.

Three river stage triggered monitoring events occurred during the reporting period, EBMP-26, EBMP-27, and EBMP-28. A summary of the monitoring results collected during the three river stage triggered events are provided in Appendix H. The summary table included in Appendix H only includes results from a structure when TVPH was detected in at least one indoor air or soil vapor sample. If all the screening results were measured at 0.0 ppmv, then the indoor air and sub-slab field screening results for that structure were omitted from the summary table.

4.2.1. EBMP-26

Between November 28 and 29, 2015, the Mississippi River stage increased from 14.50 to 16.65 feet within a 24-hour period. In response, river stage triggered monitoring event EBMP-26 was conducted between December 1 and 7, 2015 within 30 structures. TVPH concentrations were detected in indoor air within nine structures. None of the measurements exceeded the action level of 10 ppmv, with the highest concentration observed in indoor air within 111 West Date Street (4.2 ppmv). TVPH was detected in at least one sub-slab vapor probe within six structures. TVPH concentrations did not exceed the action levels at any sub-slab vapor probes during the event with the highest concentration observed within sub-slab vapor probe SS-4 at 507 North Olive Street (110 ppmv). This TVPH concentration was attributed to the SSDS system located beneath the structure. The suction pit for the SSDS is located adjacent to sub-slab probes SS-3 and SS-4, where the highest TVPH concentrations were measured during the event.

Groundwater recovery via the SVE system increased from approximately 1,400 gallons per day to 1,900 gallons per day during EBMP-26. Conversely, recovery of volatile hydrocarbons via the SVE system decreased from approximately 122 gallons per day in early June to less than 93 gallons per

day during the river stage triggered event (Table 2). The increased water recovery and decreased vapor recovery rates are attributed to increased soil moisture and groundwater elevations (in each of the water bearing zones) associated with several precipitation events and an increasing Mississippi River stage. Based on the in-home monitoring results collected during EBMP-26, the elevated soil moisture content and high groundwater conditions were also limiting migration of volatile petroleum hydrocarbons within the vadose zone beneath structures at the Hartford Site.

4.2.2. EBMP-27

On December 14 and 15, 2015, the Mississippi River stage measured at the Mel Price Lock and Dam increased from 14.59 to 16.74 feet within a 24-hour period. In response, river stage triggered monitoring event EBMP-27 was conducted between December 15 and 19, 2015 within 26 structures. Following the conclusion of river stage triggered monitoring event EBMP-26, subsurface conditions remained unchanged. As such, Apex requested a reduced scope for in-home monitoring during EBMP-27. The USEPA approved the request on December 15, 2015, and in-home monitoring was conducted for only five days within as many structures as would provide access during the event. TVPH was detected in indoor air within seven structures. None of the measurements exceeded the action level of 10 ppmv, with the highest concentration observed in indoor air within 610 North Old St. Louis Avenue (7.0 ppmv). TVPH was detected in at least one sub-slab vapor probe within three structures. TVPH concentrations did not exceed the action levels at any sub-slab vapor probes during the event with the highest concentration observed within sub-slab vapor probe SS-3 at 507 North Olive Street (28.0 ppmv). This TVPH concentration was attributed to the SSDS system located beneath the structure. The suction pit for the SSDS is located adjacent to sub-slab probes SS-3 and SS-4, where the highest TVPH concentrations were measured during the event. The operating vacuum for the sub-slab depressurization system was subsequently decreased.

Daily groundwater recovery ranged between 1,400 and 1,600 gallons per day and vapor recovery was estimated at 72 gallons per day during EBMP-27. The data collected during this river stage triggered event continued to show that elevated soil moisture content and high groundwater conditions were limiting vapor transport into structures, as well as volatile petroleum hydrocarbon recovery via the SVE system.

4.2.3. EBMP-28

On December 25 and 26, 2015, the Mississippi River stage increased from 21.15 to 23.15 feet within a 24-hour period, and continued to rise to greater than 35 feet on January 1, 2016. The increase in

river stage was caused by significant precipitation across the region, as well as locally within the Village of Hartford, which measured approximately 8.0 inches between December 28 and 29, 2015. The river stage triggered monitoring event began less than one week following the conclusion of EBMP-27. As such, Apex requested a reduced scope for in-home monitoring during EBMP-28, which included a single screening event within seventeen proposed structures. The USEPA approved the request on December 29, 2015, and in-home monitoring was conducted on January 6, 2016. TVPH concentrations were measured in indoor air within three structures. None of the measurements exceeded the action level of 10 ppmv, with the highest concentration observed in indoor air within 610 North Old St. Louis Avenue (4.1 ppmv). TVPH was detected in at least one sub-slab vapor probe within five structures. TVPH concentrations did not exceed the action levels at any sub-slab vapor probes during the event with the highest concentration observed within sub-slab vapor probe SS-1 at 117 West Birch Street (26.0 ppmv).

During the river stage triggered monitoring event, daily groundwater recovery increased from 1,900 gallons per day on December 25, 2015 to a maximum of 6,600 gallons per day on December 29, 2015. During EBMP-28, vapor recovery decreased sharply to 10 gallons per day and remained low for several weeks following the conclusion of the event. The data collected during this river stage triggered event continued to show that elevated soil moisture content and high groundwater conditions were limiting vapor transport into structures, as well as volatile petroleum hydrocarbon recovery via the SVE system.

REFERENCES

- 212 Environmental Consulting, LLC. 2016. Revised Soil Vapor Extraction System Effectiveness Zone 6

 Optimization Report, Hartford Petroleum Release Site, Hartford, Illinois. August 2016.
- Johnson, P.C., Kemblowski, M.W., and Colthart, J.D. 1990. "Quantitative Analysis for the Cleanup of Hydrocarbon-Contaminated Soils by In-Situ Soil Venting". Groundwater. 1990. 28 (3).
- Trihydro Corporation. 2014. Final Interim In-Home Effectiveness Monitoring Plan, Hartford Petroleum Release Site, Hartford, Illinois. January 3.
- Trihydro Corporation. 2015. Final Vapor Collection System Operation, Maintenance, and Monitoring Plan, Hartford Petroleum Release Site, Hartford, Illinois. September 4.
- United States Environmental Protection Agency (USEPA). 1989. *Estimating Air Emissions from Petroleum UST Cleanups*. Office of Underground Storage Tanks, Washington, D.C., June 1989.
- URS Corporation. 2014a. *HSVE Monitoring and Maintenance Manual, Hartford Working Group*. October 4.
- URS Corporation. 2014b. System Operation and Maintenance Response to River Rise, Groundwater Related and Sub-Slab Triggers Hartford Area Hydrocarbon Plume Site. October 29.
- URS Corporation. 2014c. *Effectiveness Monitoring Plan, Hartford Hydrocarbon Plume Site, Hartford, Illinois*. November 11.

TABLES

Location	Zone	Shallow/ Deep	Stratum	Considered Part of System ¹	Operation during Reporting Period	Line Sweeping	Top of Screen	Bottom of Screen	Screen Length	Stinger Type	Stinger Diameter	Flow Meter Type	Dilution Port Present?
				(Y/N)	(%)	(Y/N)	(ft-btoc)	(ft-btoc)	(feet)	- 7,6-2	(inches)	.,,,,	(Y/N)
HSVE-001D	Zone 6	Deep	N. Olive	Y	0%	N	5.76	15.76	10.00	Flow Tube	2.0	Pitot Tube	N
HSVE-001S	Zone 6	Shallow	N. Olive	Υ	0%	N	6.69	11.09	4.40	Flow Tube	2.0	Pitot Tube	N
HSVE-002D	Zone 1	Deep	Multiple Strata	N					PLUGGED AND ABAND	OONED			
HSVE-002S	Zone 1	Shallow	N. Olive	N					PLUGGED AND ABAND	OONED			
HSVE-003D	Zone 1	Deep	Multiple Strata	Υ	65%	Υ	6.77	26.17	19.40	Flow Tube	2.0	Pitot Tube	N
HSVE-003S	Zone 1	Shallow	N. Olive	Υ	100%	Υ	6.56	16.06	9.50	None		Pitot Tube	N
HSVE-004D	Zone 1	Deep	Multiple Strata	Υ	100%	N	6.67	26.07	19.40	None		Pitot Tube	N
HSVE-004R	Zone 1	Deep	Multiple Strata	Υ	100%	Υ	9.54	34.54	25.00	Viton Stinger	1.0	In-Line Pitot Tube	N
HSVE-004S	Zone 1	Shallow	N. Olive	Υ	100%	N	6.56	16.06	9.50	None		Pitot Tube	N
HSVE-005D ²	Zone 2	Deep	Multiple Strata	N	0%	N	6.69	26.09	19.40	None		Pitot Tube	N
HSVE-005R	Zone 2	Deep	Rand	Υ	100%	Υ	11.20	19.07	7.87	Viton Stinger	1.0	Venturi	N
HSVE-005S ²	Zone 2	Shallow	N. Olive	N	0%	N	5.81	10.31	4.50	None		Pitot Tube	N
HSVE-006D ³	Zone 2	Deep	Rand	N	0%	N	6.74	26.14	19.40	None		Pitot Tube	N
HSVE-006R	Zone 2	Deep	Main Sand	Υ	42%	N	27.12	31.12	4.00	None		Venturi	N
HSVE-006R2 ⁴	Zone 2	Deep	Multiple Strata	N	0%	N	9.72	34.72	25.00	None		Pitot Tube	N
HSVE-006S ³	Zone 2	Shallow	A Clay	N	0%	N	6.27	10.67	4.40	None		Pitot Tube	N
HSVE-007D	Zone 5	Deep	Multiple Strata	Υ	64%	Υ	6.74	26.14	19.40	Flow Tube	2.0	Pitot Tube	N
HSVE-007S	Zone 5	Shallow	N. Olive	Υ	100%	N	4.76	9.26	4.50	Flow Tube	2.0	Pitot Tube	N
HSVE-008D ⁵	Zone 5	Deep	Multiple Strata	N	0%	N	6.75	26.15	19.40	None		Pitot Tube	N
HSVE-008S ⁵	Zone 5	Shallow	N. Olive	N	0%	N	6.61	11.01	4.40	None		Pitot Tube	N
HSVE-009D	Zone 5	Deep	Rand	Υ	0%	N	6.73	26.13	19.40	None		Pitot Tube	N
HSVE-009S	Zone 5	Shallow	A Clay	Υ	0%	N	5.74	10.24	4.50	Flow Tube	2.0	Pitot Tube	N
HSVE-010D	Zone 5	Deep	Multiple Strata	Υ	87%	N	6.70	26.10	19.40	Flow Tube	2.0	Pitot Tube	N
HSVE-010S	Zone 5	Shallow	N. Olive	Υ	35%	N	7.83	12.33	4.50	None		Pitot Tube	N
HSVE-011D	Zone 5	Deep	Multiple Strata	N					PLUGGED AND ABAND	OONED			
HSVE-011S	Zone 5	Shallow	N. Olive	N					PLUGGED AND ABAND	OONED			
HSVE-012D	Zone 4	Deep	Main Silt	Υ	100%	N	6.74	26.14	19.40	Viton Stinger	1.0	Pitot Tube	N
HSVE-012S	Zone 4	Shallow	N. Olive	Υ	23%	N	5.66	15.16	9.50	None		Pitot Tube	N
HSVE-013 ⁶	Zone 4	Shallow	Backfill	N	0%	N	6.09	10.49	4.40	None		Pitot Tube	N
HSVE-014 ⁶	Zone 4	Shallow	Backfill	N	0%	N	5.14	9.54	4.40	None		Pitot Tube	N
HSVE-015 ⁶	Zone 4	Shallow	Backfill	N	0%	N	3.59	7.99	4.40	None		Pitot Tube	N
HSVE-017 ⁶	Zone 4	Shallow	Backfill	N	0%	N	0.92	5.32	4.40	None		Pitot Tube	N
HSVE-017D	Zone 4	Deep	Multiple Strata	Υ	93%	N	6.63	26.03	19.40	Flow Tube	2.0	Pitot Tube	N
HSVE-017S	Zone 4	Shallow	A Clay	Υ	41%	Υ	5.50	10.20	4.70	Flow Tube	2.0	Pitot Tube	N
HSVE-018D	Zone 4	Deep	Multiple Strata	Υ	84%	N	6.62	26.02	19.40	None		Pitot Tube	N
HSVE-018S	Zone 4	Shallow	A Clay	Υ	67%	Υ	5.52	10.22	4.70	None		Pitot Tube	N
HSVE-019D	Zone 4	Deep	Multiple Strata	Υ	90%	N	6.66	26.06	19.40	None		Pitot Tube	N
HSVE-019S	Zone 4	Shallow	N. Olive	Υ	68%	Υ	4.19	8.89	4.70	Viton Stinger	1.5	Pitot Tube	N
HSVE-020D	Zone 1	Deep	Multiple Strata	Υ	65%	Υ	5.68	25.18	19.50	None		Pitot Tube	N
HSVE-020S	Zone 1	Deep	N. Olive	Υ	100%	Υ	5.69	14.49	8.80	None		Pitot Tube	N
HSVE-021	Zone 3	Deep	Multiple Strata	Υ	100%	Υ	6.99	26.39	19.40	None		Pitot Tube	N
HSVE-022	Zone 5	Deep	Main Silt	Υ	100%	N	6.26	25.76	19.50	Flow Tube	2.0	Pitot Tube	N

Location	Zone	Shallow/ Deep	Stratum	Considered Part of System ¹	Operation during Reporting Period	Line Sweeping	Top of Screen	Bottom of Screen	Screen Length	Stinger Type	Stinger Diameter	Flow Meter Type	Dilution Port Present?
				(Y/N)	(%)	(Y/N)	(ft-btoc)	(ft-btoc)	(feet)		(inches)		(Y/N)
HSVE-023D	Zone 1	Deep	Multiple Strata	Υ	67%	Υ	6.51	25.91	19.40	None		Pitot Tube	N
HSVE-023S	Zone 1	Shallow	N. Olive	Υ	93%	N	6.47	15.97	9.50	Flow Tube	2.0	Pitot Tube	N
HSVE-024D	Zone 1	Deep	Multiple Strata	Υ	100%	N	6.58	25.98	19.40	Flow Tube	2.0	Pitot Tube	N
HSVE-024S	Zone 1	Shallow	N. Olive	Υ	100%	N	7.51	17.01	9.50	Flow Tube	2.0	Pitot Tube	N
HSVE-025D	Zone 1	Deep	Multiple Strata	Υ	100%	Υ	6.77	26.37	19.60	Viton Stinger	1.0	Pitot Tube	N
HSVE-025S	Zone 1	Shallow	N. Olive	N					PLUGGED AND ABAND	ONED			
HSVE-026D	Zone 1	Deep	Multiple Strata	Υ	90%	Υ	6.53	26.13	19.60	Viton Stinger	1.0	Pitot Tube	N
HSVE-026S	Zone 1	Shallow	N. Olive	N					PLUGGED AND ABAND	ONED			
HSVE-027D	Zone 1	Deep	Rand	Υ	46%	N	19.16	25.66	6.50	Viton Stinger	1.0	Pitot Tube	N
HSVE-027S	Zone 1	Shallow	N. Olive	N					PLUGGED AND ABAND	ONED			
HSVE-028D ⁷	Zone 5	Deep	Rand	N	0%	N	18.12	24.62	6.50	None		Pitot Tube	N
HSVE-028S	Zone 5	Shallow	N. Olive	Υ	100%	N	7.14	11.64	4.50	Viton Stinger	1.0	Pitot Tube	N
HSVE-029D	Zone 5	Deep	Rand	Υ	100%	N	18.62	25.12	6.50	Viton Stinger	1.0	Pitot Tube	N
HSVE-029S	Zone 5	Shallow	N. Olive	Υ	71%	N	7.63	13.13	5.50	None		Pitot Tube	N
HSVE-030D	Zone 6	Deep	Rand	Υ	0%	N	18.72	24.22	5.50	Viton Stinger	1.0	Pitot Tube	N
HSVE-030S	Zone 6	Shallow	N. Olive	Υ	0%	N	7.38	12.88	5.50	Viton Stinger	1.5	Pitot Tube	N
HSVE-031D	Zone 3	Deep	Main Silt	Υ	100%	N	14.07	23.56	9.49	None		Venturi	N
HSVE-031DP ⁸	Zone 3	Deep	Main Silt	N	0%	N	14.05	23.53	9.48	None			N
HSVE-031S ⁹	Zone 3	Shallow	A Clay	N	0%	N	6.09	8.09	2.00	None		Venturi	N
HSVE-032H ¹⁰	Zone 6	Shallow	Backfill	N	0%	N	11.02	11.02		None			N
HSVE-033	Zone 3	Deep	Main Silt	Υ	71%	N	13.61	21.09	7.48	None		Venturi	N
HSVE-034	Zone 3	Deep	Main Silt	Υ	90%	Υ	12.44	21.95	9.51	None		Venturi	N
HSVE-035	Zone 2	Deep	Main Silt	Υ	71%	Υ	15.52	25.13	9.61	None		Venturi	N
HSVE-036	Zone 2	Deep	Main Silt	Υ	90%	Υ	12.15	24.68	12.53	Viton Stinger	1.0	Venturi	N
HSVE-037	Zone 2	Deep	Main Silt	Υ	100%	Υ	12.81	22.32	9.51	None		Venturi	N
HSVE-038	Zone 2	Deep	Main Silt	Υ	100%	N	12.18	21.70	9.52	None		Venturi	N
HSVE-039	Zone 2	Deep	Main Silt	Υ	54%	Υ	14.13	23.65	9.52	Viton Stinger	1.0	Venturi	N
HSVE-040	Zone 2	Deep	Main Silt	Υ	100%	N	14.69	24.19	9.50	Viton Stinger	1.5	Venturi	N
HSVE-041	Zone 2	Deep	Main Silt	Υ	90%	Υ	14.86	23.43	8.57	Viton Stinger	1.0	Venturi	N
HSVE-042	Zone 2	Deep	Main Silt	Υ	100%	N	16.47	25.00	8.53	Viton Stinger	1.0	Venturi	N
HSVE-043	Zone 2	Deep	Rand	Υ	15%	N	17.31	21.79	4.48	None		Venturi	N
HSVE-044	Zone 2	Deep	Rand	Υ	0%	N	19.00	22.51	3.51	None		Venturi	N
HSVE-045	Zone 2	Deep	Rand	Υ	0%	N	19.19	23.67	4.48	None		Venturi	N
HSVE-047	Zone 2	Deep	Rand	Υ	80%	N	16.19	20.68	4.49	Viton Stinger	1.0	Venturi	N
HSVE-048	Zone 2	Deep	Main Silt	Υ	100%	Υ	16.95	26.47	9.52	Viton Stinger	1.0	Venturi	N
HSVE-049	Zone 2	Deep	Main Silt	Υ	100%	N	17.04	24.64	7.60	Viton Stinger	1.0	Venturi	N
HSVE-050	Zone 2	Deep	Main Silt	Υ	98%	N	14.27	23.78	9.51	Viton Stinger	1.0	Venturi	N
HSVE-051	Zone 2	Deep	Main Silt	Υ	100%	N	15.02	24.54	9.52	Viton Stinger	1.5	Venturi	N
HSVE-052	Zone 5	Deep	Rand	Υ	90%	Υ	17.63	22.12	4.49	Viton Stinger	1.0	Venturi	N
HSVE-053	Zone 5	Deep	Rand	Υ	100%	Υ	16.44	20.93	4.49	Viton Stinger	1.5	Venturi	N
HSVE-054	Zone 5	Deep	Multiple Strata	Υ	76%	Υ	13.56	23.08	9.52	None		Venturi	N
HSVE-055	Zone 6	Deep	Rand	Υ	0%	Υ	17.41	23.96	6.55	None		Venturi	N

Location	Zone	Shallow/ Deep	Stratum	Considered Part of System ¹	Operation during Reporting Period	Line Sweeping	Top of Screen	Bottom of Screen	Screen Length	Stinger Type	Stinger Diameter	Flow Meter Type	Dilution Port Present?
				(Y/N)	(%)	(Y/N)	(ft-btoc)	(ft-btoc)	(feet)		(inches)		(Y/N)
HSVE-056	Zone 6	Deep	Rand	Υ	0%	Υ	16.57	23.12	6.55	Straw Stinger	0.5	Venturi	N
HSVE-057	Zone 6	Deep	Rand	Υ	0%	N	20.46	27.07	6.61	Straw Stinger	1.0	Venturi	N
HSVE-058	Zone 6	Shallow	N. Olive	Υ	79%	N	9.59	15.12	5.53	Viton Stinger	1.0	Venturi	N
HSVE-059	Zone 6	Deep	Rand	Υ	0%	N	17.54	25.11	7.57	Straw Stinger	1.0	Venturi	N
HSVE-060	Zone 6	Deep	Rand	Υ	0%	N	17.83	24.31	6.48	Straw Stinger	1.0	Venturi	N
HSVE-061	Zone 6	Shallow	N. Olive	Υ	12%	N	11.75	16.24	4.49	Straw Stinger	0.5	Venturi	N
HSVE-062	Zone 6	Shallow	N. Olive	Υ	74%	Υ	6.12	9.65	3.53	Viton Stinger	1.0	Venturi	N
HSVE-063	Zone 6	Deep	Rand	Υ	0%	Υ	14.55	21.07	6.52	Straw Stinger	0.5	Venturi	N
HSVE-064	Zone 6	Shallow	N. Olive	Υ	33%	Υ	8.41	10.91	2.50	None		Venturi	N
HSVE-065	Zone 6	Deep	Rand	Υ	0%	N	14.48	21.02	6.54	Straw Stinger	0.5	Venturi	N
HSVE-066	Zone 6	Deep	Rand	Υ	0%	N	17.54	21.06	3.52	Straw Stinger	0.5	Venturi	N
HSVE-067	Zone 6	Shallow	N. Olive	Υ	34%	N	8.48	12.00	3.52	Straw Stinger	0.5	Venturi	N
HSVE-068	Zone 6	Deep	Rand	Υ	0%	N	17.47	20.98	3.51	Straw Stinger	0.5	Venturi	N
HSVE-069	Zone 6	Deep	Rand	Υ	0%	N	18.59	22.10	3.51	Straw Stinger	0.5	Venturi	N
HSVE-070	Zone 6	Shallow	N. Olive	Υ	70%	N	8.60	13.08	4.48	Viton Stinger	1.0	Venturi	N
HSVE-071	Zone 6	Deep	Rand	Υ	38%	Υ	17.58	25.13	7.55	Viton Stinger	1.0	Venturi	N
HSVE-072	Zone 6	Deep	Rand	Υ	23%	Υ	17.70	22.19	4.49	Viton Stinger	1.0	Venturi	Υ
HSVE-073	Zone 6	Deep	Rand	Υ	0%	N	17.55	21.07	3.52	Straw Stinger	0.5	Venturi	N
HSVE-074	Zone 6	Shallow	N. Olive	Υ	37%	N	9.49	13.00	3.51	Viton Stinger	1.0	Venturi	N
HSVE-075	Zone 6	Deep	Rand	Υ	0%	N	19.54	23.06	3.52	None		Venturi	N
HSVE-076	Zone 6	Deep	Rand	Υ	12%	N	18.66	22.17	3.51	Viton Stinger	1.0	Venturi	Υ
HSVE-077	Zone 6	Shallow	N. Olive	Υ	100%	N	8.65	13.13	4.48	Viton Stinger	1.0	Venturi	N
HSVE-078	Zone 5	Deep	Rand	Υ	60%	Υ	17.55	21.08	3.53	Viton Stinger	1.0	Venturi	N
HSVE-079	Zone 5	Deep	Rand	Υ	25%	N	17.23	20.75	3.52	None		Venturi	Υ
HSVE-080	Zone 5	Shallow	N. Olive	Υ	84%	N	8.67	13.16	4.49	None		Venturi	N
HSVE-081	Zone 5	Deep	Rand	Υ	33%	N	18.42	21.94	3.52	None		Venturi	N
HSVE-082	Zone 5	Shallow	N. Olive	Υ	100%	N	9.62	13.13	3.51	Straw Stinger	0.5	Venturi	N
HSVE-083	Zone 5	Deep	Rand	Υ	100%	N	19.17	22.67	3.50	None		Venturi	N
HSVE-084	Zone 5	Deep	Rand	Υ	40%	N	19.77	23.29	3.52	None		Venturi	N
HSVE-085	Zone 5	Deep	Rand	Υ	90%	N	18.38	22.38	4.00	Viton Stinger	1.0	Venturi	N
HSVE-086	Zone 5	Shallow	N. Olive	Υ	100%	N	8.47	12.95	4.48	Viton Stinger	1.0	Venturi	N
HSVE-087	Zone 4	Deep	Rand	Υ	100%	N	18.72	23.21	4.49	Viton Stinger	1.5	Venturi	N
HSVE-088	Zone 4	Deep	Rand	Υ	27%	N	20.25	22.74	2.49	Viton Stinger	1.0	Venturi	Υ
HSVE-089	Zone 4	Shallow	N. Olive	Υ	48%	N	8.36	14.91	6.55	Viton Stinger	1.5	Venturi	N
HSVE-090	Zone 4	Deep	Main Silt	Υ	17%	N	21.36	24.88	3.52	Viton Stinger	1.0	Venturi	Υ
HSVE-091	Zone 4	Deep	Main Silt	Υ	32%	N	21.54	25.05	3.51	Viton Stinger	1.0	Venturi	N
HSVE-092	Zone 4	Shallow	N. Olive	Υ	97%	N	9.28	13.77	4.49	Viton Stinger	1.5	Venturi	N
HSVE-093	Zone 4	Deep	Main Silt	Υ	27%	N	22.54	26.05	3.51	Viton Stinger	1.0	Venturi	Υ
HSVE-094	Zone 4	Deep	Main Silt	Υ	18%	N	22.23	26.22	3.99	Viton Stinger	1.0	Venturi	Υ
HSVE-095	Zone 4	Deep	Main Silt	Υ	74%	Υ	17.73	25.82	8.09	Viton Stinger	1.5	Venturi	N
HSVE-096	Zone 4	Deep	Rand	Υ	78%	Υ	17.83	24.83	7.00	Viton Stinger	1.5	Venturi	N
HSVE-097	Zone 4	Deep	Rand	Υ	100%	Υ	13.32	22.85	9.53	None		Venturi	N

HARTFORD PETROLEUM RELEASE SITE, HARTFORD, ILLINOIS

Location	Zone	Shallow/ Deep	Stratum	Considered Part of System ¹	Operation during Reporting Period	Line Sweeping	Top of Screen	Bottom of Screen	Screen Length	Stinger Type	Stinger Diameter	Flow Meter Type	Dilution Port Present?
				(Y/N)	(%)	(Y/N)	(ft-btoc)	(ft-btoc)	(feet)		(inches)		(Y/N)
HSVE-098	Zone 2	Shallow	A/B Clay	Υ	100%	N	6.60	10.98	4.38	Viton Stinger	0.75	Venturi	N
HSVE-099	Zone 6	Shallow	Multiple Strata	Υ	89%	Υ	9.08	15.37	6.29	Viton Stinger	1.0	Venturi	Υ
HSVE-100	Zone 5	Shallow	N. Olive	Υ	79%	Υ	8.77	15.08	6.31	Viton Stinger	1.0	Venturi	N
HSVE-101	Zone 5	Shallow	N. Olive	Υ	90%	N	9.11	14.92	5.81	Viton Stinger	1.5	Venturi	N
HSVE-102	Zone 1	Shallow	N. Olive	Υ	91%	Υ	12.60	16.60	4.00	Viton Stinger	1.0	Venturi	N
HSVE-103	Zone 1	Shallow	A/B Clay	Υ	100%	Υ	6.60	16.00	9.40	Viton Stinger	1.0	Venturi	Υ
HSVE-104 ⁴	Zone 1	Deep	Multiple Strata	N	0%	N	9.65	34.65	25.00	None		Venturi	N
HSVE-105D	Zone 1	Deep	Main Sand	Υ	0%	N	32.35	42.35	10.00	None	1.0	Venturi	N
HSVE-105S	Zone 1	Shallow	N. Olive	Υ	94%	N	12.60	17.60	5.00	Straw Stinger		Venturi	N
HSVE-106D	Zone 1	Deep	Main Sand	Υ	51%	N	29.13	39.13	10.00	Straw Stinger		Venturi	N
HSVE-106S	Zone 1	Shallow	N. Olive	Υ	42%	N	9.16	14.16	5.00	None	1.0	Venturi	N
HSVE-107D	Zone 1	Deep	Main Sand	Υ	0%	N	31.80	41.80	10.00	Straw Stinger	1.0	Venturi	N
HSVE-107S	Zone 1	Shallow	N. Olive	Υ	94%	N	12.31	17.31	5.00	Straw Stinger	1.0	Venturi	N
MPE-A001 ¹¹	Zone 5	Deep	Main Sand	N	0%	N	27.22	49.58	19.47	None		Venturi	N
MPE-A002 ¹¹	Zone 5	Deep	Main Sand	N	53%	N	27.86	50.15	19.35	None		Venturi	N
MPE-A003 ¹¹	Zone 5	Deep	Main Sand	N	0%	N	26.06	48.62	19.45	None		Venturi	N
MPE-A004 ¹¹	Zone 5	Deep	Main Sand	N	0%	N	28.71	50.06	19.41	None		Venturi	N
MPE-A005 ¹¹	Zone 5	Deep	Main Sand	N	0%	N	28.22	49.98	19.46	None		Venturi	N

Notes:

(Y/N) - Yes/No

ft-btoc - feet below top of casing

-- - not applicable

¹ Wells are included in the description of soil vapor extraction system provided within the HSVE Monitoring and Maintenance Manual, Hartford Working Group (URS 2014a).

² Wells were paved over during road repairs performed by the Village of Hartford. HSVE-005R was installed as a replacement well for HSVE-005S and HSVE-005D.

³ Wells HSVE-006S and HSVE-006D were replaced with HSVE-006R but remain in place. These wells are not considered part of the SVE system.

⁴ HSVE-006R2 and HSVE-104 were installed but never connected to the SVE system. Well HSVE-104 was subsequently connected to the SVE system in June 2017.

⁵ The control vaults for HSVE-008S and HSVE-008D are no longer installed and as such these wells are not operable and are no longer considered part of the SVE system.

⁶ These wells were installed within the combined sewer line pipe bedding along East Watkins Avenue. The sewer has been lined and operation of the wells is not typically necessary. As such these wells are not considered to be part of the SVE system.

⁷ The well screen for HSVE-028D has collapsed, making this well inoperable. As such, this well is no longer considered to be part of the SVE system.

⁸ HSVE-031DP is a one-inch probe collocated with well HSVE-031D and has not been operated since installation according to historical data.

 $^{^{9}}$ HSVE-031S has not been operated since installation according to the historic database.

HSVE-032H is a horizontal vapor extraction well and has not been operated since installation according to historical data.

¹¹ Wells MPE-A001 through MPE-A005 were installed within the Main Sand stratum in order to conduct multiphase extraction pilot testing in Area A. These well are typically occluded and cannot be operated unless groundwater conditions within the Main Sand are unconfined and the well screens are exposed within the extraction wells.

TABLE 2. THERMAL TREATMENT SYSTEM OPERATIONS DATA SUMMARY

Date	Minimum Vacuum	Maximum Vacuum	Average Vacuum	Minimum Flowrate	Maximum Flowrate	Average Flowrate	Water Recovery Rate	Line Sweeping Volume	Analytical TPH (C2-C10) Concentration	FID TVPH Concentration	TVPH Recovery Rate ¹	Gasoline Equivalent Recovery Rate ²	Cumulative Gasoline Equivalent Recovered
	(in-H ₂ O)	(in-H ₂ O)	(in-H ₂ O)	(scfm)	(scfm)	(scfm)	(gpd)	(gal)	(ppmv)	(ppmv)	(lb/hr)	(gal/day)	(gal)
10/1/2015	142	145	143	1,700	1,740	1,720	1,100		160	3,100	4	15	15
10/2/2015	140	157	150	1,350	1,755	1,505	1,000			3,250		15	30
10/3/2015												15	44
10/4/2015												15	59
10/5/2015	146	154	148	1,380	1,450	1,420	850			2,750		15	74
10/6/2015	146	164	150	1,350	1,480	1,450	900			3,050		15	89
10/7/2015	146	157	150	1,415	1,505	1,460	800		482	3,100	10	38	127
10/8/2015	148	155	150	1,410	1,480	1,460	800					38	165
10/9/2015	145	152	149	1,465	1,595	1,575	400	1,700				38	202
10/10/2015												38	240
10/11/2015												38	278
10/12/2015	146	151	148	1,520	1,560	1,545	600					38	316
10/13/2015	147	155	149	1,510	1,580	1,555	600					38	354
10/14/2015	148	153	150	1,520	1,590	1,575	500		709	3,500	15	60	414
10/15/2015	145	152	149	1,550	1,605	1,575	600					60	474
10/16/2015	147	153	150	1,550	1,600	1,575	500					60	534
10/17/2015												60	594
10/18/2015												60	654
10/19/2015	147	153	149	1,580	1,625	1,610	900					60	714
10/20/2015	147	153	149	1,580	1,665	1,625	1,100					60	774
10/21/2015	146	153	148	1,600	1,665	1,635	1,200		820	4,218	18	72	846
10/22/2015	147	151	148	1,640	1,690	1,660	1,300					72	919
10/23/2015	146	152	148	1,650	1,705	1,675	1,200					72	991
10/24/2015												72	1,063
10/25/2015												72	1,135

TABLE 2. THERMAL TREATMENT SYSTEM OPERATIONS DATA SUMMARY

Date	Minimum Vacuum	Maximum Vacuum	Average Vacuum	Minimum Flowrate	Maximum Flowrate	Average Flowrate	Water Recovery Rate	Line Sweeping Volume	Analytical TPH (C2-C10) Concentration	FID TVPH Concentration	TVPH Recovery Rate ¹	Gasoline Equivalent Recovery Rate ²	Cumulative Gasoline Equivalent Recovered
	(in-H ₂ O)	(in-H ₂ O)	(in-H ₂ O)	(scfm)	(scfm)	(scfm)	(gpd)	(gal)	(ppmv)	(ppmv)	(lb/hr)	(gal/day)	(gal)
10/26/2015	146	150	147	1,680	1,725	1,700	1,100					72	1,207
10/27/2015	143	155	145	1,640	1,730	1,705	1,000					72	1,279
10/28/2015	143	159	151	1,580	1,730	1,650	1,100		1,400	6,050	31	124	1,403
10/29/2015	147	157	150	1,540	1,650	1,610	1,100					124	1,528
10/30/2015	148	152	149	1,615	1,700	1,650	900					124	1,652
10/31/2015												124	1,776
11/1/2015												124	1,901
11/2/2015	148	154	150	1,605	1,675	1,645	1,000					124	2,025
11/3/2015	147	151	149	1,635	1,685	1,660	1,100					124	2,149
11/4/2015	142	153	147	1,600	1,700	1,675	1,000		1,600	7,100	37	144	2,293
11/5/2015	145	149	148	1,670	1,710	1,690	1,100					144	2,437
11/6/2015	146	162	152	1,550	1,710	1,645	1,200					144	2,582
11/7/2015												144	2,726
11/8/2015												144	2,870
11/9/2015	148	153	149	1,555	1,605	1,580	950					144	3,014
11/10/2015	145	156	149	1,560	1,620	1,595	1,000					144	3,158
11/11/2015	143	150	148	1,580	1,635	1,605	1,100		1,700	6,200	37	147	3,305
11/12/2015	145	155	149	1,530	1,625	1,575	1,000					147	3,452
11/13/2015	146	156	150	1,510	1,580	1,555	900					147	3,599
11/14/2015												147	3,745
11/15/2015												147	3,892
11/16/2015	148	152	150	1,545	1,590	1,570	1,000					147	4,039
11/17/2015	147	159	152	1,380	1,600	1,480	1,350					147	4,186
11/18/2015	147	164	153	1,245	1,425	1,345	1,600		2,128	9,850	39	154	4,340
11/19/2015	147	162	151	1,220	1,330	1,280	1,500					154	4,494

TABLE 2. THERMAL TREATMENT SYSTEM OPERATIONS DATA SUMMARY

Date	Minimum Vacuum	Maximum Vacuum	Average Vacuum	Minimum Flowrate	Maximum Flowrate	Average Flowrate	Water Recovery Rate	Line Sweeping Volume	Analytical TPH (C2-C10) Concentration	FID TVPH Concentration	TVPH Recovery Rate ¹	Gasoline Equivalent Recovery Rate ²	Cumulative Gasoline Equivalent Recovered
	(in-H ₂ O)	(in-H ₂ O)	(in-H ₂ O)	(scfm)	(scfm)	(scfm)	(gpd)	(gal)	(ppmv)	(ppmv)	(lb/hr)	(gal/day)	(gal)
11/20/2015	148	159	152	1,220	1,310	1,275	1,500					154	4,648
11/21/2015												154	4,802
11/22/2015												154	4,956
11/23/2015	146	158	151	1,230	1,320	1,290	1,700					154	5,110
11/24/2015	146	154	150	1,240	1,510	1,420	700	2,900				154	5,264
11/25/2015	145	156	150	1,380	1,460	1,425	1,500		1,589	7,100	31	122	5,385
11/26/2015	142	158	147	1,340	1,450	1,400	1,400					122	5,507
11/27/2015	142	152	145	1,315	1,395	1,370	1,400					122	5,629
11/28/2015												122	5,751
11/29/2015												122	5,873
11/30/2015	147	157	149	1,255	1,355	1,330	1,900					122	5,994
12/1/2015	142	160	149	1,270	1,750	1,685	1,500					122	6,116
12/2/2015	146	152	148	1,705	1,750	1,730	1,300		1,000	3,220	24	93	6,209
12/3/2015	144	149	147	1,720	1,770	1,745	1,200					93	6,302
12/4/2015	146	152	150	1,715	1,770	1,745	1,200					93	6,395
12/5/2015												93	6,488
12/6/2015												93	6,582
12/7/2015	149	152	150	1,710	1,745	1,730	1,200					93	6,675
12/8/2015	148	152	150	1,705	1,760	1,725	1,100					93	6,768
12/9/2015	146	153	149	1,650	1,735	1,710	1,300		710	3,100	17	65	6,833
12/10/2015	146	151	149	1,700	1,750	1,730	1,400					65	6,898
12/11/2015	147	151	148	1,700	1,750	1,730	1,400					65	6,964
12/12/2015												65	7,029
12/13/2015												65	7,094
12/14/2015	147	155	149	1,645	1,740	1,695	1,500					65	7,160

TABLE 2. THERMAL TREATMENT SYSTEM OPERATIONS DATA SUMMARY

Date	Minimum Vacuum	Maximum Vacuum	Average Vacuum	Minimum Flowrate	Maximum Flowrate	Average Flowrate	Water Recovery Rate	Line Sweeping Volume	Analytical TPH (C2-C10) Concentration	FID TVPH Concentration	TVPH Recovery Rate ¹	Gasoline Equivalent Recovery Rate ²	Cumulative Gasoline Equivalent Recovered
	(in-H ₂ O)	(in-H ₂ O)	(in-H ₂ O)	(scfm)	(scfm)	(scfm)	(gpd)	(gal)	(ppmv)	(ppmv)	(lb/hr)	(gal/day)	(gal)
12/15/2015	145	157	149	1,560	1,690	1,645	1,600			3,410		65	7,225
12/16/2015	145	157	151	1,525	1,675	1,600	1,500		830	3,948	18	71	7,296
12/17/2015	149	157	152	1,545	1,620	1,595	1,400			2,808		71	7,368
12/18/2015	149	156	151	1,560	1,620	1,600	1,500					71	7,439
12/19/2015												71	7,511
12/20/2015												71	7,582
12/21/2015	147	154	149	1,555	1,625	1,600	1,400			2,460		71	7,654
12/22/2015	148	160	152	1,500	1,605	1,570	1,500					71	7,725
12/23/2015	148	161	152	1,510	1,590	1,560	1,800		530	2,000	11	44	7,769
12/24/2015	149	159	152	1,400	1,565	1,480	2,000					44	7,814
12/25/2015	151	160	153	1,436	1,515	1,491	1,900					44	7,858
12/26/2015												44	7,903
12/27/2015												44	7,947
12/28/2015	0	194	155	0	1,280	1,050	6,300					44	7,992
12/29/2015	1	192	154	0	1,186	805	6,600					44	8,036
12/30/2015	135	182	150	606	938	812	3,350		238	1,100	3	10	8,047
12/31/2015	136	176	152	721	965	869	3,100					10	8,057
1/1/2016	134	167	152	785	1,300	1,185	3,000					10	8,068
1/2/2016												10	8,078
1/3/2016												10	8,088
1/4/2016	85	180	149	800	1,180	1,110	2,200					10	8,099
1/5/2016	139	160	147	1,080	1,710	1,615	3,100					10	8,109
1/6/2016	142	161	151	1,315	1,710	1,475	2,100		91	300	2	7	8,116
1/7/2016	149	156	150	1,387	1,470	1,434	2,100					7	8,124
1/8/2016	145	161	150	1,050	1,190	1,110	1,000	5,200				7	8,131

TABLE 2. THERMAL TREATMENT SYSTEM OPERATIONS DATA SUMMARY

Date	Minimum Vacuum	Maximum Vacuum	Average Vacuum	Minimum Flowrate	Maximum Flowrate	Average Flowrate	Water Recovery Rate	Line Sweeping Volume	Analytical TPH (C2-C10) Concentration	FID TVPH Concentration	TVPH Recovery Rate ¹	Gasoline Equivalent Recovery Rate ²	Cumulative Gasoline Equivalent Recovered
	(in-H ₂ O)	(in-H ₂ O)	(in-H ₂ O)	(scfm)	(scfm)	(scfm)	(gpd)	(gal)	(ppmv)	(ppmv)	(lb/hr)	(gal/day)	(gal)
1/9/2016												7	8,138
1/10/2016												7	8,145
1/11/2016	145	162	151	975	1,125	1,050	2,000					7	8,152
1/12/2016	146	169	154	990	1,175	1,100	1,600					7	8,160
1/13/2016	142	169	154	975	1,150	1,095	1,800		94	375	1	6	8,165
1/14/2016	144	166	154	900	1,150	1,065	1,500					6	8,171
1/15/2016	145	162	150	1,010	1,385	1,330	1,300					6	8,176
1/16/2016												6	8,182
1/17/2016												6	8,187
1/18/2016	153	162	156	1,260	1,335	1,310	1,200					6	8,193
1/19/2016	152	162	155	1,270	1,345	1,315	1,000					6	8,198
1/20/2016	144	160	149	1,230	1,350	1,300	1,200		87	400	2	6	8,204
1/21/2016	153	167	159	1,268	1,355	1,323	600					6	8,211
1/22/2016	153	167	159	1,268	1,355	1,323	950					6	8,217
1/23/2016												6	8,223
1/24/2016												6	8,229
1/25/2016	150	161	154	1,296	1,382	1,351	600					6	8,235
1/26/2016	147	160	150	1,285	1,430	1,380	750					6	8,241
1/27/2016	147	157	149	1,345	1,450	1,425	700		110	770	2	8	8,249
1/28/2016	146	155	149	1,380	1,450	1,425	650					8	8,258
1/29/2016												8	8,266
1/30/2016												8	8,275
1/31/2016												8	8,283
2/1/2016	148	164	152	1,320	1,460	1,415	850					8	8,292
2/2/2016	148	159	151	1,330	1,435	1,390	700					8	8,300

TABLE 2. THERMAL TREATMENT SYSTEM OPERATIONS DATA SUMMARY

Date	Minimum Vacuum	Maximum Vacuum	Average Vacuum	Minimum Flowrate	Maximum Flowrate	Average Flowrate	Water Recovery Rate	Line Sweeping Volume	Analytical TPH (C2-C10) Concentration	FID TVPH Concentration	TVPH Recovery Rate ¹	Gasoline Equivalent Recovery Rate ²	Cumulative Gasoline Equivalent Recovered
	(in-H ₂ O)	(in-H ₂ O)	(in-H ₂ O)	(scfm)	(scfm)	(scfm)	(gpd)	(gal)	(ppmv)	(ppmv)	(lb/hr)	(gal/day)	(gal)
2/3/2016	145	161	154	1,250	1,430	1,330	800		190	1,150	3	14	8,314
2/4/2016	147	159	152	1,230	1,335	1,300	500					14	8,327
2/5/2016	0	163	130	0	1,540	1,195	700					14	8,341
2/6/2016												14	8,354
2/7/2016												14	8,368
2/8/2016	143	155	147	1,305	1,375	1,355	700					14	8,382
2/9/2016	137	157	148	1,270	1,515	1,405	1,100					14	8,395
2/10/2016	147	159	152	1,355	1,450	1,420	900		290	1,160	6	22	8,417
2/11/2016	147	160	151	1,380	1,480	1,430	850					22	8,439
2/12/2016	145	158	149	1,390	1,485	1,445	850					22	8,462
2/13/2016												22	8,484
2/14/2016												22	8,506
2/15/2016	146	154	148	1,430	1,495	1,470	850					22	8,528
2/16/2016	146	153	148	1,415	1,500	1,465	900					22	8,550
2/17/2016	137	158	151	1,380	1,570	1,440	800		360	2,035	7	28	8,578
2/18/2016	147	159	151	1,385	1,480	1,445	750					28	8,606
2/19/2016	149	161	153	1,350	1,465	1,405	800					28	8,634
2/20/2016												28	8,662
2/21/2016												28	8,690
2/22/2016	151	162	153	1,330	1,430	1,395	700					28	8,718
2/23/2016	142	160	153	1,360	1,520	1,410	900					28	8,745
2/24/2016	145	158	149	1,365	1,515	1,470	1,000		1,700	2,646	34	134	8,880
2/25/2016	148	163	153	1,380	1,495	1,455	1,350					134	9,014
2/26/2016	141	159	148	1,330	1,425	1,380	1,350					134	9,149
2/27/2016												134	9,283

TABLE 2. THERMAL TREATMENT SYSTEM OPERATIONS DATA SUMMARY

Date	Minimum Vacuum	Maximum Vacuum	Average Vacuum	Minimum Flowrate	Maximum Flowrate	Average Flowrate	Water Recovery Rate	Line Sweeping Volume	Analytical TPH (C2-C10) Concentration	FID TVPH Concentration	TVPH Recovery Rate ¹	Gasoline Equivalent Recovery Rate ²	Cumulative Gasoline Equivalent Recovered
	(in-H ₂ O)	(in-H ₂ O)	(in-H ₂ O)	(scfm)	(scfm)	(scfm)	(gpd)	(gal)	(ppmv)	(ppmv)	(lb/hr)	(gal/day)	(gal)
2/28/2016												134	9,418
2/29/2016	142	152	147	1,315	1,420	1,375	1,000	3,900				134	9,552
3/1/2016	147	152	150	1,490	1,535	1,510	300					134	9,687
3/2/2016	147	154	150	1,475	1,560	1,525	450			2,100		134	9,821
3/3/2016	146	154	148	1,475	1,555	1,520	1,700					134	9,955
3/4/2016	143	156	150	1,430	1,570	1,505	2,700					134	10,090
3/5/2016												134	10,224
3/6/2016												134	10,359
3/7/2016	148	159	152	1,425	1,515	1,475	2,700					134	10,493
3/8/2016	147	158	150	1,420	1,500	1,470	2,800					134	10,628
3/9/2016	147	158	150	1,400	1,500	1,465	2,600		1,400	2,620	28	110	10,738
3/10/2016	145	159	151	1,310	1,495	1,405	2,700					110	10,848
3/11/2016	145	157	149	1,215	1,370	1,325	2,800					110	10,959
3/12/2016												110	11,069
3/13/2016												110	11,179
3/14/2016	143	154	147	1,250	1,350	1,305	1,400					110	11,290
3/15/2016	145	156	149	1,265	1,380	1,340	1,400					110	11,400
3/16/2016	147	157	151	1,330	1,415	1,390	1,500		2,200	2,955	42	165	11,564
3/17/2016	147	157	150	1,365	1,455	1,440	1,300					165	11,729
3/18/2016	148	156	151	1,360	1,455	1,420	1,200					165	11,893
3/19/2016												165	12,058
3/20/2016												165	12,222
3/21/2016	148	156	150	1,400	1,470	1,445	1,100					165	12,387
3/22/2016	147	157	150	1,360	1,460	1,415	1,200					165	12,551
3/23/2016	145	158	151	1,345	1,450	1,415	1,300		511	2,900	10	39	12,590

TABLE 2. THERMAL TREATMENT SYSTEM OPERATIONS DATA SUMMARY

HARTFORD PETROLEUM RELEASE SITE, HARTFORD, ILLINOIS

Date	Minimum Vacuum	Maximum Vacuum	Average Vacuum	Minimum Flowrate	Maximum Flowrate	Average Flowrate	Water Recovery Rate	Line Sweeping Volume	Analytical TPH (C2-C10) Concentration	FID TVPH Concentration	TVPH Recovery Rate ¹	Gasoline Equivalent Recovery Rate ²	Cumulative Gasoline Equivalent Recovered
	(in-H ₂ O)	(in-H ₂ O)	(in-H ₂ O)	(scfm)	(scfm)	(scfm)	(gpd)	(gal)	(ppmv)	(ppmv)	(lb/hr)	(gal/day)	(gal)
3/24/2016	149	157	151	1,380	1,450	1,425	1,200					39	12,629
3/25/2016	147	161	154	1,325	1,440	1,395	1,300					39	12,668
3/26/2016												39	12,707
3/27/2016												39	12,746
3/28/2016	149	164	155	1,315	1,430	1,385	1,400					39	12,785
3/29/2016	146	163	150	1,290	1,390	1,345	1,100					39	12,824
3/30/2016	146	157	149	1,445	1,575	1,475	350	4,000	681	3,426	14	54	12,878
3/31/2016	142	155	149	1,270	1,475	1,380	700					54	12,932

Notes:

TPH - total petroleum hydrocarbons

TVPH - total volatile petroleum hydrocarbons

FID - flame ionization detector

-- - not applicable or not available

in-H₂O - inches water column

scfm - standard cubic feet per minute

gal - gallons

gpd - gallons per day

ppmv - parts per million by volume

¹Calculation based on *Estimating Air Emissions from Petroleum UST Cleanups* (USEPA 1989) with assumed molecular weight of 86.2 lb/lb-mol

² Assumes product density of 6.08 lb/gal

TABLE 3. SUMMARY OF EXTRACTION WELLS WITH LEAKING CONTROL VALVES

HARTFORD PETROLEUM RELEASE SITE, HARTFORD, ILLINOIS

Location	Zone	Valve Type	Severity of Leak	Percent Online from October 2015 through March 2016	Stinger Type
			(in-H2O)		
HSVE-004D	Zone 1	Butterfly	0.16	100%	None
HSVE-003S	Zone 1	Butterfly	0.19	100%	None
HSVE-039	Zone 2	Gate	0.80	54%	Viton
HSVE-092	Zone 4	Gate	1.1	97%	None
HSVE-017S	Zone 4	Gate	2.1	41%	Flow Tube
HSVE-042	Zone 2	Gate	2.6	100%	Viton
HSVE-096	Zone 4	Gate	2.6	78%	Viton
HSVE-038	Zone 2	Gate	2.7	100%	None
HSVE-026D	Zone 1	Butterfly	2.8	90%	Viton
HSVE-071	Zone 6	Gate	2.9	38%	Viton
HSVE-037	Zone 2	Gate	3.1	100%	None
HSVE-007D	Zone 5	Butterfly	3.2	64%	Flow Tube
HSVE-050	Zone 2	Gate	3.5	98%	None
HSVE-054	Zone 5	Gate	3.8	76%	None
HSVE-062	Zone 6	Gate	3.8	74%	Viton
HSVE-007S	Zone 5	Butterfly	4.0	100%	Flow Tube
HSVE-010D	Zone 5	Butterfly	4.2	87%	Flow Tube
HSVE-036	Zone 2	Gate	4.3	90%	Viton
HSVE-048	Zone 2	Gate	4.3	100%	Viton
HSVE-033	Zone 3	Gate	5.4	70%	None
HSVE-093	Zone 4	Gate	5.4	27%	Viton
HSVE-012D	Zone 4	Butterfly	5.8	100%	Viton
HSVE-006R	Zone 2	Gate	6.0	42%	None
HSVE-012S	Zone 4	Butterfly	6.0	23%	None
HSVE-051	Zone 2	Gate	6.0	100%	None
HSVE-067	Zone 6	Gate	6.1	34%	Straw Stinger
HSVE-089	Zone 4	Gate	7.1	48%	Viton
HSVE-064	Zone 6	Gate	10.0	33%	None
HSVE-084	Zone 5	Gate	10.1	40%	None
HSVE-035	Zone 2	Gate	11.0	71%	None
HSVE-078	Zone 5	Gate	20.7	60%	Viton
HSVE-018D	Zone 4	Butterfly	41.7	84%	None
HSVE-022	Zone 5	Butterfly	44.3	100%	Flow Tube
HSVE-017D	Zone 4	Butterfly	54.0	93%	Flow Tube
HSVE-003D	Zone 1	Butterfly	68.0	65%	Flow Tube
HSVE-023D	Zone 1	Butterfly	94.8	67%	None
HSVE-024S	Zone 1	Butterfly	98.0	100%	Flow Tube

Notes:

Vacuum greater than 10 in-H2O Vacuum between 2 and 10 in-H2O Vacuum less than 2 in-H2O

					October 2015			November 2015						December 2015					
							Mass Recovery					Mass Recovery					Mass Recovery		
Location	Zone	Stratum	TVPH	PHC	Vacuum	Flow Rate	Rate	TVPH	PHC	Vacuum	Flow Rate	Rate	TVPH	PHC	Vacuum	Flow Rate	Rate		
			(ppmv)	(ppmv)	(in-H ₂ O)	(scfm)	(lbs/day)	(ppmv)	(ppmv)	(in-H ₂ O)	(scfm)	(lbs/day)	(ppmv)	(ppmv)	(in-H ₂ O)	(scfm)	(lbs/day)		
HSVE-003D	Zone 1	Multiple Strata	95	95				12	6	87	23.3	0.0	430	350	100	13.7	1.6		
HSVE-003S	Zone 1	N. Olive	785	209	101	83.4	5.7	430	0				2,218	691	108	121.1	27.4		
HSVE-004D	Zone 1	Multiple Strata	250	219	117	52.5	3.8	8	8	119	62.7	0.2	490	490	117	133.8	21.4		
HSVE-004R	Zone 1	Main Sand	30,200	17,422	120	6.9	39.1	8,680	5,537	118	7.0	12.6	34,600	28,274	116	0.0	0.0		
HSVE-004S	Zone 1	N. Olive	350	142	65	122.4	5.7	387	223	118	78.6	5.7	203	196	116	176.9	11.3		
HSVE-005R	Zone 2	Rand	765	376	123	6.9	0.9	920	906	123	12.6	3.7	1,880	1,061	105	11.1	3.8		
HSVE-006R	Zone 2	Main Sand	NM*	NM*	80	0.0	0.0	843,000	815,200	28	11.2	2,991.6	1,000,000	953,500					
HSVE-007D	Zone 5	Multiple Strata	15	12	24	15.1	0.1	360	357				540	371					
HSVE-007S	Zone 5	N. Olive	262	191	19	88.0	5.5	2,925	2,129	44	95.7	66.7	1,265	938	32	87.3	26.8		
HSVE-009D	Zone 5	Rand	36	23				200	200				50	50					
HSVE-009S	Zone 5	A Clay	29	29				118	118				104	73					
HSVE-010D	Zone 5	Multiple Strata	300	176				27,300	18,666	0	0.0	0.0	4,400	2,428	0	0.0	0.0		
HSVE-010S	Zone 5	N. Olive	11	11				250	226	0	0.0	0.0	131	103	0	0.0	0.0		
HSVE-012D	Zone 4	Main Silt	10,500	10,050	113	42.7	140.3	10,500	9,955	118	NM***	NM***	1,300	1,262	115	45.8	18.9		
HSVE-012S	Zone 4	N. Olive	20	16	108	0.0	0.0	157	157				78	78					
HSVE-017D	Zone 4	Multiple Strata	177	41	104	52.4	0.7	158	146	113	75.2	3.6	269	269	104	43.0	3.8		
HSVE-017S	Zone 4	A Clay	12	12				143	143				352	352	104	43.1	5.0		
HSVE-018D	Zone 4	Multiple Strata	48	47				132	132				236	236	123	57.8	4.5		
HSVE-018S	Zone 4	A Clay	10	10				69	66				312	302	123	52.7	5.2		
HSVE-019D	Zone 4	Multiple Strata	60	57	131	79.2	1.5	970	671				113	113	121	79.0	2.9		
HSVE-019S	Zone 4	N. Olive	10	10				70	70				33	33	118	45.1	0.5		
HSVE-020D	Zone 1	Multiple Strata	3	3	76	186.8	0.2	2	2				73	12	73	158.2	0.6		
HSVE-020S	Zone 1	N. Olive	855	101	87	140.5	4.7	14	5	89	134.5	0.2	35	18	103	98.0	0.6		
HSVE-021	Zone 3	Multiple Strata	155	133	120	33.1	1.4	120	120	119	32.4	1.3	442	435	119	27.2	3.9		
HSVE-022	Zone 5	Main Silt	150	131	133	19.0	0.8	350	335	135	22.2	2.4	354	327	130	14.2	1.5		
HSVE-023D	Zone 1	Multiple Strata	11,500	2,297	117	53.0	39.8	7,700	1,386	113	0.0	0.0	6,520	1,027	110	152.9	51.4		
HSVE-023S	Zone 1	N. Olive	160	44	113	44.9	0.6	32	29	115	14.6	0.1	92	54	106	21.1	0.4		
HSVE-024D	Zone 1	Multiple Strata	205	24	114	34.4	0.3	20,000	1,429	103	25.0	11.7	198	54	107	29.2	0.5		
HSVE-024S	Zone 1	N. Olive	76	9	114	38.0	0.1	1,400	93	105	38.0	1.2	252	58	102	41.4	0.8		
HSVE-025D	Zone 1	Multiple Strata	1,100	267	109	31.7	2.8	310	80	118	22.9	0.6	1,300	436	108	19.7	2.8		
HSVE-026D	Zone 1	Multiple Strata	785	368	116	20.9	2.5	875	339	110	NM***	NM***	463	289	114	13.5	1.3		
HSVE-027D	Zone 1	Rand	2,500	736	119	7.2	1.7	725	418				3,490	1,840					
HSVE-028S	Zone 5	N. Olive	365	36	136	29.5	0.4	2,680	286	139	30.2	2.8	1,985	108	134	29.3	1.0		
HSVE-029D	Zone 5	Rand	30,000	11,000	134	6.6	23.6	71,000	28,746	141	3.5	32.6	8,540	3,019	132	6.0	5.9		
HSVE-029S	Zone 5	N. Olive	50	50				212	168				108	108	133	NM***	NM***		
HSVE-031D	Zone 3	Main Silt	1,520	621	124	23.2	4.7	1,460	1,320	132	26.3	11.3	855	794	120	22.4	5.8		
HSVE-033	Zone 3	Main Silt	0	0				569	401				5	5	89	10.9	0.0		
HSVE-034	Zone 3	Main Silt	120	120				210	210	115	137.7	9.5	6	6	99	15.4	0.0		
HSVE-035	Zone 2	Main Silt	0	0				470	470				75	68	85	15.6	0.3		

					October 2015			November 2015					December 2015					
			Mass Recovery Mass Recovery											Mass Recovery				
Location	Zone	Stratum	TVPH	PHC	Vacuum	Flow Rate	Rate	TVPH	PHC	Vacuum	Flow Rate	Rate	TVPH	PHC	Vacuum	Flow Rate	Rate	
			(ppmv)	(ppmv)	(in-H ₂ O)	(scfm)	(lbs/day)	(ppmv)	(ppmv)	(in-H ₂ O)	(scfm)	(lbs/day)	(ppmv)	(ppmv)	(in-H ₂ O)	(scfm)	(lbs/day)	
HSVE-036	Zone 2	Main Silt	2,500	556	110	20.8	3.8	1,200	771	107	21.7	5.5	345	306	104	21.4	2.1	
HSVE-037	Zone 2	Main Silt	1,400	379	111	25.2	3.1	645	524	106	27.8	4.8	675	542	96	32.8	5.8	
HSVE-038	Zone 2	Main Silt	2,130	884	112	9.2	2.7	1,627	1,331	118	11.4	5.0	1,370	1,290	113	9.6	4.0	
HSVE-039	Zone 2	Main Silt	103	103				1,130	516				638	502	96	36.9	6.1	
HSVE-040	Zone 2	Main Silt	1,550	1,161	114	31.1	11.8	1,185	968	112	36.7	11.6	1,843	1,803	110	32.5	19.2	
HSVE-041	Zone 2	Main Silt	270	270				131	131	121	0.0	0.0	4,800	4,719	121	0.0	0.0	
HSVE-042	Zone 2	Main Silt	1,700	1,492	125	13.0	6.3	2,730	2,561	122	13.5	11.3	4,540	4,097	121	12.7	17.1	
HSVE-043	Zone 2	Rand	22	22				53	53				20	20				
HSVE-044	Zone 2	Rand																
HSVE-045	Zone 2	Rand						162	162									
HSVE-047	Zone 2	Rand	800	536				106	87	125	41.6	1.2	1,712	1,218	121	16.5	6.6	
HSVE-048	Zone 2	Main Silt	27,300	22,578	119	9.6	71.0	34,700	29,600	114	21.9	212.0	16,700	14,890	118	28.1	136.9	
HSVE-049	Zone 2	Main Silt	51,000	49,444	123	39.3	636.2	43,750	42,550	125	54.8	762.8	10,600	7,571	120	53.7	132.9	
HSVE-050	Zone 2	Main Silt	4,200	4,026	123	33.7	44.4	4,800	4,300	124	39.1	55.0	8,162	7,942	122	36.5	94.8	
HSVE-051	Zone 2	Main Silt	4,000	2,236	124	45.8	33.5	5,035	3,935	123	48.8	62.9	8,930	8,153	121	42.2	112.6	
HSVE-052	Zone 5	Rand	35,600	32,314	135	11.2	118.8	63,500	58,973	134	12.7	245.4	29,200	27,693	129	11.5	104.0	
HSVE-053	Zone 5	Rand	6,350	4,921	134	12.2	19.6	7,560	5,997	130	14.8	29.1	6,320	2,489	127	14.3	11.6	
HSVE-054	Zone 5	Main Sand	190	167	131	37.1	2.0	1,265	1,152	132	38.4	14.5	277	277				
HSVE-057	Zone 6	Rand																
HSVE-058	Zone 6	N. Olive	24,300	0				56,200	19,000	121	12.0	74.5						
HSVE-059	Zone 6	Rand																
HSVE-060	Zone 6	Rand																
HSVE-061	Zone 6	N. Olive	65,000	41,377				1,120	1,100	119	NM**	NM**	35	35	118	NM**	NM**	
HSVE-062	Zone 6	N. Olive	23,800	0	131	94.8	0.0	NM*	NM*	120	8.7	NM*	65	62	45	5.7	0.1	
HSVE-064	Zone 6	N. Olive	25	19	8	7.8	0.0	35	35				20	20	115	32.5	0.2	
HSVE-067	Zone 6	N. Olive	7	7				30	30				29	29				
HSVE-070	Zone 6	N. Olive	2,600	571	107	0.0	0.0	4,060	1,200				315	52	55	8.9	0.2	
HSVE-071	Zone 6	Rand	6,720	1,358	89	0.0	0.0	19,800	6,839	116	0.0	0.0	12,300	6,159	122	7.4	14.9	
HSVE-072	Zone 6	Rand	21	17				143	113				105	61				
HSVE-074	Zone 6	N. Olive	8	8				530	530				37	37	75	23.8	0.3	
HSVE-076	Zone 6	Rand																
HSVE-077	Zone 6	N. Olive	86,000	42,500	129	8.1	113.2											
HSVE-078	Zone 5	Rand	520,000	300,000				1,000,000	742,000				NM*	NM*	123	0.0	NM*	
HSVE-079	Zone 5	Rand	NM*	NM*	137	0.0	NM*	380,000	200,000				37,200	34,313				
HSVE-080	Zone 5	N. Olive																
HSVE-081	Zone 5	Rand	433,000	280,000				730,000	515,000				504,000	326,000				
HSVE-082	Zone 5	N. Olive	700	321	138	NM**	NM**	1,660	878		NM**	NM**	800	392	136	NM**	NM**	
HSVE-083	Zone 5	Rand	25,100	12,886	138	27.9	117.8	1,650	1,395	142	35.1	16.0	910	735	136	33.1	8.0	
HSVE-084	Zone 5	Rand	NM*	NM*	125	0.0	NM*						58,200	31,862	26	0.0	0.0	

					October 2015			November 2015						December 2015					
Location	Zone	Stratum	TVPH	РНС	Vacuum	Flow Rate	Mass Recovery Rate	TVPH	РНС	Vacuum	Flow Rate	Mass Recovery Rate	TVPH	РНС	Vacuum	Flow Rate	Mass Recovery Rate		
110/15 005		D 1	(ppmv)	(ppmv)	(in-H ₂ O)	(scfm)	(lbs/day)	(ppmv)	(ppmv)	(in-H ₂ O)	(scfm)	(lbs/day)	(ppmv)	(ppmv)	(in-H ₂ O)	(scfm)	(lbs/day)		
HSVE-085	Zone 5	Rand	20,000	5,000				11,800	8,673	137	5.7	16.2	7,150	6,087	131	7.0	13.8		
HSVE-086	Zone 5	N. Olive	130	93	129	32.2	1.0	312	304	135	25.9	2.6	160	160	125	31.0	1.6		
HSVE-087	Zone 4	Rand	4,100	3,486	132	16.5	18.8	6,290	5,382	133	7.5	13.3	4,400	4,008	116	7.8	10.2		
HSVE-088	Zone 4	Rand	50	40				55	55				40	40					
HSVE-089	Zone 4	N. Olive	20	14	131	40.0	0.2	45	45				201	119	129	26.5	1.0		
HSVE-090	Zone 4	Main Silt	NM*	NM*	131	15.5	NM*	39,600	14,600				14,400	0					
HSVE-091	Zone 4	Main Silt	NM*	NM*	107	0.0	NM*	275,000	193,000				72,200	63,700	130	4.9	102.5		
HSVE-092	Zone 4	N. Olive	275	51	134	43.3	0.7	1,760	538	140	22.8	4.0	377	370					
HSVE-093	Zone 4	Main Silt	14,300	0				64,600	6,544	75	6.8	14.6	790	310	55	7.9	0.8		
HSVE-094	Zone 4	Main Silt	14,100	814				16,500	1,639				147	126					
HSVE-095	Zone 4	Main Silt	715	565	121	16.4	3.0	1,400	1,336	133	19.1	8.3	60	60	115	22.6	0.4		
HSVE-096	Zone 4	Rand	325	302	119	21.0	2.1	70	70	124	37.6	0.9	1,238	1,217	124	35.2	14.0		
HSVE-097	Zone 4	Rand	1,170	970	131	24.8	7.9	290	280	126	40.5	3.7	1,469	1,455	124	26.7	12.7		
HSVE-098	Zone 2	A/B Clay	6,800	5,235	122	30.2	51.6	6,480	4,845	125	20.9	33.1	7,043	5,116	118	11.5	19.2		
HSVE-099	Zone 6	Multiple Strata	70,800	22,249	127	34.7	252.8	57,400	17,686	113	45.8	265.1	29,000	7,451	114	32.3	78.8		
HSVE-100	Zone 5	N. Olive	7,530	3,472	123	13.7	15.5	NM*	NM*	128	7.0	NM*	11,800	4,532	121	10.5	15.6		
HSVE-101	Zone 5	N. Olive	245	158	135	13.2	0.7	920	557	136	9.7	1.8	380	253	129	14.7	1.2		
HSVE-102	Zone 1	N. Olive	800	36	111	16.5	0.2	295	16	107	25.3	0.1	1,597	130	94	38.4	1.6		
HSVE-103	Zone 1	A/B Clay	275	128	112	38.7	1.6	125	54	105	39.9	0.7	2,282	782	99	23.2	5.9		
HSVE-105D	Zone 1	Main Sand						5	5				420	420					
HSVE-105S	Zone 1	N. Olive	38	38				15	12	115	32.9	0.1	510	510	109	57.1	9.5		
HSVE-106D	Zone 1	Main Sand	20	20				35	29	113	18.8	0.2	55	55	116	56.2	1.0		
HSVE-106S	Zone 1	N. Olive						25	25				70	69	101	11.9	0.3		
HSVE-107D	Zone 1	Main Sand	55	55				7	7				212	212					
HSVE-107S	Zone 1	Multiple Strata	105	104				9	9	115	15.6	0.0	322	313	112	21.0	2.2		
MPE-A002	Area A	Main Sand	7,230	2,646	142	19.9	17.2												
TOTAL FLOW RATE A		VAL BASED ON WELL-BY-				2,022	1,844				1,674	5,034				2,492	1,180		
TOTAL MASS REMO MEASUREMENTS	OVAL BASED ON SV	E MAIN HEADER	3,500	1,900	150	1,575	981	9,850	6,864	153	1,345	3,020	3,100	2,051	149	1,710	1,147		

					January 2016					February 2016			March 2016						
							Mass Recovery					Mass Recovery		Mass Recover					
Location	Zone	Stratum	TVPH	PHC	Vacuum	Flow Rate	Rate	TVPH	PHC	Vacuum	Flow Rate	Rate	TVPH	PHC	Vacuum	Flow Rate	Rate		
			(ppmv)	(ppmv)	(in-H ₂ O)	(scfm)	(lbs/day)	(ppmv)	(ppmv)	(in-H₂O)	(scfm)	(lbs/day)	(ppmv)	(ppmv)	(in-H₂O)	(scfm)	(lbs/day)		
HSVE-003D	Zone 1	Multiple Strata	88	88	108	36.8	1.1	198	198	105	0.0	0.0	1,340	1,340	110	14.8	6.5		
HSVE-003S	Zone 1	N. Olive	38	34	116	145.0	1.6	450	116	103	166.7	6.3	635	216	115	132.8	9.4		
HSVE-004D	Zone 1	Multiple Strata	57	57	123	104.6	2.0	115	115	114	0.0	0.0	885	881	119	53.0	15.3		
HSVE-004R	Zone 1	Main Sand	710	651	123	0.0	0.0	4,520	1,076	115	20.0	7.0	6,116	3,369	119	3.3	3.7		
HSVE-004S	Zone 1	N. Olive	15	15	123	914.7	4.5	92	92	117	198.6	6.0	102	102					
HSVE-005R	Zone 2	Rand	NM*	NM*	133	5.0	NM*	490	136	87	13.3	0.6	1,500	510					
HSVE-006R	Zone 2	Main Sand											367,000	302,500					
HSVE-007D	Zone 5	Multiple Strata	450	436				1,074	795	43	49.6	12.9	2,970	2,136	40	15.0	10.5		
HSVE-007S	Zone 5	N. Olive	317	313	45	83.6	8.5	552	373	38	37.1	4.5	411	283	35	91.8	8.5		
HSVE-009D	Zone 5	Rand																	
HSVE-009S	Zone 5	A Clay																	
HSVE-010D	Zone 5	Multiple Strata	5,670	3,666															
HSVE-010S	Zone 5	N. Olive	73	52															
HSVE-012D	Zone 4	Main Silt	73	73	94	30.3	0.7	275	267	69	43.6	3.8	5,269	4,729	66	36.1	55.9		
HSVE-012S	Zone 4	N. Olive	22	22				51	51	43	NM***	NM***	173	173	61	73.0	4.1		
HSVE-017D	Zone 4	Multiple Strata	14	14	125	NM***	NM***	32	32	114	39.5	0.4	63	63	109	54.9	1.1		
HSVE-017S	Zone 4	A Clay	49	49				12	12	11	17.2	0.1	91	91	110	36.6	1.1		
HSVE-018D	Zone 4	Multiple Strata	26	26	121	53.2	0.5	26	26	128	52.7	0.4	58	58	132	51.3	1.0		
HSVE-018S	Zone 4	A Clay	13	13	124	NM***	NM***	6	6	125	NM***	NM***	30	30	131	83.1	0.8		
HSVE-019D	Zone 4	Multiple Strata	27	27	124	NM***	NM***	16	16	133	77.3	0.4	116	73	139	125.1	3.0		
HSVE-019S	Zone 4	N. Olive	8	8	120	46.6	0.1	11	11	121	47.5	0.2	8	8	130	45.4	0.1		
HSVE-020D	Zone 1	Multiple Strata	4	4	114	53.9	0.1	48	48	108	68.2	1.1	43	43	108	64.0	0.9		
HSVE-020S	Zone 1	N. Olive	18	8	120	NM***	NM***	21	21	102	54.9	0.4	22	22	118	133.1	1.0		
HSVE-021	Zone 3	Multiple Strata	23	17	127	23.8	0.1	717	339	113	23.2	2.6	373	264					
HSVE-022	Zone 5	Main Silt	35	35	127	13.2	0.2	1,055	445	45	17.7	2.6	330	240	30	NM***	NM***		
HSVE-023D	Zone 1	Multiple Strata	9	9															
HSVE-023S	Zone 1	N. Olive	15	8	111	0.0	0.0	47	47	105	14.9	0.2	151	148	115	0.0	0.0		
HSVE-024D	Zone 1	Multiple Strata	10	10	119	0.0	0.0	304	72	113	13.5	0.3	175	66	118	0.0	0.0		
HSVE-024S	Zone 1	N. Olive	3	3	115	NM***	NM***	721	18	110	16.0	0.1	1,130	161	117	44.2	2.3		
HSVE-025D	Zone 1	Multiple Strata	600	51	108	14.1	0.2	410	101	106	NM***	NM***	938	364	115	37.0	4.4		
HSVE-026D	Zone 1	Multiple Strata	1,165	0				2,757	1,110	111	14.7	5.3	239	146	112	17.9	0.9		
HSVE-027D	Zone 1	Rand	180	25				26	26				116	85	118	3.6	0.1		
HSVE-028S	Zone 5	N. Olive	60	42	129	27.3	0.4	1,050	7	133	24.2	0.1	865	111	135	23.3	0.8		
HSVE-029D	Zone 5	Rand	NM*	NM*	128	0.0	NM*	15,600	1,171	131	8.0	3.0	124,000	50,765	133	7.3	121.9		
HSVE-029S	Zone 5	N. Olive	NM*	NM*	129	62.5	NM*	195	152	130	65.9	3.3	162	162	133	0.0	0.0		
HSVE-031D	Zone 3	Main Silt	18	18	114	16.1	0.1	5,395	977	123	25.7	8.2	1,778	696	125	23.2	5.3		
HSVE-033	Zone 3	Main Silt	0	0	117	18.8	0.0	10	10	70	10.7	0.0	0	0	77	12.7	0.0		
HSVE-034	Zone 3	Main Silt	0	0	126	27.1	0.0	23	23	74	46.0	0.3	0	0	80	42.7	0.0		
HSVE-035	Zone 2	Main Silt	NM*	NM*	93	0.0	NM*	890	105	58	12.7	0.4	8	8	80	13.4	0.0		

				January 2016			February 2016					March 2016					
							Mass Recovery					Mass Recovery					Mass Recovery
Location	Zone	Stratum	TVPH	PHC	Vacuum	Flow Rate	Rate	TVPH	PHC	Vacuum	Flow Rate	Rate	TVPH	PHC	Vacuum	Flow Rate	Rate
			(ppmv)	(ppmv)	(in-H ₂ O)	(scfm)	(lbs/day)	(ppmv)	(ppmv)	(in-H ₂ O)	(scfm)	(lbs/day)	(ppmv)	(ppmv)	(in-H ₂ O)	(scfm)	(lbs/day)
HSVE-036	Zone 2	Main Silt	49,100	9,663				0	0	92	17.6	0.0	2,840	826	109	14.3	3.9
HSVE-037	Zone 2	Main Silt	62	56	108	16.6	0.3	1,130	248	102	22.5	1.8	2,715	782	109	26.5	6.8
HSVE-038	Zone 2	Main Silt	18	18	98	0.0	0.0	1,047	453	109	11.2	1.7	2,490	1,044	115	11.0	3.8
HSVE-039	Zone 2	Main Silt	10	10				7	7	89	28.7	0.1	14	11	96	29.3	0.1
HSVE-040	Zone 2	Main Silt	13	13	111	13.2	0.1	800	557	103	27.1	4.9	885	728	114	30.4	7.2
HSVE-041	Zone 2	Main Silt	640	634	127	11.5	2.4	55	55	113	5.1	0.1	192	192	121	0.0	0.0
HSVE-042	Zone 2	Main Silt	9,340	9,206	129	30.1	90.7	3,150	2,951	118	9.6	9.2	8,215	7,262	121	11.0	26.1
HSVE-043	Zone 2	Rand						18	18				NM*	NM*	96	5.2	NM*
HSVE-044	Zone 2	Rand															
HSVE-045	Zone 2	Rand															
HSVE-047	Zone 2	Rand	390	390				450	244	112	5.6	0.4	1,310	1,029	124	7.4	2.5
HSVE-048	Zone 2	Main Silt	2,120	1,021	113	25.8	8.6	15,000	8,776	111	22.1	63.4	30,700	24,364	122	13.3	106.2
HSVE-049	Zone 2	Main Silt	NM*	NM*	121	0.0	NM*	30,000	28,353	112	43.9	406.9	61,000	58,900	119	67.5	1,300.0
HSVE-050	Zone 2	Main Silt	160	157	131	26.3	1.4	3,220	2,838	113	31.1	28.8	4,453	4,082	124	36.8	49.1
HSVE-051	Zone 2	Main Silt	50	50	128	16.6	0.3	3,567	2,868	118	35.6	33.4	4,780	3,427	123	42.6	47.7
HSVE-052	Zone 5	Rand	2,250	2,230				23,400	20,493	126	6.7	44.7	42,500	38,059	131	17.9	223.1
HSVE-053	Zone 5	Rand	84	70	127	13.4	0.3	1,471	690	124	17.7	4.0	6,055	3,952	128	14.4	18.6
HSVE-054	Zone 5	Main Sand	148	140	130	21.4	1.0	138	125	24	12.0	0.5	1,790	1,458	127	14.5	6.9
HSVE-057	Zone 6	Rand											71	2			
HSVE-058	Zone 6	N. Olive	3	3	128	16.9	0.0	670	0	47	9.1	0.0	370	10	28	5.8	0.0
HSVE-059	Zone 6	Rand											4,035	194			
HSVE-060	Zone 6	Rand											160	4			
HSVE-061	Zone 6	N. Olive															
HSVE-062	Zone 6	N. Olive						200	0	17	0.0	0.0	2,087	124	29	0.0	0.0
HSVE-064	Zone 6	N. Olive						9	9				47	44			
HSVE-067	Zone 6	N. Olive						5	5				30	30			
HSVE-070	Zone 6	N. Olive	12,400	0				3,925	739	51	5.6	1.4	25,200	5,494	72	0.0	0.0
HSVE-071	Zone 6	Rand						35	11				8,220	3,450			
HSVE-072	Zone 6	Rand						11	0				18	18			
HSVE-074	Zone 6	N. Olive						3	3				9	9			
HSVE-076	Zone 6	Rand											38,300	16,976	118	16.9	94.1
HSVE-077	Zone 6	N. Olive	97,800	60,617	114	6.9	136.0	110,000	55,500	121	10.3	187.3	114,000	58,550	121	10.3	196.9
HSVE-078	Zone 5	Rand	233,000	121,000				NM*	NM*	122	8.7	NM*	NM*	NM*	122	0.0	NM*
HSVE-079	Zone 5	Rand						NM*	NM*	120	0.0	NM*	905,000	581,000			
HSVE-080	Zone 5	N. Olive	2,140	668	114	6.9	1.5	NM*	NM*	124	0.0	NM*	13,750	13,300			
HSVE-081	Zone 5	Rand	59,000	27,400				NM*	NM*	94	26.7	NM*	1,000,000	483,000			
HSVE-082	Zone 5	N. Olive	1,660	649	131	NM**	NM**	62	62	132	NM**	NM**	4,478	887	136	NM**	NM**
HSVE-083	Zone 5	Rand	NM*	NM*	133	32.9	NM*	NM*	NM*	132	31.0	NM*	NM*	NM*	92	30.4	NM*
HSVE-084	Zone 5	Rand						634,000	296,000	29	0.0	0.0	7,647	2,615	116	0.0	0.0

HARTFORD PETROLEUM RELEASE SITE, HARTFORD, ILLINOIS

		Stratum			January 2016			February 2016						March 2016					
Location	Zone		TVPH	PHC	Vacuum	Flow Rate	Mass Recovery Rate	TVPH	РНС	Vacuum	Flow Rate	Mass Recovery Rate	TVPH	PHC	Vacuum	Flow Rate	Mass Recovery Rate		
			(ppmv)	(ppmv)	(in-H ₂ O)	(scfm)	(lbs/day)	(ppmv)	(ppmv)	(in-H ₂ O)	(scfm)	(lbs/day)	(ppmv)	(ppmv)	(in-H ₂ O)	(scfm)	(lbs/day)		
HSVE-085	Zone 5	Rand	680	515	133	5.4	0.9	9,020	3,961	137	6.9	9.0	12,600	8,694	133	4.9	13.9		
HSVE-086	Zone 5	N. Olive	30	30	128	29.3	0.3	194	167	134	23.3	1.3	293	252	130	29.3	2.4		
HSVE-087	Zone 4	Rand	40	37	122	10.2	0.1	1,720	1,050	131	10.8	3.7	2,787	2,088	132	7.6	5.2		
HSVE-088	Zone 4	Rand						1,943	291	17	0.0	0.0	1,966	363	20	5.8	0.7		
HSVE-089	Zone 4	N. Olive	25	22				2,442	921	32	11.0	3.3	1,156	472	129	9.3	1.4		
HSVE-090	Zone 4	Main Silt											75,450	9,650					
HSVE-091	Zone 4	Main Silt																	
HSVE-092	Zone 4	N. Olive	70	42	41	10.0	0.1	1,512	158	135	60.9	3.2	158	58					
HSVE-093	Zone 4	Main Silt																	
HSVE-094	Zone 4	Main Silt											5,368	452					
HSVE-095	Zone 4	Main Silt	18	11				25	12	92	10.3	0.0	320	232	123	17.0	1.3		
HSVE-096	Zone 4	Rand	2,600	2,080				342	286	20	28.3	2.6	1,172	1,123	81	8.9	3.3		
HSVE-097	Zone 4	Rand	NM*	NM*	128	0.0	NM*	69	56	128	22.6	0.4	322	282	127	16.3	1.5		
HSVE-098	Zone 2	A/B Clay	1,867	1,788	108	5.2	3.0	3,920	2,962	120	21.2	20.6	3,580	2,506	124	20.7	16.9		
HSVE-099	Zone 6	Multiple Strata	95	21	131	46.7	0.3	13,200	2,400	104	48.1	37.7	111,200	48,994	115	29.8	478.2		
HSVE-100	Zone 5	N. Olive	382	247				27,800	12,943	120	10.6	44.8	7,351	2,677	124	10.2	9.0		
HSVE-101	Zone 5	N. Olive	290	98				851	440	127	12.8	1.8	273	126	133	9.0	0.4		
HSVE-102	Zone 1	N. Olive	407	8	114	34.5	0.1	2,471	78				1,993	157	103	15.1	0.8		
HSVE-103	Zone 1	A/B Clay	38	35	97	27.8	0.3	117	88	76	14.7	0.4	347	343	84	17.1	1.9		
HSVE-105D	Zone 1	Main Sand																	
HSVE-105S	Zone 1	N. Olive	55	38	121	32.1	0.4	130	104	108	52.3	1.8	378	378	117	46.6	5.8		
HSVE-106D	Zone 1	Main Sand											32	32					
HSVE-106S	Zone 1	N. Olive	4	4	113	29.9	0.0	56	56	106	45.7	0.8	30	27	104	66.4	0.6		
HSVE-107D	Zone 1	Main Sand																	
HSVE-107S	Zone 1	Multiple Strata	8,920	3,821	115	31.2	39.0	67	60	106	52.6	1.0	362	362	113	59.2	7.0		
MPE-A002	Area A	Main Sand																	
TOTAL FLOW RATE A		VAL BASED ON WELL-BY-				2,177	307				1,999	992				2,017	2,902		
TOTAL MASS REMO MEASUREMENTS	OVAL BASED ON SV	'E MAIN HEADER	375	178	154	1,095	64	2,646	1,210	149	1,470	582	2,900	1,371	151	1,415	634		

Notes:

TVPH - total volatile petroleum hydrocarbons

PHC - petroleum hydrocarbons

scfm - standard cubic feet per minute

ppmv - parts per million by volume

lbs/day - pounds per day
NM* - not measured due to occluded well screen

NM** - not measured, well has a straw stinger and flow rate cannot be m

NM*** - not measured, water in pitot tube

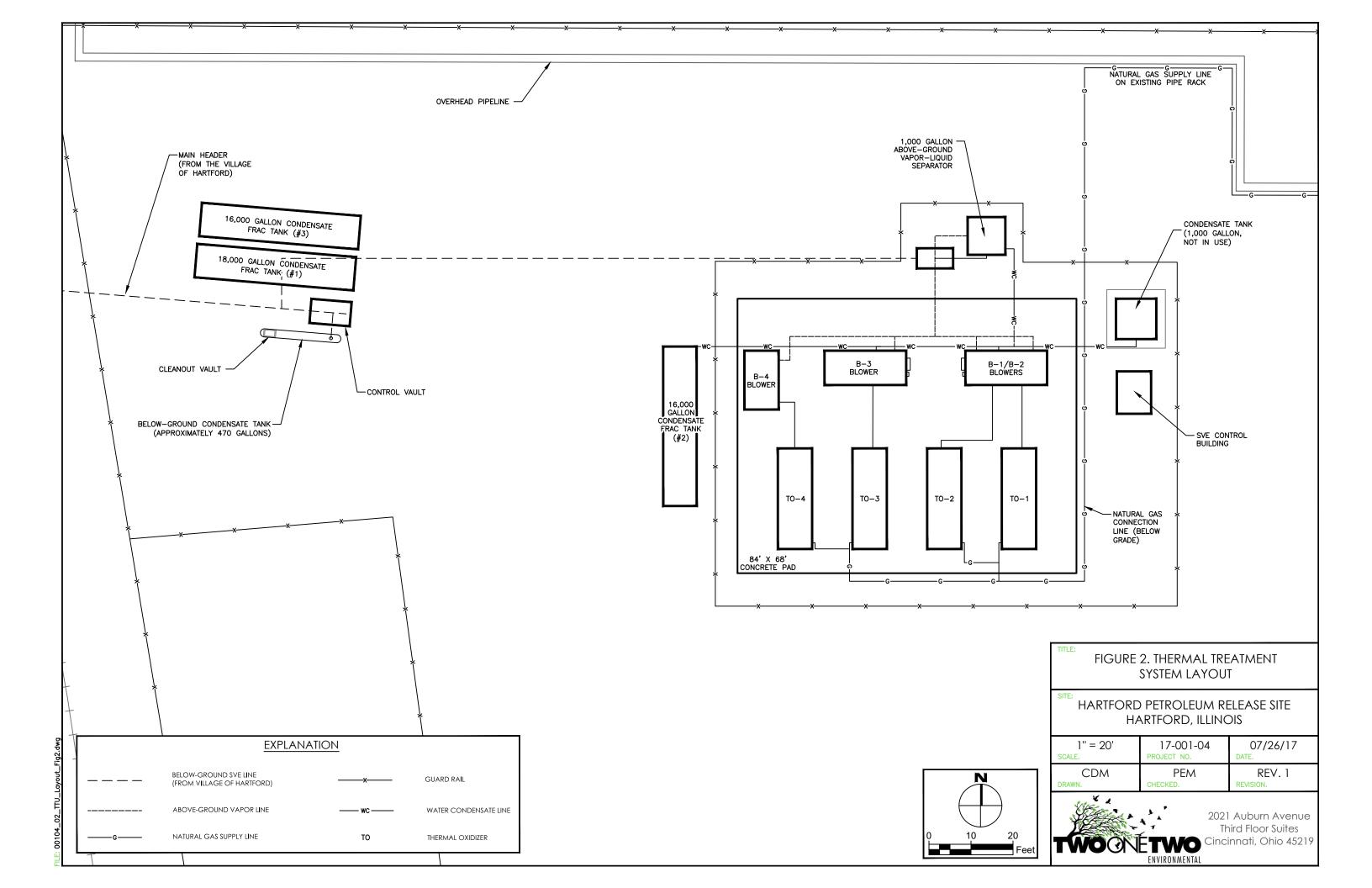
-- - well was not operating during this time period

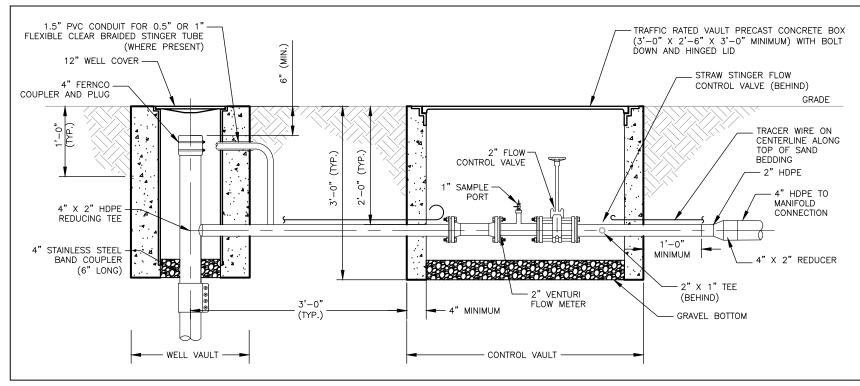
TABLE 5. INTERIM IN-HOME MONITORING NETWORK

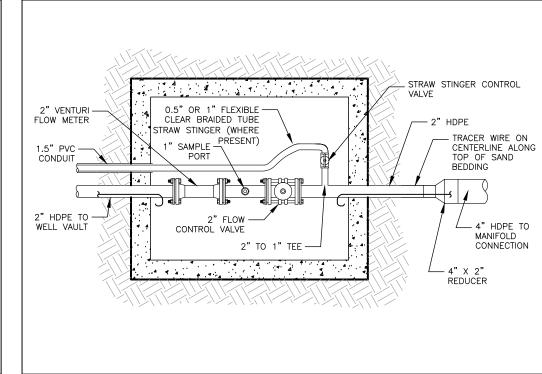
HARTFORD PETROLEUM RELEASE SITE, HARTFORD, ILLINOIS

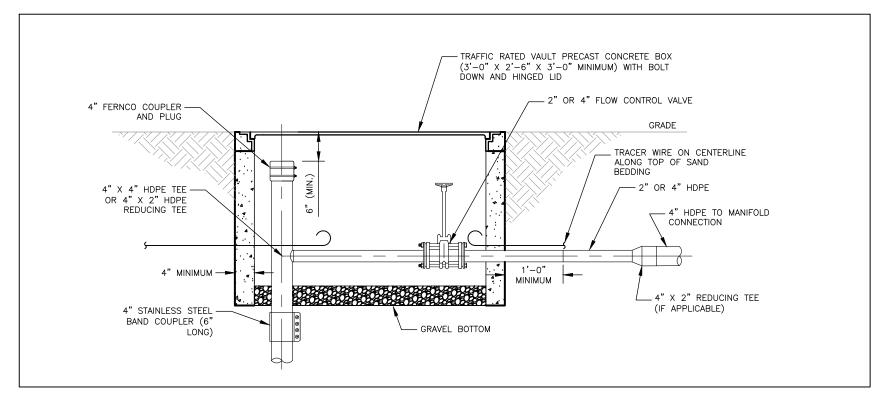
Location	Monitoring Frequency	Included in Event Based Monitoring	Mitigation Measures	Notes
107 W Birch	Weekly	Yes	Foundation Sealed, AllerAir Purifier	
117 W Birch	Weekly	Yes	Ventilation System	Monitoring suspended from April - May 2014 and July - September 2016 due to sanitary issues
119 W Date	Weekly	Yes	Ventilation System	
129 W Birch	Weekly	Yes	Foundation Sealed, AllerAir Purifier (2)	
504 N Delmar	Weekly	Yes	Ventilation System	
507 N Olive	Weekly	Yes	Sub-Slab Depressurization System, AllerAir Purifier	
516 N Delmar	Weekly	Yes	Ventilation System, AllerAir Purifier	
610 N Old St. Louis	Weekly	Yes	Foundation Sealed, AllerAir Purifier (2)	
715 N Delmar	Weekly	Yes	Ventilation System, AllerAir Purifier, Sub-Slab Vapor Extraction	
100 W Cherry	Quarterly	Yes	Foundation Sealed	
101 E Birch	Quarterly	Yes	Sub-Slab Depressurization System, AllerAir Purifier	
101 E Forest	Quarterly	Yes	Ventilation System	
101 E Watkins	Quarterly	No	Foundation Sealed	
102 E Date	Quarterly	No	Ventilation System	
102 W Date	Quarterly	Yes	Foundation Sealed	Structure vacated in December 2015, current occupancy status not determined
104 W Elm	Quarterly	Yes	Ventilation System	
107 W Forest	Quarterly	Yes	Ventilation System	
111 W Date	Quarterly	Yes	Foundation Sealed	
112 W Birch	Quarterly	Yes	Sub-Slab Depressurization System, AllerAir Purifier	Structure vacated in May 2016, current occupancy status not determined
114 E Forest	Quarterly	No	Ventilation System	
116 E Watkins	Quarterly	Yes	Ventilation System	
118 E Elm	Quarterly	Yes	Ventilation System	
118 W Birch	Quarterly	Yes	Foundation Sealed, AllerAir Purifier	
118 W Cherry	Quarterly	No	Ventilation System	
118 W Elm	Quarterly	Yes	Foundation Sealed	

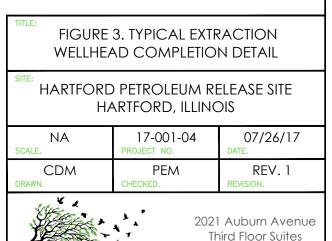
TABLE 5. INTERIM IN-HOME MONITORING NETWORK


HARTFORD PETROLEUM RELEASE SITE, HARTFORD, ILLINOIS

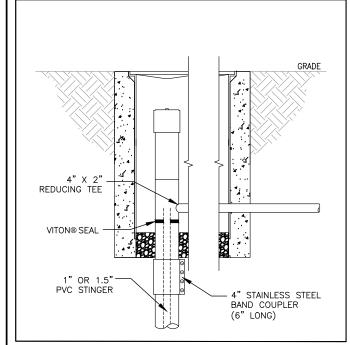

Location	Monitoring Frequency	Included in Event Based Monitoring	Mitigation Measures	Notes
119 W Birch	Quarterly	Yes	Ventilation System	
119 W Cherry	Quarterly	Yes	Ventilation System	Weekly monitoring discontinued in July 2015; resident agreed to quarterly and event monitoring
122 W Cherry	Quarterly	No	Foundation Sealed	
122 W Date	Quarterly	No	Foundation Sealed	
122 W Watkins	Quarterly	Yes	Ventilation System	
123 E Elm		No	Foundation Sealed, AllerAir Purifier	Monitoring discontinued in November 2015 due to flea infestation
125 E Forest	Quarterly	Yes	Ventilation System	
125 W Birch	Quarterly	Yes	Ventilation System	Weekly monitoring discontinued in April 2015; resident agreed to quarterly and event monitoring
125 W Birch Rear	Quarterly	Yes	Ventilation System	Weekly monitoring discontinued in April 2015; resident agreed to quarterly and event monitoring
126 E Elm	Quarterly	No	Ventilation System	
127 E Elm	Quarterly	No	Foundation Sealed	
128 W Cherry		No	Ventilation System	Monitoring discontinued in August 2016 due to flea infestation
134 E Watkins	Quarterly	Yes	Sub-Slab Depressurization System, Ventilation System, Foundation Sealed	Added to monitoring network as replacement for 142 E Watkins in November 2015
138 W Forest		No	Ventilation System	Access denied since July 2011
142 E Watkins			Ventilation System	Monitoring suspended in November 2015 due to excess items/debris in basement
201 N Olive	Quarterly	Yes	Ventilation System	
309 N Olive	Quarterly	Yes	Ventilation System	
310 N Delmar	Quarterly	Yes	Ventilation System	
501 N Olive	Quarterly	Yes	Foundation Sealed	
518 N Delmar	Quarterly	Yes	AllerAir Purifier	
619 N Olive	Quarterly	Yes	Foundation Sealed	

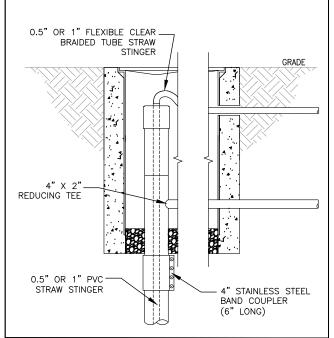

FIGURES

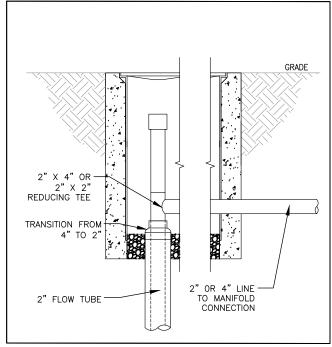




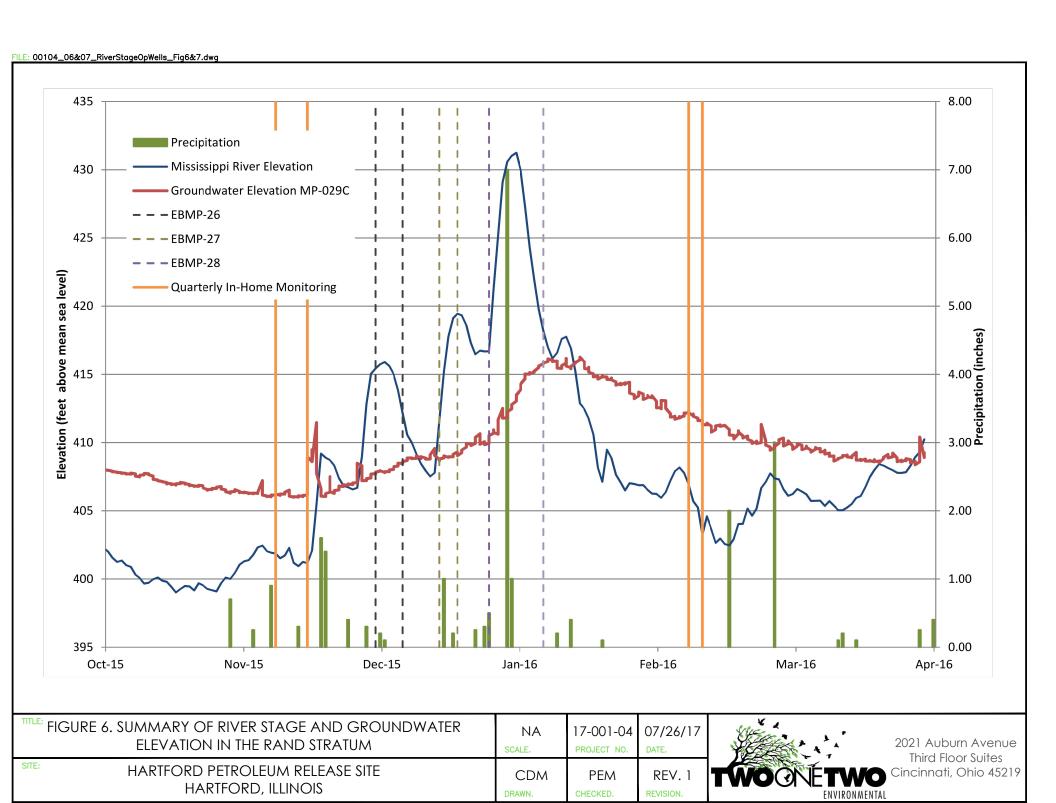
A PHASE III TYPICAL WELLHEAD COMPLETION NOT TO SCALE

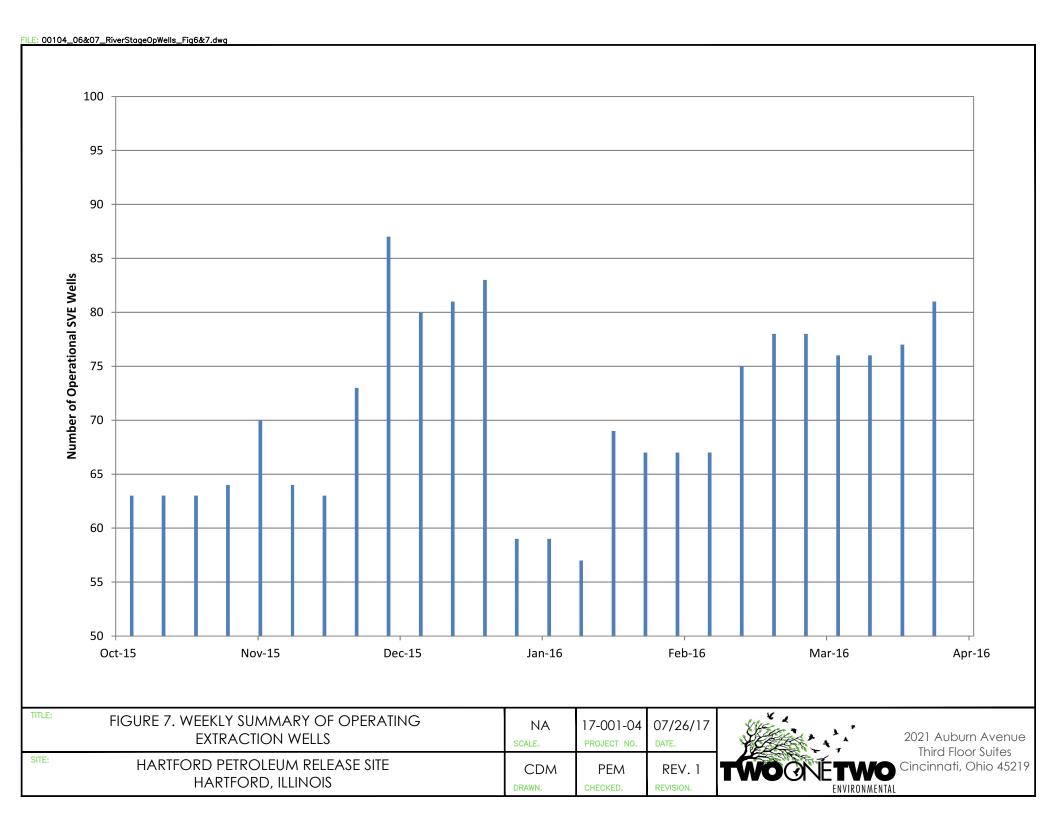

B PHASE III TYPICAL CONTROL VAULT - PLAN VIEW NOT TO SCALE

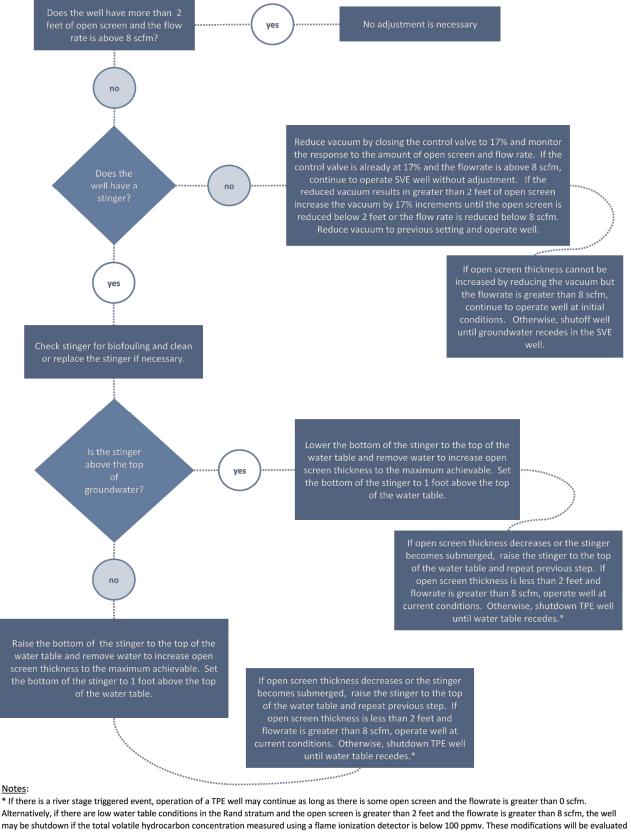

PHASE I/II TYPICAL WELLHEAD COMPLETION
NOT TO SCALE


Cincinnati, Ohio 45219

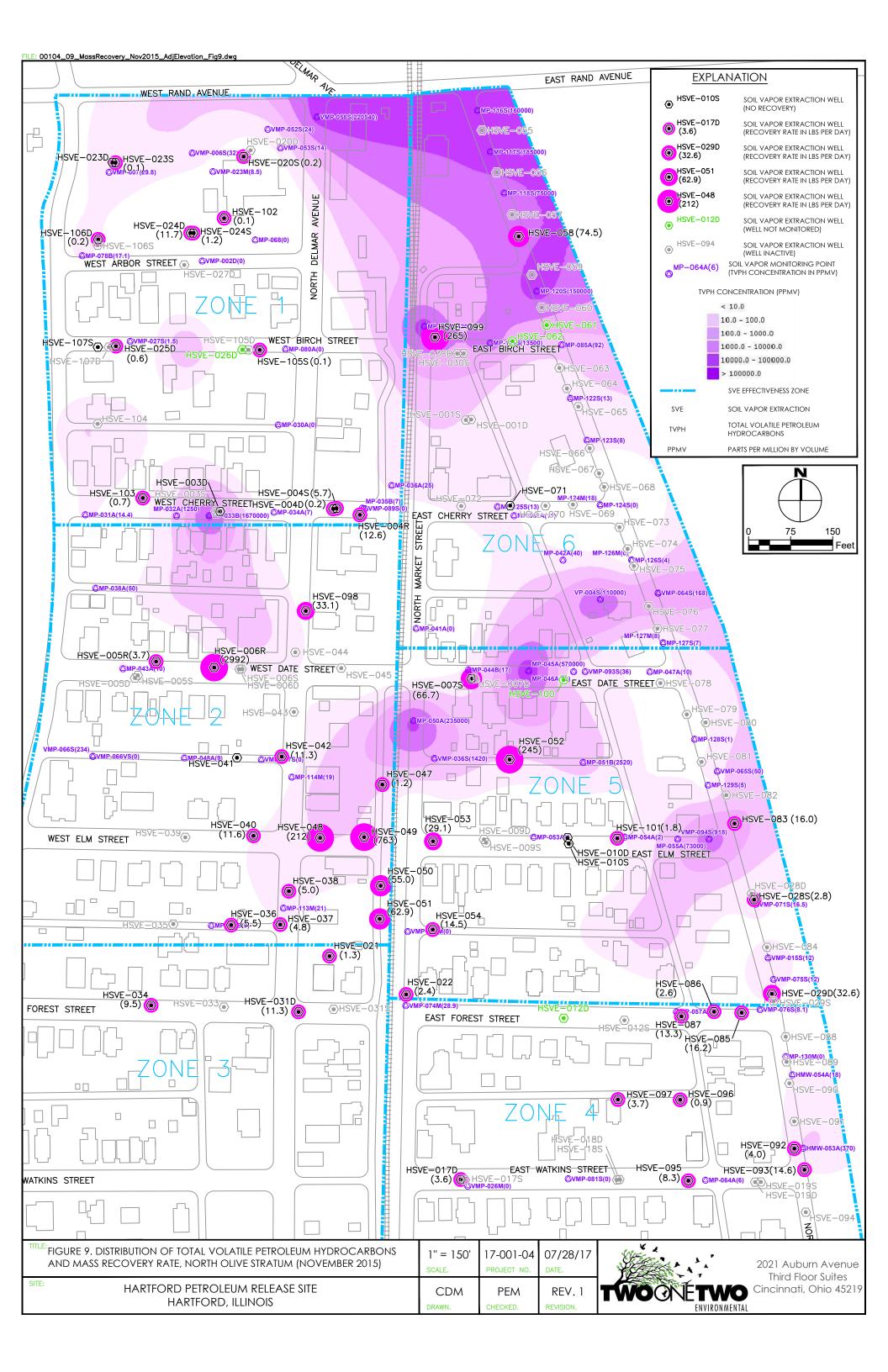
B STRAW STINGER DETAIL NOT TO SCALE

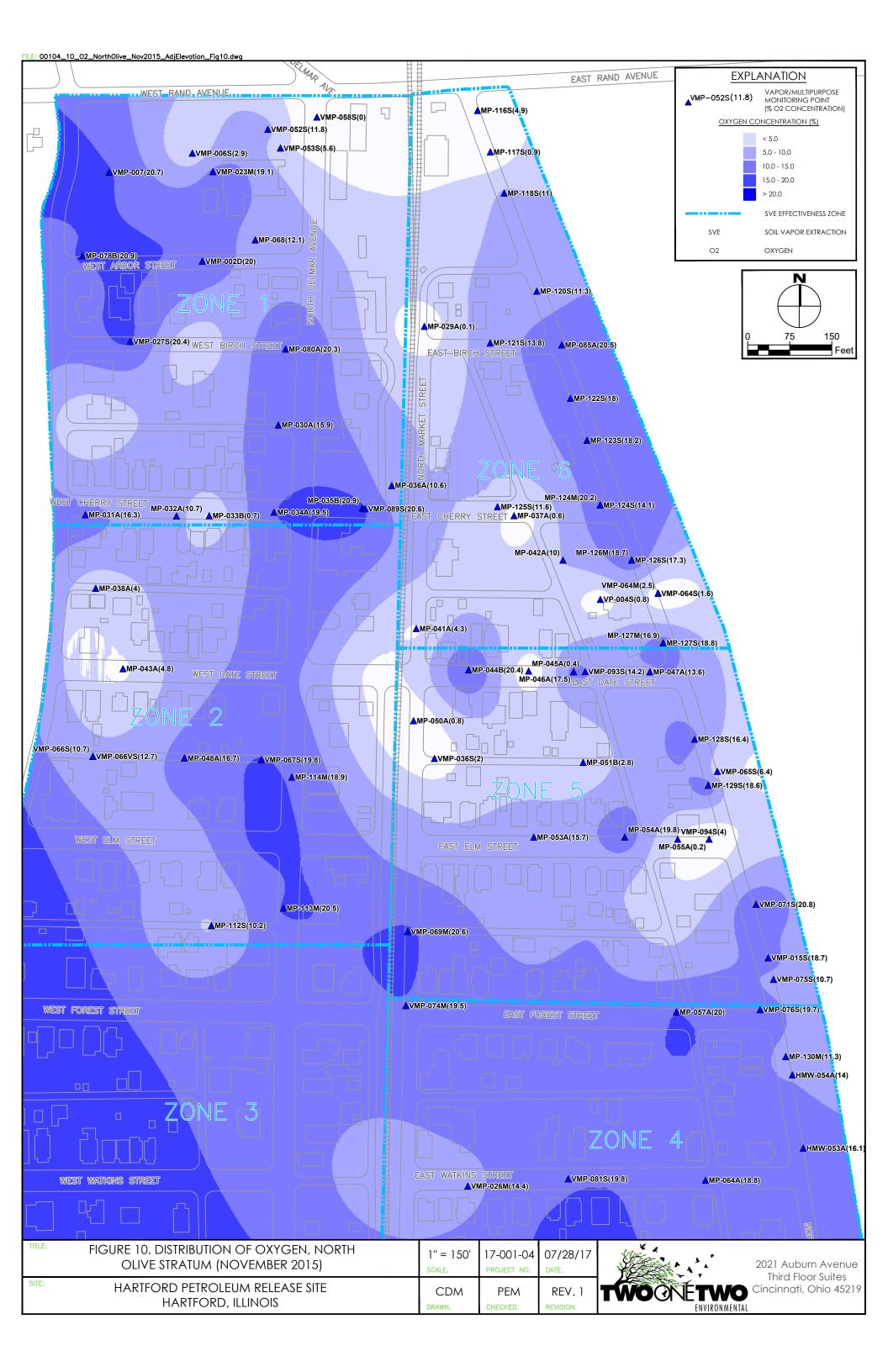

C FLOW TUBE DETAIL NOT TO SCALE

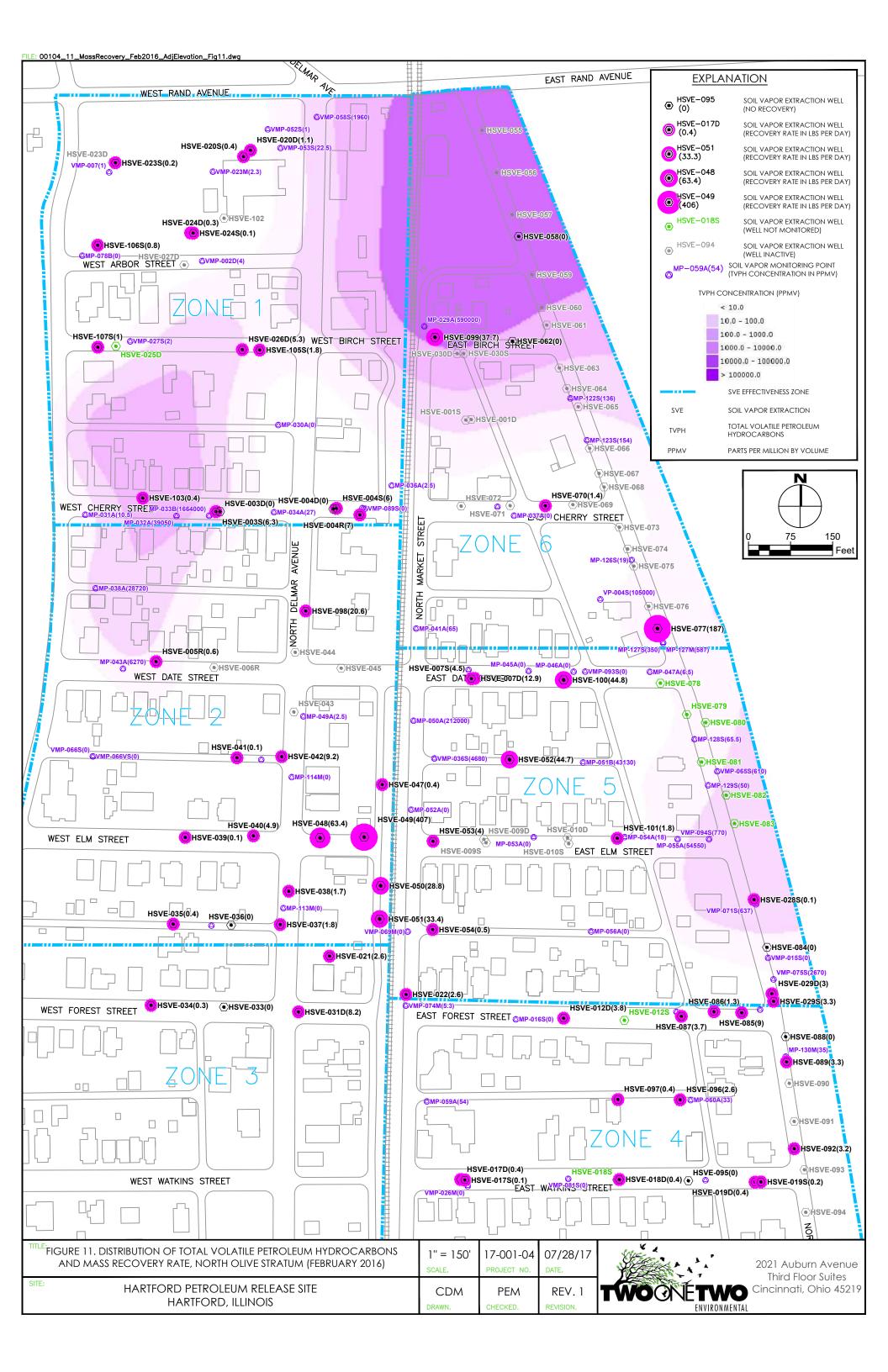

TITLE	FIGURE 4. TYPICAL STINGER DETAIL	NA SCALE.	17-001-04 PROJECT NO.	07/26/17 DATE.
SITE	HARTFORD PETROLEUM RELEASE SITE HARTFORD, ILLINOIS	CDM DRAWN.	PEM CHECKED.	REV. 1

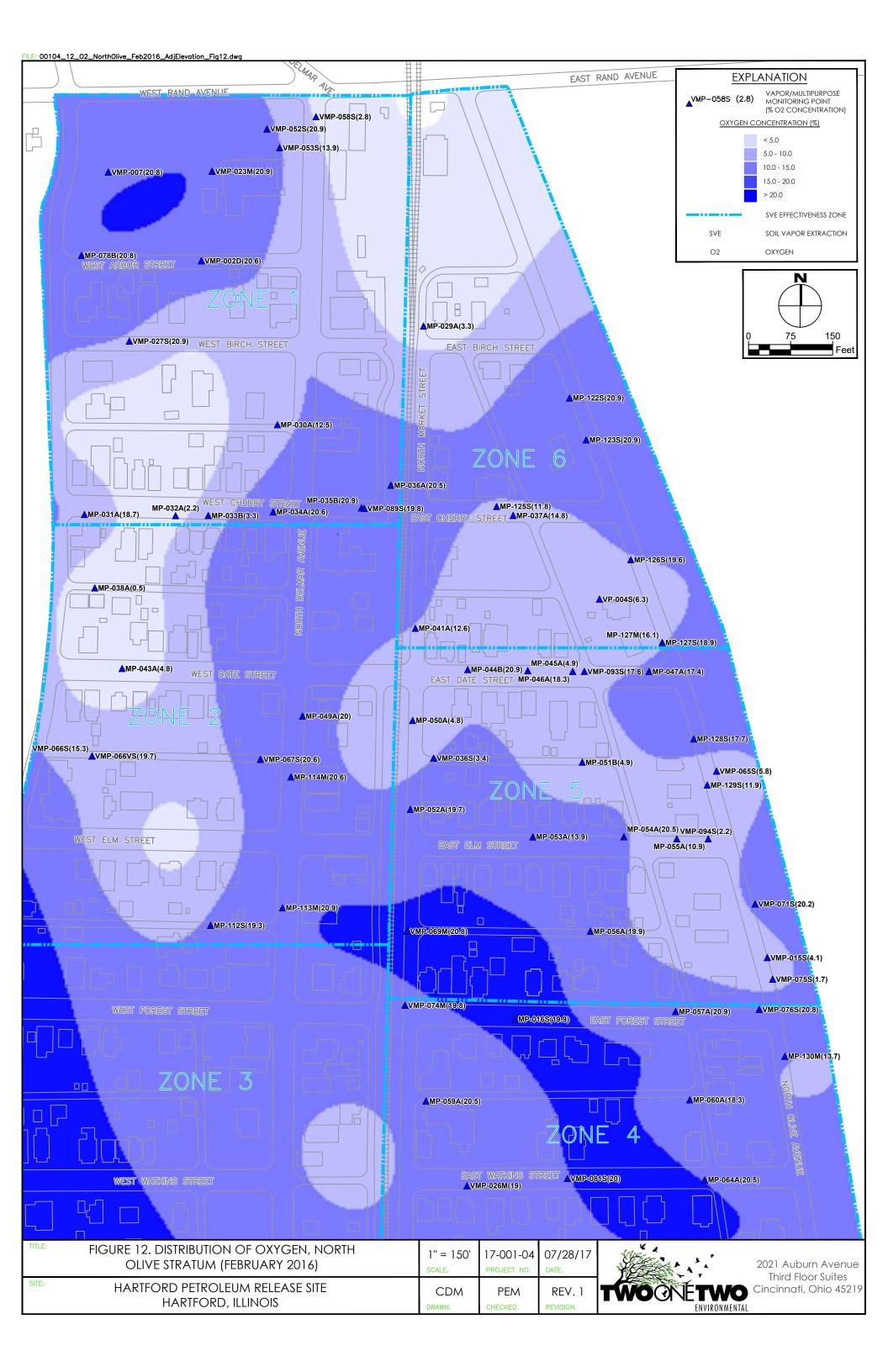


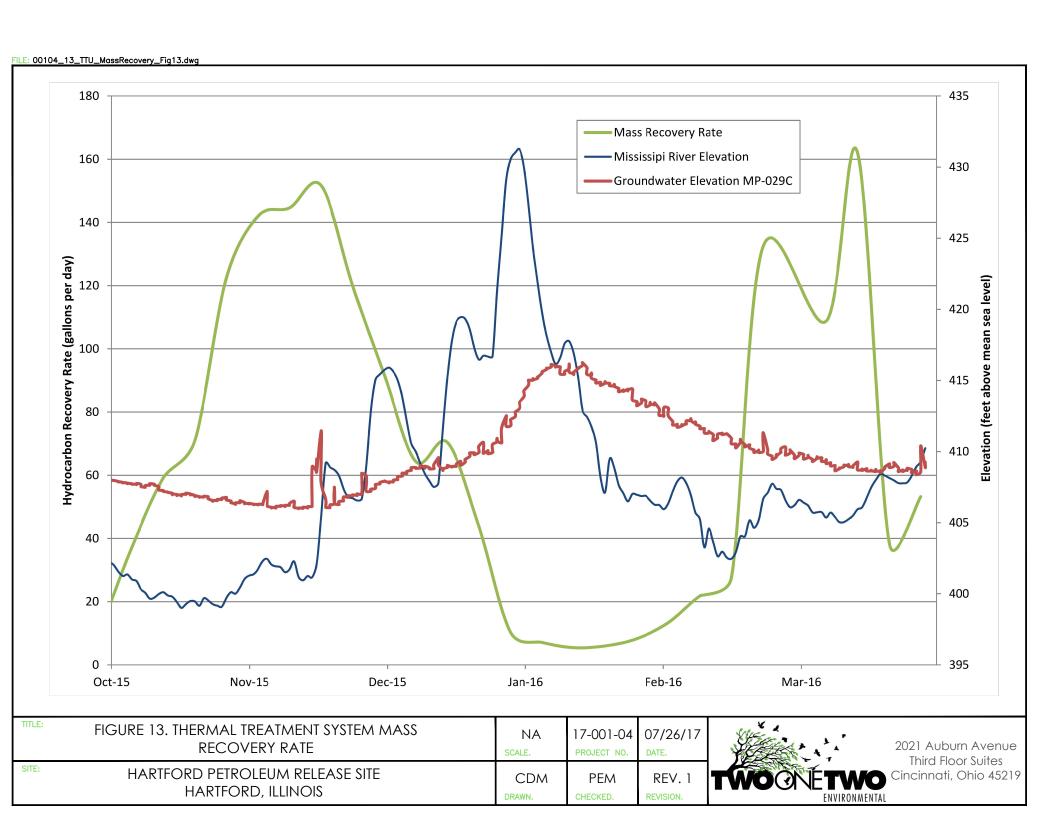
2021 Auburn Avenue Third Floor Suites Cincinnati, Ohio 45219

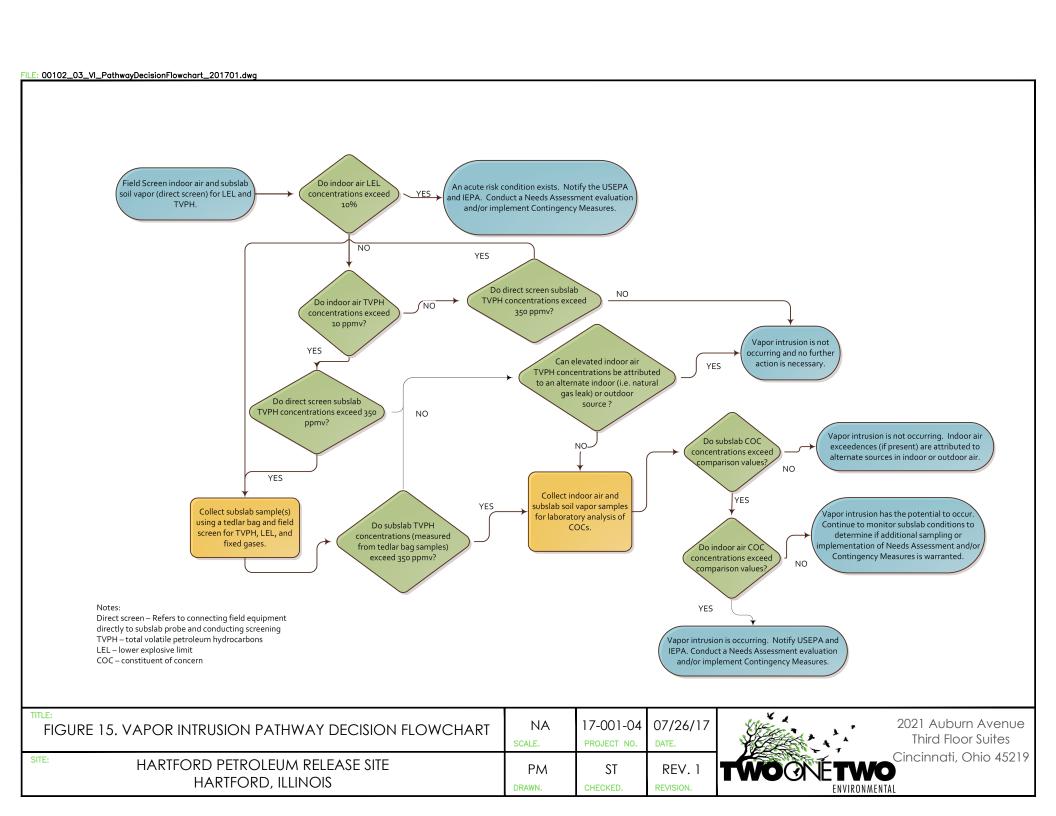

Alternatively, if there are low water table conditions in the Rand stratum and the open screen is greater than 2 feet and the flowrate is greater than 8 scfm, the well may be shutdown if the total volatile hydrocarbon concentration measured using a flame ionization detector is below 100 ppmv. These modifications will be evaluated on a well by well basis and communicated with the Agencies.

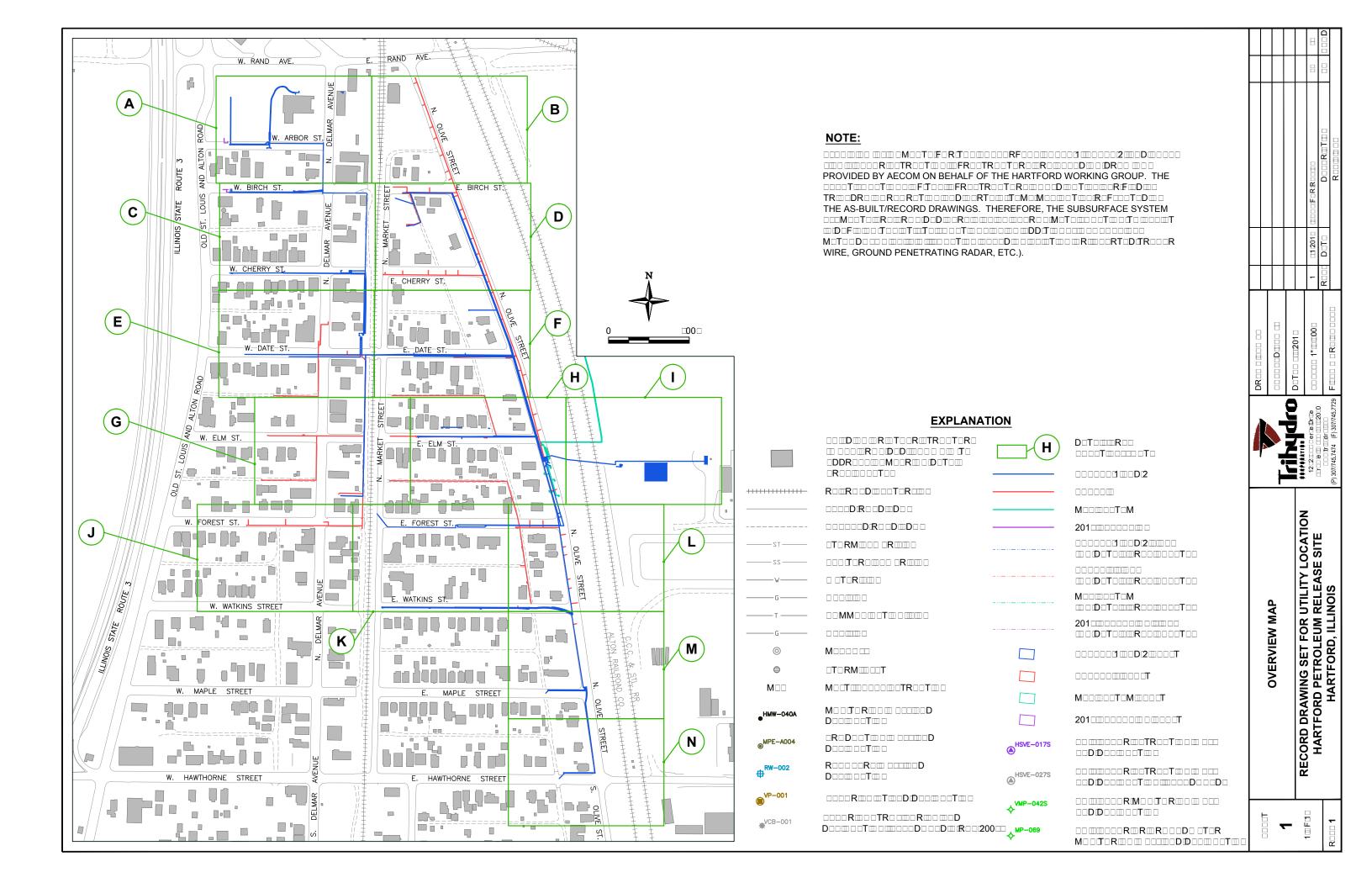

AND FLOW MEASUREMENTS		17-001-04 PROJECT NO.	07/26/17 DATE.
SITE: HARTFORD PETROLEUM RELEASE SITE HARTFORD, ILLINOIS	CDM	PEM	REV. 1

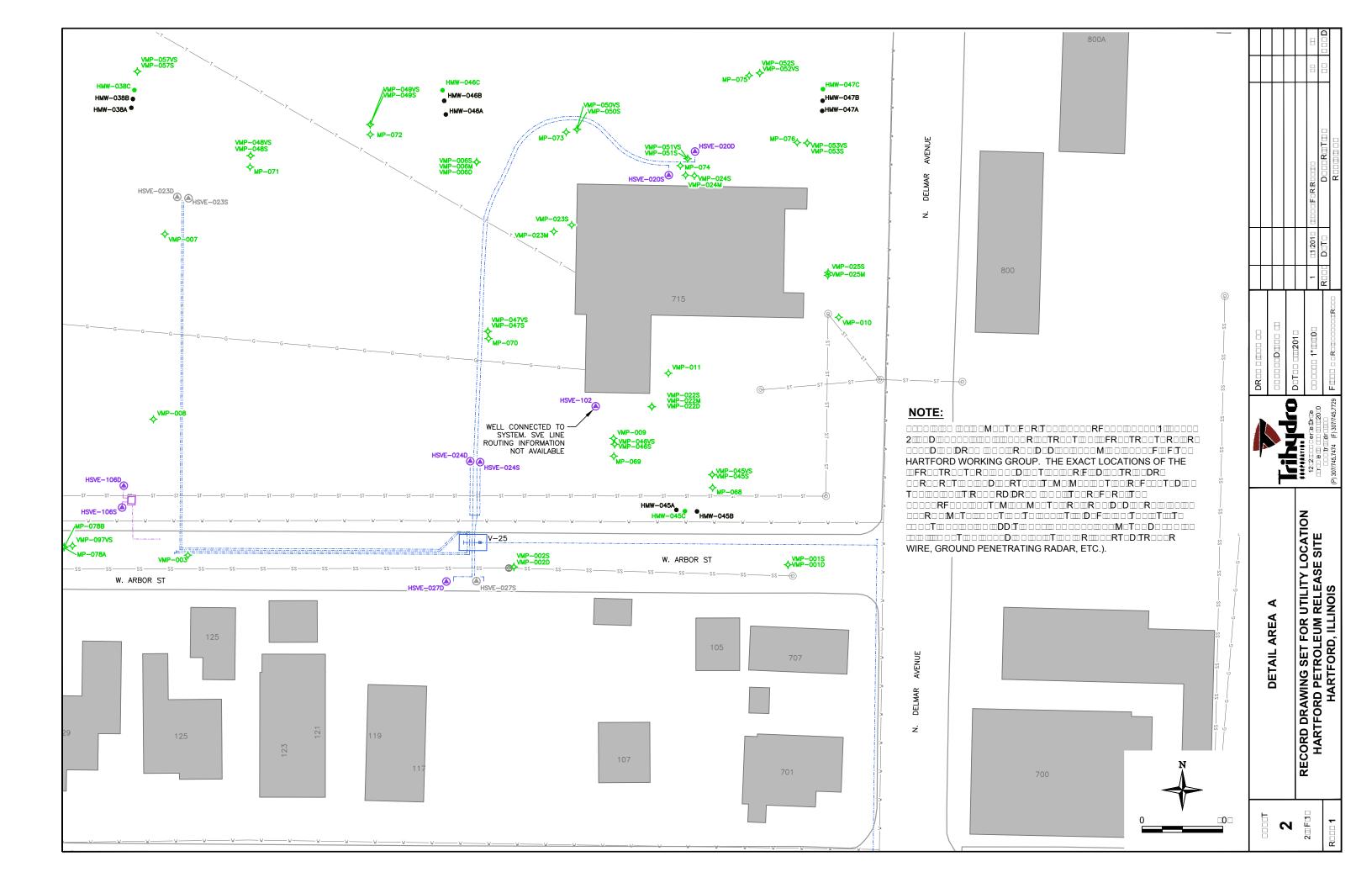

DRAWN. CHECKED. REVISION.

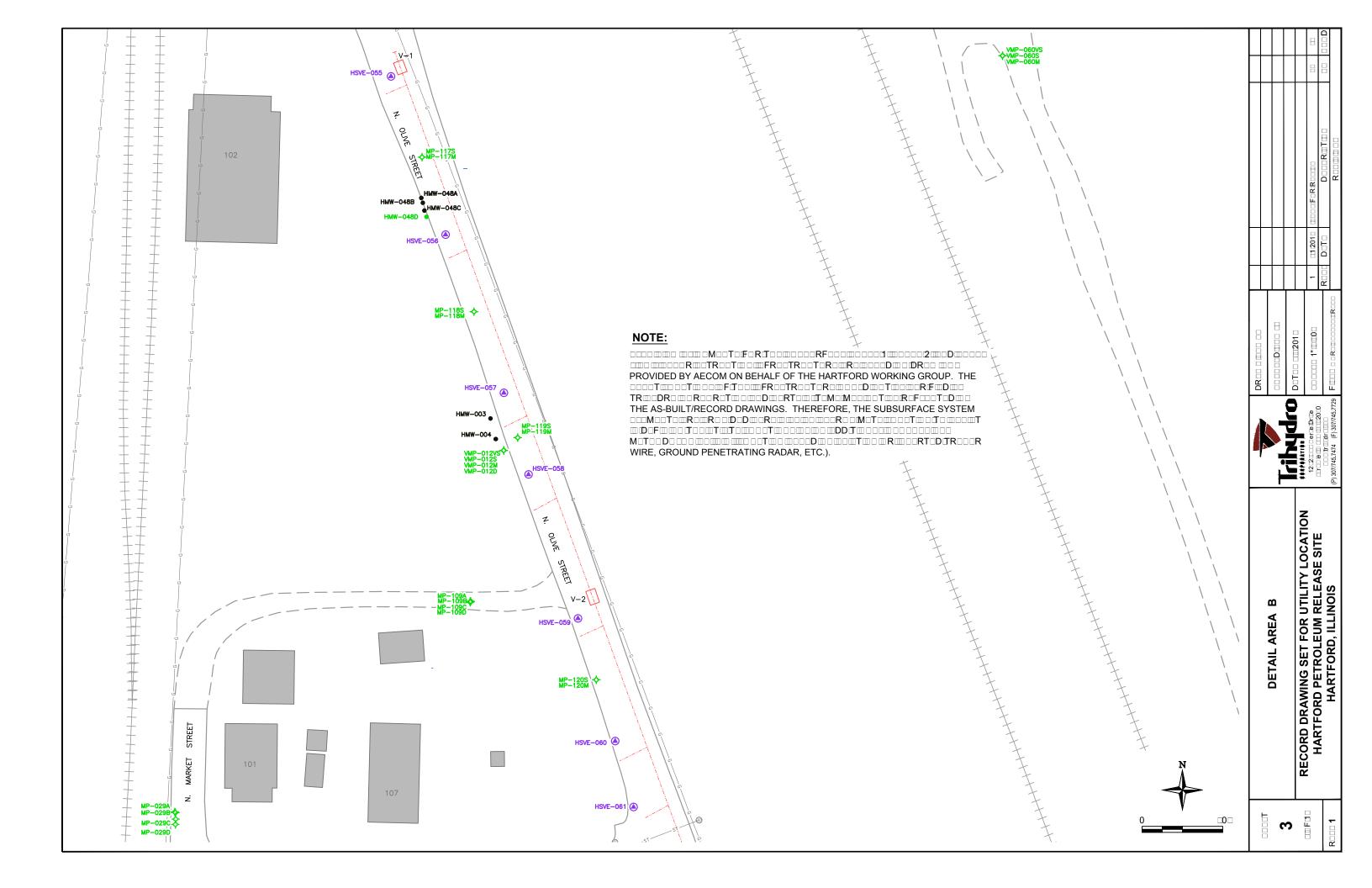


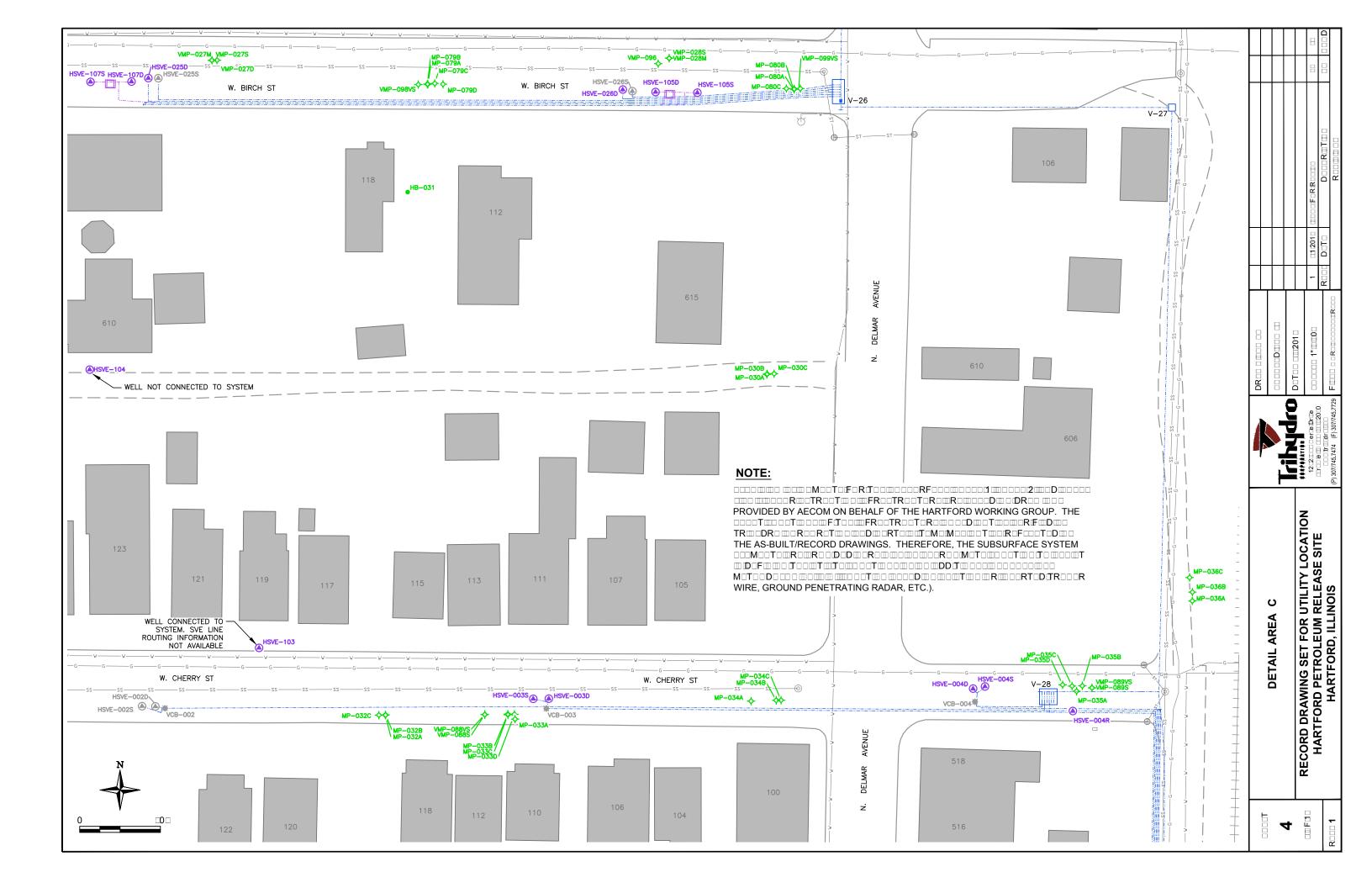

2021 Auburn Avenue Third Floor Suites Cincinnati, Ohio 45219

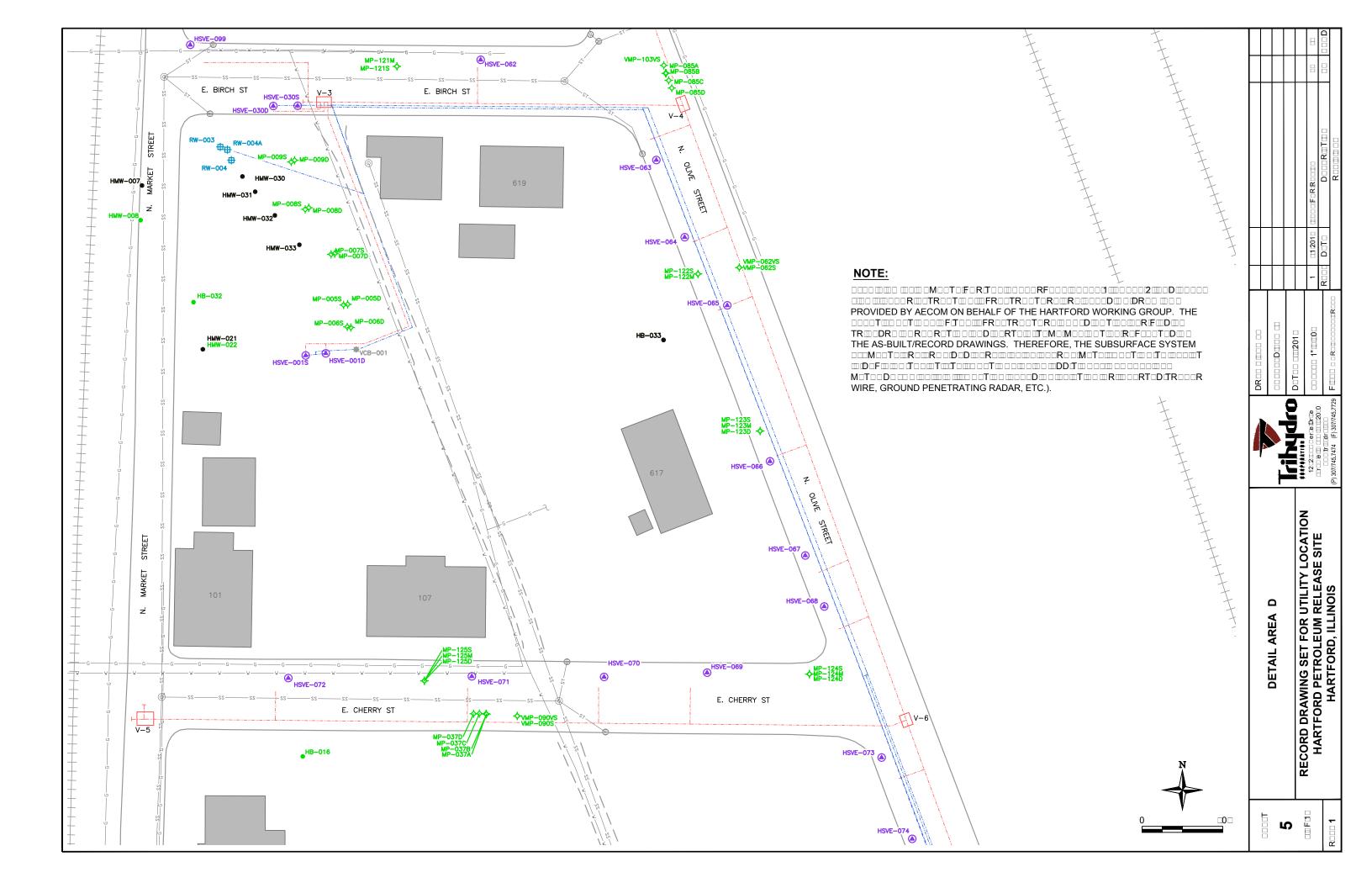


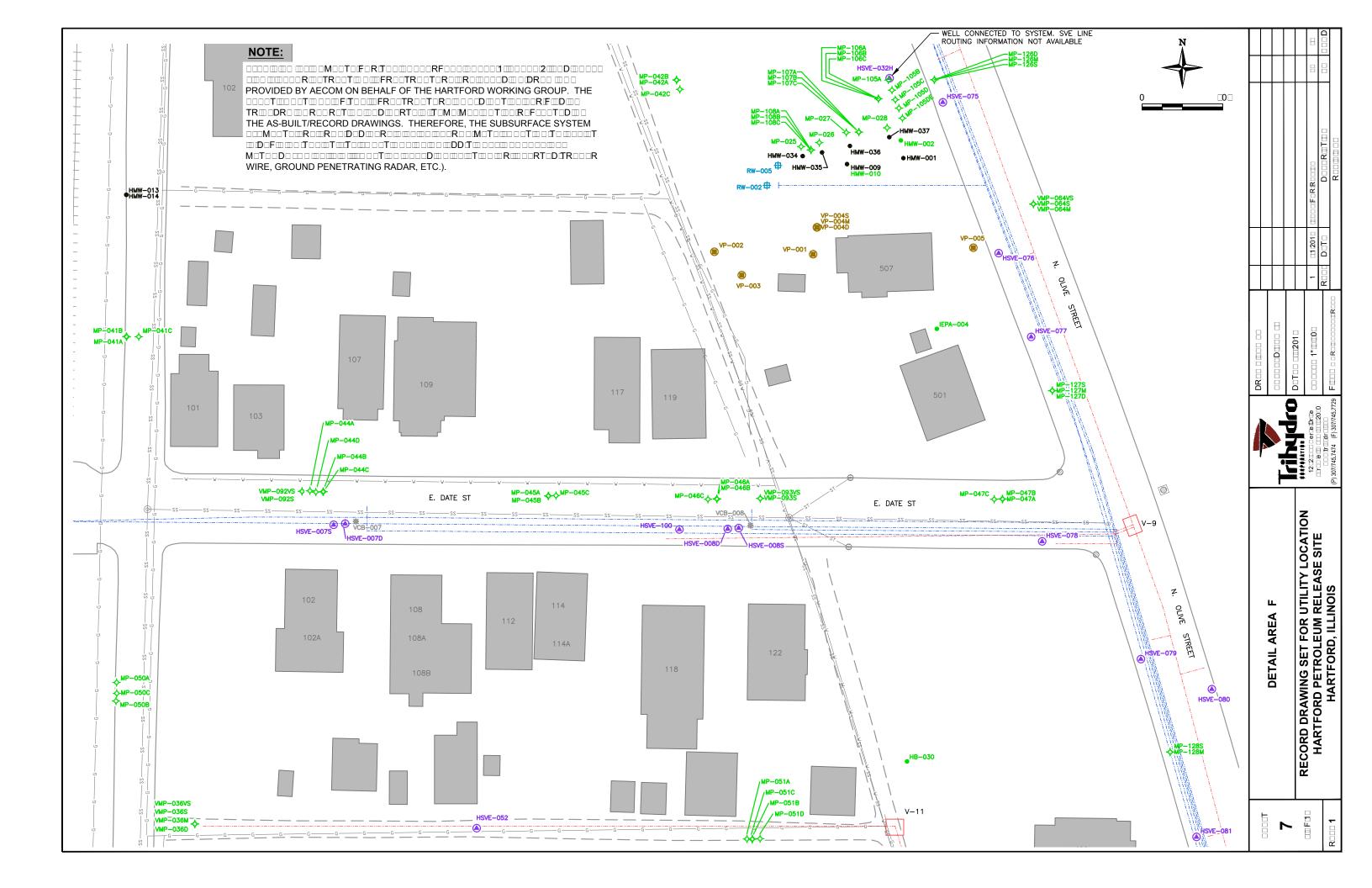


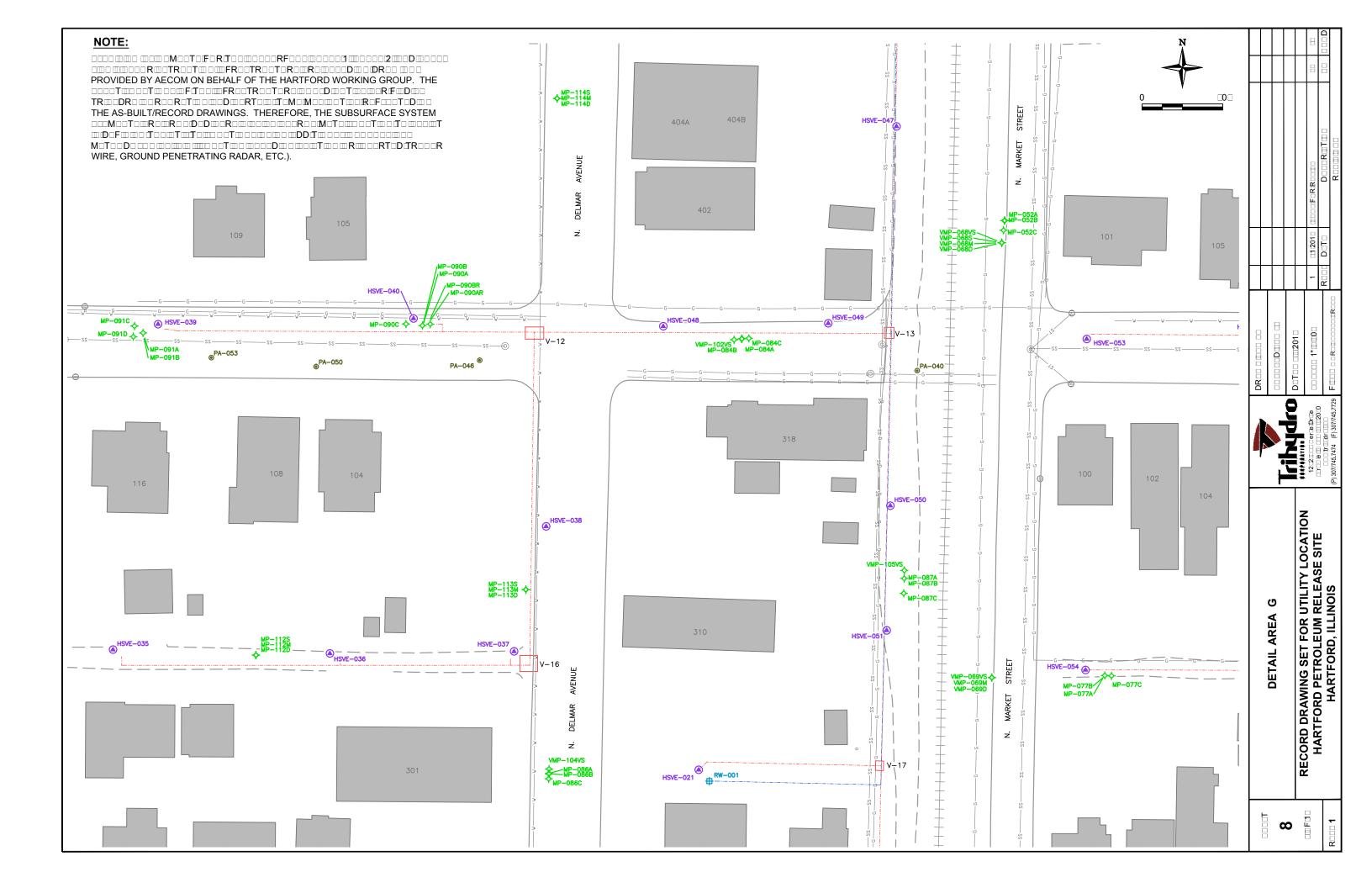


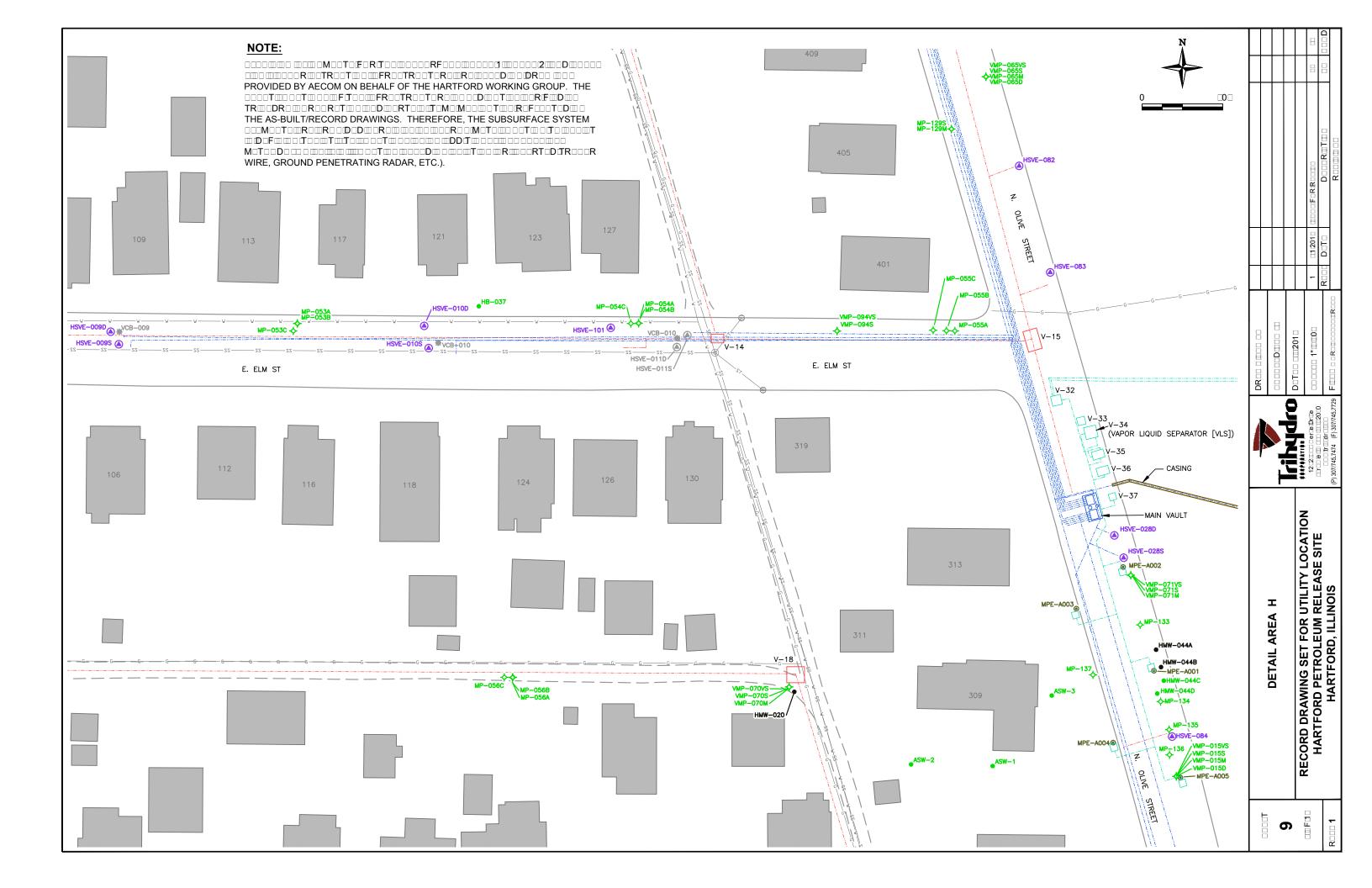


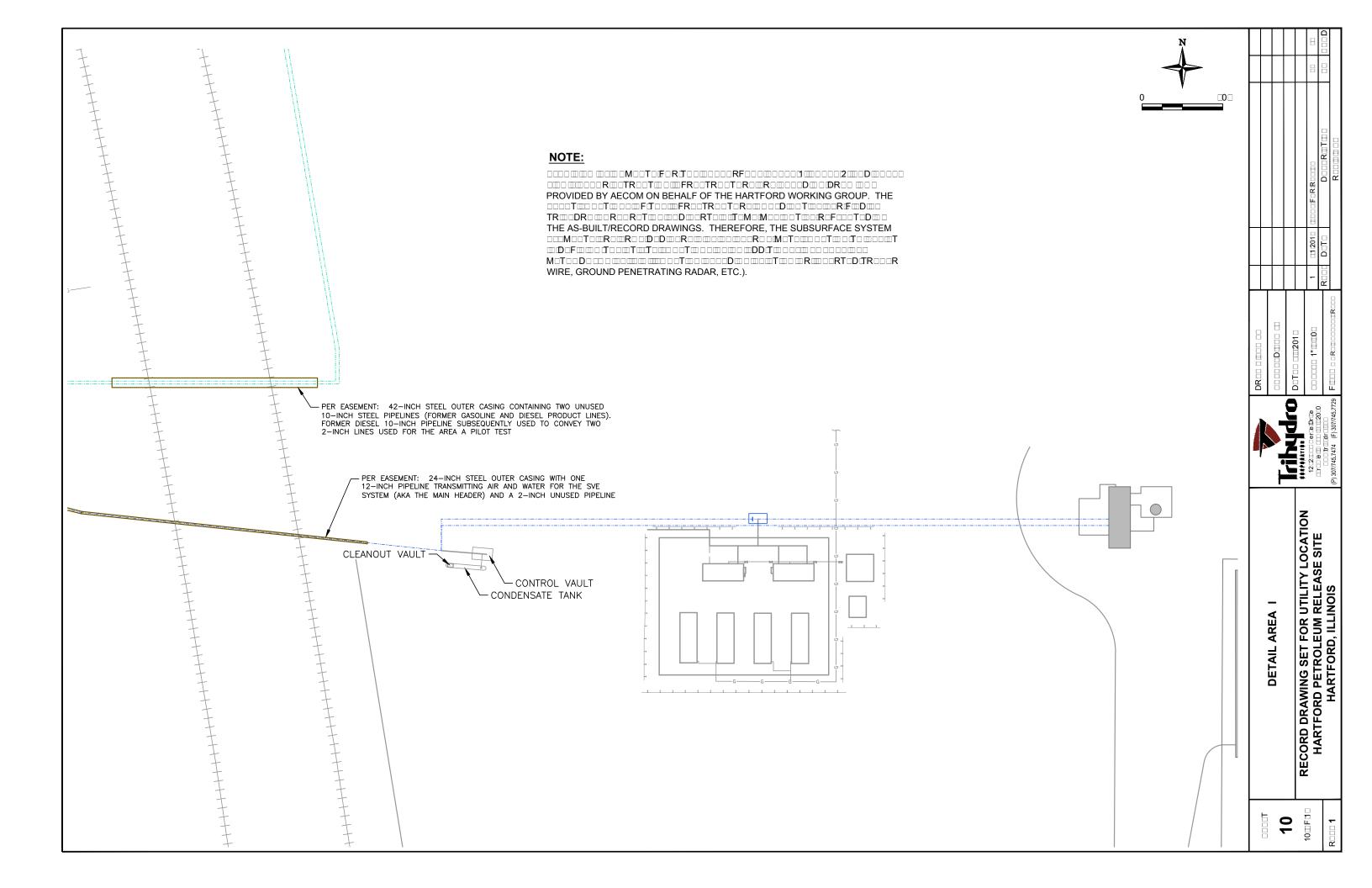

APPENDIX A

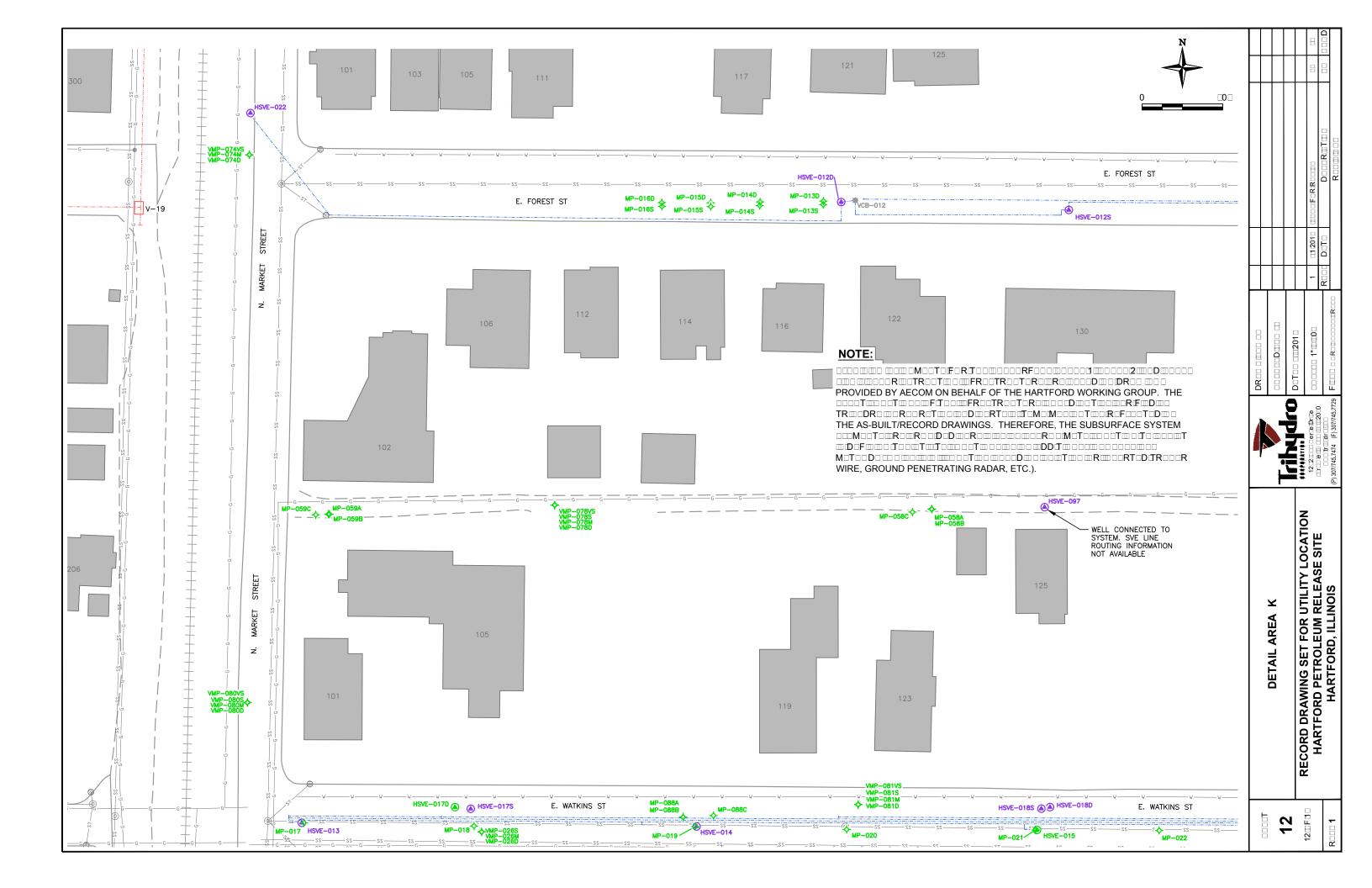


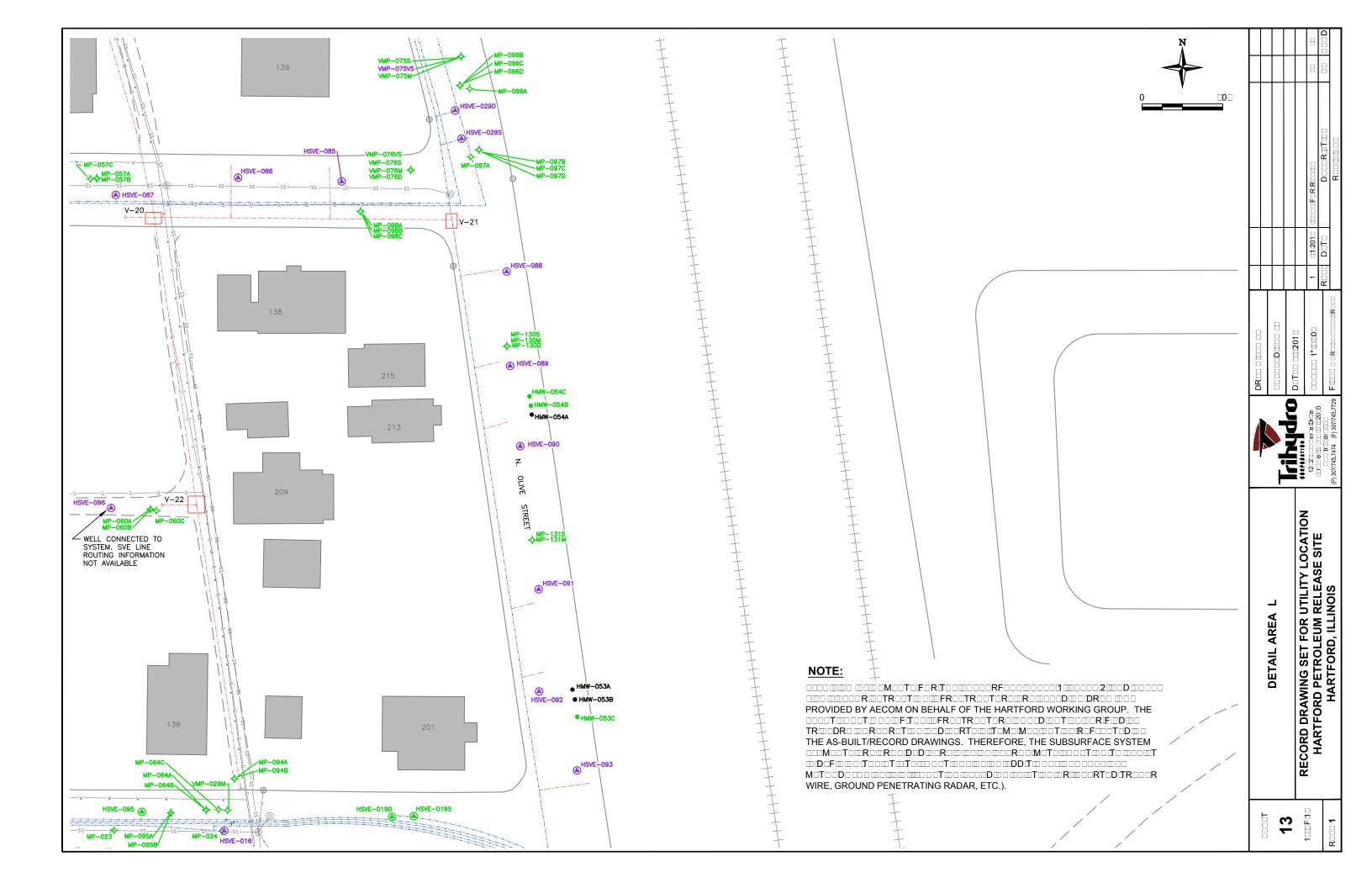


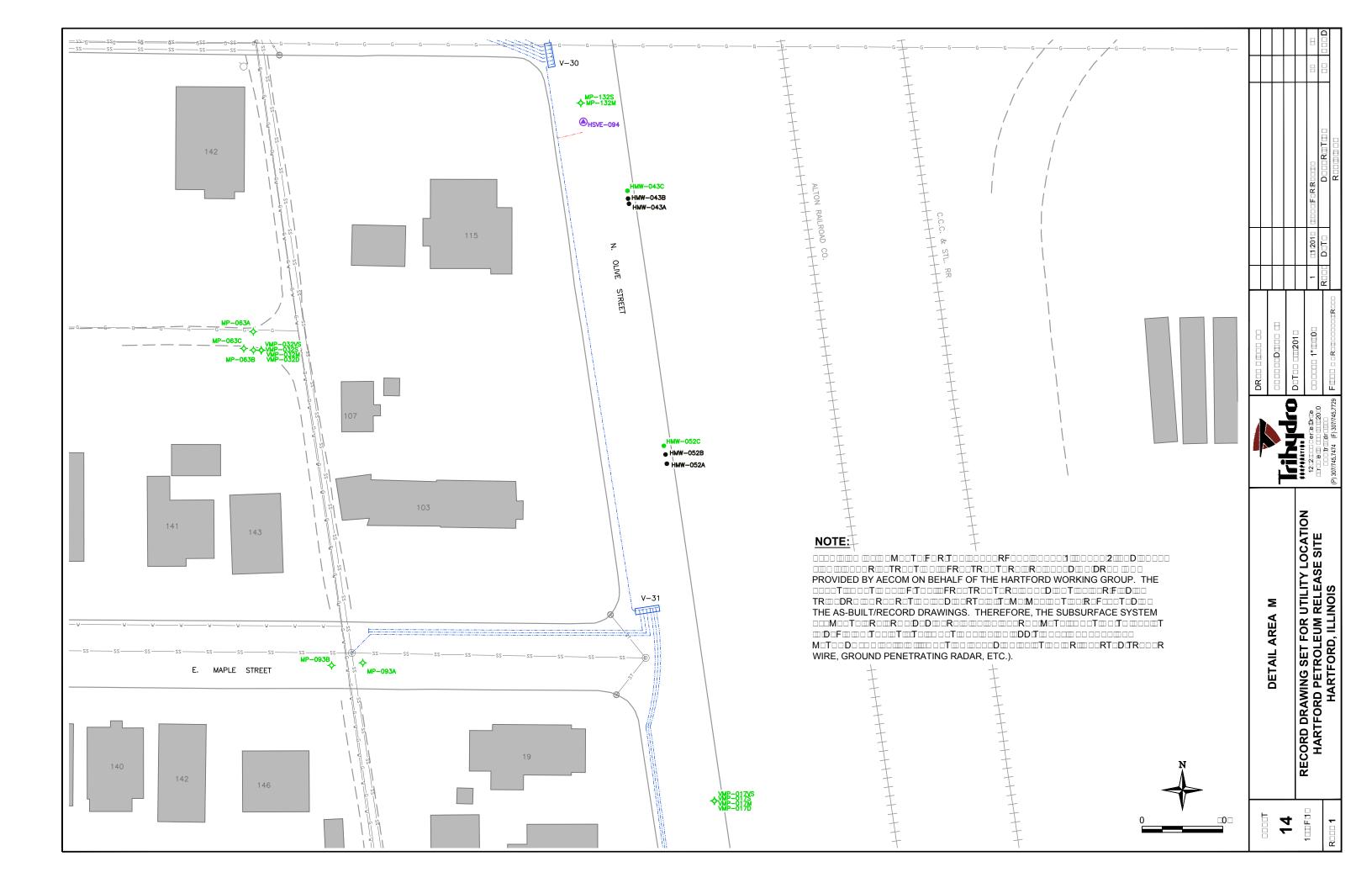


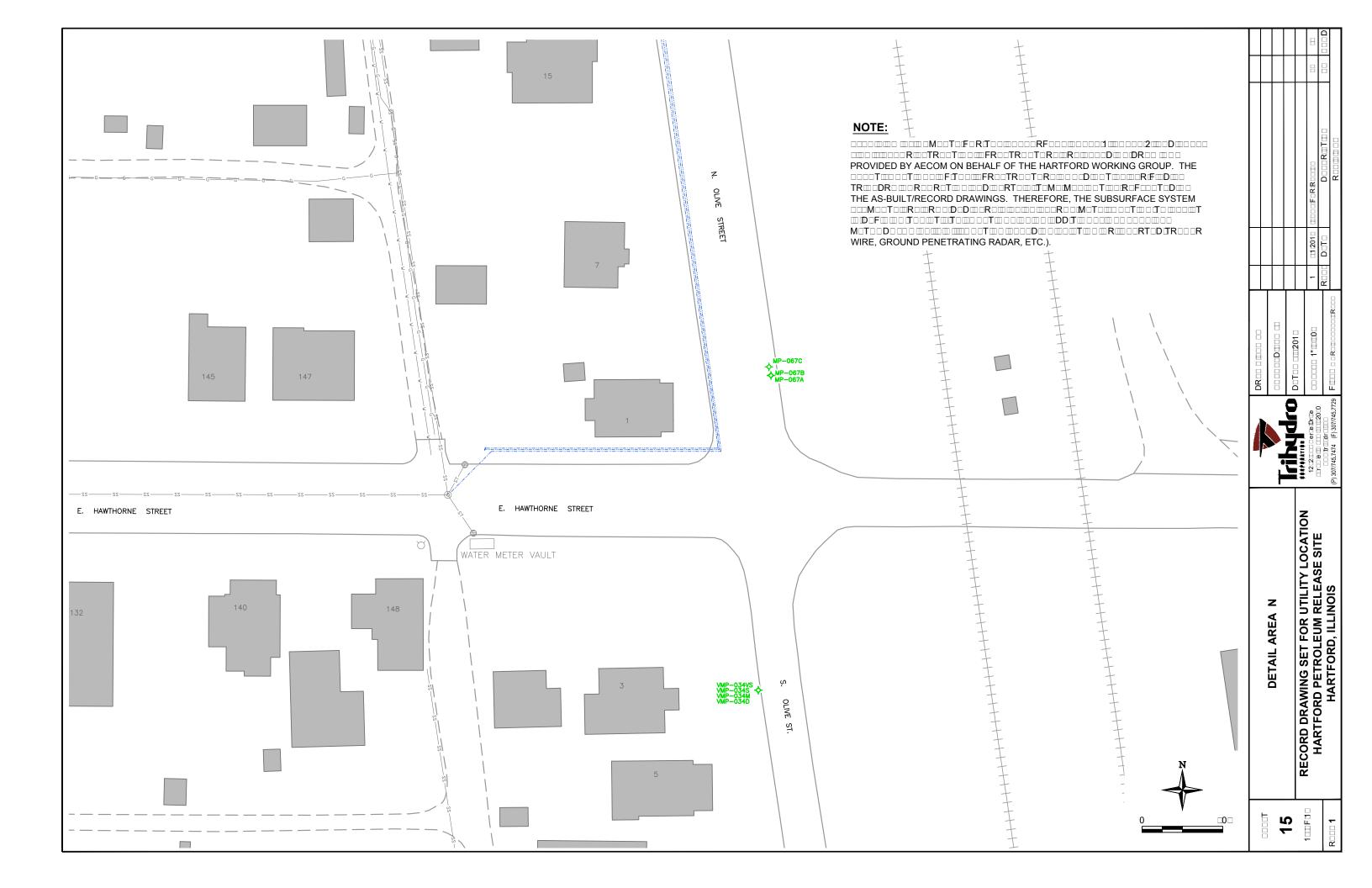












APPENDIX B

APPENDIX B. ROUTINE VAPOR COLLECTION SYSTEM MONITORING RESULTS OCTOBER 2015 - MARCH 2016 HARTFORD PETROLEUM RELEASE SITE, HARFORD, ILLINOIS

				Fluid Level and Stinger Data						Soil Vapor Field Screening Results								Flow Rate Estimation Data					SVE Control Valve Data		
					Depth to				_		Total Volatile		·	_						SVE	Venturi	Header Valve	Straw Stinger Valve		
				Depth to Product	Groundwat er	Total Depth	Top of Screen	Bottom of Screen	Open Screen	Stinger Depth	Petroleum Hydrocarbons	Petroleum Hydrocabons	Oxygen	Carbon Dioxide	Methane	LEL	PID Reading	Flow Rate	Differential Pressure	Wellhead Vacuum	Surface Temperature	Percent Open	Percent Open	Stinger Type	
Location	Date	Zone	Stratum	ft-btoc	ft-btoc	ft-btoc	ft-btoc	ft-btoc	ft	ft-btoc	ppmv	ppmv	%	%	ppmv	%	ppmv	scfm	in-H ₂ O	in-H ₂ O	°F	%	%		
HSVE-003D	10/01/15	Zone 1	Multiple Strata	NA	NA 10.00	23.90	6.77	26.17	0.40													0		Flow Tube	
HSVE-003D HSVE-003D	10/05/15 10/12/15	Zone 1 Zone 1	Multiple Strata Multiple Strata	ND ND	10.20 10.70	24.22 24.50	6.77 6.77	26.17 26.17	3.43 3.93		95.0	95.0	20.7	0.00	0.00	0.00	21.0					0		Flow Tube Flow Tube	
HSVE-003D	10/12/15	Zone 1	Multiple Strata	ND	14.00	24.10	6.77	26.17	7.23		33.0	95.0	20.7	0.00	0.00	0.00	21.0					0		Flow Tube	
HSVE-003D	11/09/15	Zone 1	Multiple Strata	ND	10.60	24.05	6.77	26.17	3.83													0		Flow Tube	
HSVE-003D	11/16/15	Zone 1	Multiple Strata	ND	11.50	24.10	6.77	26.17	4.73		12.0	6.29	20.7	0.10	5.71	0.00	1.00	23.3	0.14	87.0	57.0	0		Flow Tube	
HSVE-003D	11/30/15	Zone 1	Multiple Strata	NA	NA	24.10	6.77	26.17	0.00													50		Flow Tube	
HSVE-003D HSVE-003D	11/30/15 12/07/15	Zone 1 Zone 1	Multiple Strata Multiple Strata	ND ND	10.40 10.05	23.80 24.20	6.77 6.77	26.17 26.17	3.63 3.28		430	350	20.8	0.20	80.0	0.00	78.0	13.7	0.05	100	52.0	50 50		Flow Tube Flow Tube	
HSVE-003D	12/07/15	Zone 1	Multiple Strata	NA NA	NA	24.20	6.77	26.17	3.20		430	330	20.0	0.20	00.0	0.00	70.0	13.7	0.03	100	32.0	100		Flow Tube	
HSVE-003D	12/21/15	Zone 1	Multiple Strata	ND	9.50	24.20	6.77	26.17	2.73													100		Flow Tube	
HSVE-003D	01/04/16	Zone 1	Multiple Strata	ND	10.50	23.85	6.77	26.17	3.73													100		Flow Tube	
HSVE-003D	01/11/16	Zone 1	Multiple Strata	ND	8.50	23.70	6.77	26.17	1.73		88.0	88.0	20.8	0.00	0.00	0.00	27.0	36.8	0.36	108	41.0	100		Flow Tube	
HSVE-003D	01/25/16 02/08/16	Zone 1	Multiple Strata	ND ND	9.80	23.90	6.77 6.77	26.17	3.03													100 100		Flow Tube	
HSVE-003D HSVE-003D	02/06/16	Zone 1 Zone 1	Multiple Strata Multiple Strata	ND	10.84 10.00	23.55 23.75	6.77	26.17 26.17	4.07 3.23		198	198	20.8	0.00	0.00	0.00	56.0	0.00	0.00	105	47.0	100		Flow Tube Flow Tube	
HSVE-003D	03/09/16	Zone 1	Multiple Strata	ND	13.70	23.65	6.77	26.17	6.93		100	100	20.0	0.00	0.00	0.00	00.0	0.00	0.00	100	17.0	100		Flow Tube	
HSVE-003D	03/21/16	Zone 1	Multiple Strata	ND	9.00	23.35	6.77	26.17	2.23		1,340	1,340	20.8	0.00	0.00	0.00	260	14.8	0.06	110	51.0	100		Flow Tube	
HSVE-003S	10/01/15	Zone 1	N. Olive	NA	NA	15.35	6.56	16.06														50		None	
HSVE-003S	10/05/15	Zone 1	N. Olive	ND	9.02	14.55	6.56	16.06	2.46		705	000	00.0	0.00	570	0.00	07.0	00.4	0.40	404	74.0	50		None	
HSVE-003S HSVE-003S	10/12/15 10/26/15	Zone 1 Zone 1	N. Olive N. Olive	ND ND	Dry 0.25	14.88 14.45	6.56 6.56	16.06 16.06	9.50 2.69		785	209	20.6	0.20	576	0.00	27.0	83.4	0.12	101	71.0	100 100		None	
HSVE-003S	11/09/15	Zone 1	N. Olive N. Olive	ND ND	9.25 9.10	13.70	6.56	16.06	2.59													100		None None	
HSVE-003S	11/16/15	Zone 1	N. Olive	ND	9.80	13.10	6.56	16.06	3.24		430	0.00	20.7	0.30	430	0.00	810					100		None	
HSVE-003S	11/30/15	Zone 1	N. Olive	ND	8.67	13.46	6.56	16.06	2.11													100		None	
HSVE-003S	12/07/15	Zone 1	N. Olive	ND	8.64	13.32	6.56	16.06	2.08		2,218	691	20.8	0.30	1,527	4.00	92.0	121	0.25	108	53.0	100		None	
HSVE-003S	01/04/16	Zone 1	N. Olive	ND	8.42	14.94	6.56	16.06	1.86		00.0	00.0	00.7	0.00	4.00	0.00	44.0	445	0.00	440	44.0	100		None	
HSVE-003S HSVE-003S	01/11/16 01/25/16	Zone 1 Zone 1	N. Olive N. Olive	ND ND	8.88 8.82	12.90 12.83	6.56 6.56	16.06 16.06	2.32 2.26		38.0	33.8	20.7	0.20	4.23	0.00	11.0	145	0.36	116	41.0	100 100		None	
HSVE-003S	01/25/16	Zone 1	N. Olive N. Olive	ND ND	6.62 8.85	12.03	6.56	16.06	2.20													100		None None	
HSVE-003S	02/22/16	Zone 1	N. Olive	ND	9.82	12.75	6.56	16.06	3.26		450	116	20.8	0.00	334	0.00	26.0	167	0.46	103	46.0	100		None	
HSVE-003S	03/09/16	Zone 1	N. Olive	ND	8.83	12.88	6.56	16.06	2.27													100		None	
HSVE-003S	03/21/16	Zone 1	N. Olive	ND	8.93	12.88	6.56	16.06	2.37		635	216	20.8	0.10	419	0.00	41.0	133	0.31	115	56.0	100		None	
HSVE-004D	10/05/15	Zone 1	Multiple Strata	ND	9.68	13.24	6.67	26.07	3.01		250	240	20.0	0.00	20.0	0.00	45.0	F0 F	0.05	447	60.0	100		None	
HSVE-004D HSVE-004D	10/12/15 10/26/15	Zone 1 Zone 1	Multiple Strata Multiple Strata	ND ND	12.45 12.30	26.10 25.96	6.67 6.67	26.07 26.07	5.78 5.63		250	219	20.8	0.00	30.6	0.00	45.0	52.5	0.05	117	69.0	100 100		None None	
HSVE-004D	11/09/15	Zone 1	Multiple Strata	ND	11.40	26.10	6.67	26.07	4.73													100		None	
HSVE-004D	11/16/15	Zone 1	Multiple Strata	ND	14.80	26.10	6.67	26.07	8.13		8.00	8.00	20.7	0.00	0.00	0.00	1.00	62.7	0.07	119	56.0	100		None	
HSVE-004D	11/30/15	Zone 1	Multiple Strata	ND	9.90	26.10	6.67	26.07	3.23													100		None	
HSVE-004D	12/07/15	Zone 1	Multiple Strata	ND	14.25	26.10	6.67	26.07	7.58		490	490	20.8	0.00	0.00	0.00	107	134	0.31	117	45.0	100		None	
HSVE-004D HSVE-004D	01/04/16 01/11/16	Zone 1 Zone 1	Multiple Strata Multiple Strata	ND ND	14.02 10.60	26.10 26.10	6.67 6.67	26.07 26.07	7.35 3.93		57.0	57.0	20.8	0.00	0.00	0.00	18.0	105	0.19	123	36.0	100 100		None None	
HSVE-004D	01/11/16	Zone 1	Multiple Strata	ND ND	9.95	26.10	6.67	26.07	3.28		37.0	57.0	20.0	0.00	0.00	0.00	10.0	100	0.18	123	30.0	100		None	
HSVE-004D	02/08/16	Zone 1	Multiple Strata	ND	14.83	26.06	6.67	26.07	8.16													100		None	
HSVE-004D	02/22/16	Zone 1	Multiple Strata	ND	14.00	25.50	6.67	26.07	7.33		115	115	20.8	0.00	0.00	0.00	35.0	0.00	0.00	114	44.0	100		None	
HSVE-004D	03/09/16	Zone 1	Multiple Strata	ND	14.20	26.10	6.67	26.07	7.53													100		None	
HSVE-004D	03/21/16	Zone 1	Multiple Strata	ND	10.00	23.90	6.67	26.07	3.33		885	881	20.8	0.00	4.29	0.00	186	53.0	0.05	119	55.0	100		None	
HSVE-004R HSVE-004R	10/05/15 10/12/15	Zone 1 Zone 1	Main Sand Main Sand	ND ND	20.20 23.08	24.40 24.30	9.54 9.54	34.54 34.54	10.66 13.54	17.00	30,200	17,422	18.9	1.40	12,778	20.0	411	6.87	0.22	120	66.0	100 100		Viton Stinger Viton Stinger	
HSVE-004R	10/12/15	Zone 1	Main Sand	טאו	25.00	24.30	3.04	J 4 .J4	13.34	22.00	30,200	11,422	10.9	1.40	12,110	20.0	411	0.07	0.22	120	00.0	100		Viton Stinger	
HSVE-004R	10/26/15	Zone 1	Main Sand	ND	26.05	28.55	9.54	34.54	16.51													100		Viton Stinger	
HSVE-004R	11/09/15	Zone 1	Main Sand	ND	29.18	31.92	9.54	34.54	19.64													100		Viton Stinger	
HSVE-004R	11/16/15	Zone 1	Main Sand	ND	28.75	32.45	9.54	34.54	19.21	22.00	8,680	5,537	19.8	0.80	3,143	6.00	367	6.98	0.22	118	53.0	100		Viton Stinger	
HSVE-004R	11/30/15	Zone 1	Main Sand	ND	26.83	33.40	9.54	34.54	17.29	00.00	24.000	20.074	40.0	4.40	6 000	20.0	000	0.00	0.00	110	E0.0	100		Viton Stinger	
HSVE-004R HSVE-004R	12/07/15 12/29/15	Zone 1 Zone 1	Main Sand Main Sand	ND ND	26.50 18.88	33.42 21.65	9.54 9.54	34.54 34.54	16.96 9.34	22.00 22.00	34,600	28,274	18.9	1.40	6,326	23.0	803	0.00	0.00	116	52.0	100 100		Viton Stinger Viton Stinger	
HSVE-004R	12/29/15	Zone 1	Main Sand	NA NA	18.88	32.26	9.54 9.54	34.54	9.34	22.00												100		Viton Stinger	
	, _ 5, . 5		Main Sand	, .	. 5.55	JU	0.01	J 1	0.01	17.00	I											100		Viton Stinger	

201605_SVEOMMdata_APP-B 1 of 35

						Fluid Le	vel and Stin	ger Data				Soil	Vapor Fiel	d Screening	g Results				Flow Rate I	Estimation Dat	ta	S۱	'E Control V	/alve Data
				Depth to Product	Depth to Groundwat er	Total Depth	Top of Screen	Bottom of Screen	Open Screen	Stinger Depth	Total Volatile Petroleum Hydrocarbons	Petroleum Hydrocabons	Oxygen	Carbon Dioxide	Methane	LEL	PID Reading	Flow Rate	Differential Pressure	SVE Wellhead Vacuum	Venturi Surface Temperature	Header Valve Percent Open	Straw Stinger Valve Percent Open	Stinger Type
Location	Date	Zone	Stratum	ft-btoc	ft-btoc	ft-btoc	ft-btoc	ft-btoc	ft	ft-btoc	ppmv	ppmv	%	%	ppmv	%	ppmv	scfm	in-H ₂ O	in-H ₂ O	°F	%	%	
HSVE-004R	01/04/16	Zone 1	Main Sand	ND	18.70	33.40	9.54	34.54	9.16													100		Viton Stinger
HSVE-004R	01/11/16	Zone 1	Main Sand	ND	18.95	31.95	9.54	34.54	9.41	17.00	710	651	20.7	0.30	59.2	0.00	158	0.00	0.00	123	43.0	100		Viton Stinger
HSVE-004R	01/25/16	Zone 1	Main Sand	ND	18.70	33.35	9.54	34.54	9.16													100		Viton Stinger
HSVE-004R HSVE-004R	02/08/16 02/22/16	Zone 1 Zone 1	Main Sand Main Sand	ND ND	19.93 21.42	33.10 29.29	9.54 9.54	34.54 34.54	10.39 11.88	17.00	4,520	1,076	20.6	0.50	3,444	3.00	123	20.0	1.78	115	49.0	100 100		Viton Stinger Viton Stinger
HSVE-004R	03/03/16	Zone 1	Main Sand	I III	21.72	20.20	0.04	04.04	11.00	19.00	4,020	1,070	20.0	0.00	0,444	0.00	120	20.0	1.70	110	40.0	100		Viton Stinger
HSVE-004R	03/09/16	Zone 1	Main Sand	ND	26.17	31.53	9.54	34.54	16.63													100		Viton Stinger
HSVE-004R	03/21/16	Zone 1	Main Sand	ND	25.18	32.90	9.54	34.54	15.64	19.00	6,116	3,369	20.4	0.50	2,747	7.00	295	3.32	0.05	119	52.0	100		Viton Stinger
HSVE-004S	10/05/15	Zone 1	N. Olive	ND	9.68	13.24	6.56	16.06	3.12		252	4.40	00.0	0.40	000	0.00	05.0	400	0.00	05.0	20.0	33.3		None
HSVE-004S HSVE-004S	10/12/15 10/19/15	Zone 1 Zone 1	N. Olive N. Olive	ND NA	10.00 NA	13.82 13.82	6.56 6.56	16.06 16.06	3.44		350	142	20.6	0.10	208	0.00	25.0	122	0.23	65.0	68.0	33.3 66.7		None
HSVE-004S	10/19/15	Zone 1 Zone 1	N. Olive	ND ND	10.80	13.80	6.56	16.06	4.24													66.7		None None
HSVE-004S	11/03/15	Zone 1	N. Olive	NA	NA	13.80	6.56	16.06														100		None
HSVE-004S	11/09/15	Zone 1	N. Olive	ND	14.45	14.70	6.56	16.06	7.89													100		None
HSVE-004S	11/16/15	Zone 1	N. Olive	ND	Dry	14.60	6.56	16.06	9.50		387	223	20.7	0.10	164	0.00	26.0	78.6	0.11	118	58.0	100		None
HSVE-004S	11/30/15	Zone 1	N. Olive	ND	7.55	14.75	6.56	16.06	0.99			400					4= 0			4.40	45.0	100		None
HSVE-004S	12/07/15	Zone 1	N. Olive	ND	14.50	14.85	6.56	16.06	7.94		203	196	20.6	0.00	7.14	0.00	47.0	177	0.54	116	45.0	100		None
HSVE-004S HSVE-004S	01/04/16 01/11/16	Zone 1 Zone 1	N. Olive N. Olive	ND ND	7.60 7.92	14.50 14.50	6.56 6.56	16.06 16.06	1.04 1.36		15.0	15.0	20.8	0.00	0.00	0.00	6.00	915	14.5	123	35.0	100 100		None None
HSVE-004S	01/11/16	Zone 1	N. Olive	ND	8.25	14.35	6.56	16.06	1.69		13.0	13.0	20.0	0.00	0.00	0.00	0.00	913	14.5	123	33.0	100		None
HSVE-004S	01/25/16	Zone 1	N. Olive	ND	7.17	14.50	6.56	16.06	0.61													100		None
HSVE-004S	02/08/16	Zone 1	N. Olive	ND	8.11	14.15	6.56	16.06	1.55													100		None
HSVE-004S	02/22/16	Zone 1	N. Olive	ND	Dry	14.15	6.56	16.06	9.50		92.0	92.0	20.8	0.00	0.00	0.00	17.0	199	0.68	117	43.0	100		None
HSVE-004S	03/09/16	Zone 1	N. Olive	ND	8.18	13.94	6.56	16.06	1.62		400	400										100		None
HSVE-004S	03/21/16	Zone 1	N. Olive	ND	10.20	14.50	6.56	16.06	3.64	44.00	102	102	20.8	0.00	0.00	0.00	28.0					0 50		None
HSVE-005R HSVE-005R	10/01/15 10/05/15	Zone 2 Zone 2	Rand Rand	NA ND	NA 12.93	19.67 19.76	11.20 11.20	19.07 19.07	1.73	14.00												50 50		Viton Stinger Viton Stinger
HSVE-005R	10/03/15	Zone 2	Rand	ND	12.92	19.78	11.20	19.07	1.72	14.00	765	376	19.9	0.80	389	0.00	65.0	6.91	0.10	123	73.0	50		Viton Stinger
HSVE-005R	10/20/15	Zone 2	Rand				0			12.10		0.0		0.00	000	0.00	00.0	0.0.	00	0		50		Viton Stinger
HSVE-005R	10/26/15	Zone 2	Rand	ND	12.30	19.75	11.20	19.07	1.10													50		Viton Stinger
HSVE-005R	11/09/15	Zone 2	Rand	ND	13.45	19.67	11.20	19.07	2.25													50		Viton Stinger
HSVE-005R	11/11/15	Zone 2	Rand	NA	NA	19.67	11.20	19.07	0.07	12.10	200	000	00.7	0.00	44.0	0.00	100	40.0	0.00	400	50.0	66.7		Viton Stinger
HSVE-005R HSVE-005R	11/16/15 11/23/15	Zone 2 Zone 2	Rand Rand	ND ND	14.17 13.05	17.00 19.75	11.20 11.20	19.07 19.07	2.97 1.85	12.10	920	906	20.7	0.20	14.3	0.00	163	12.6	0.32	123	52.0	50 50		Viton Stinger Viton Stinger
HSVE-005R	11/23/15	Zone 2	Rand	ND	14.94	19.73	11.20	19.07	3.74													50		Viton Stinger
HSVE-005R	12/07/15	Zone 2	Rand	ND	15.02	19.67	11.20	19.07	3.82	12.10	1,880	1,061	19.4	0.70	819	2.00	136	11.1	0.23	105	50.0	50		Viton Stinger
HSVE-005R	12/14/15	Zone 2	Rand	NA	NA	19.67	11.20	19.07		12.10	,											100		Viton Stinger
HSVE-005R	12/21/15	Zone 2	Rand	ND	14.80	19.75	11.20	19.07	3.60													100		Viton Stinger
HSVE-005R	12/30/15	Zone 2	Rand	NA	14.36	19.60	11.20	19.07	3.16	12.10												100		Viton Stinger
HSVE-005R	12/31/15	Zone 2	Rand	NA	14.30	19.60	11.20	19.07	3.10	12.10												100		Viton Stinger
HSVE-005R HSVE-005R	01/04/16 01/11/16	Zone 2 Zone 2	Rand Rand	ND ND	13.50 10.60	19.79 19.60	11.20 11.20	19.07 19.07	2.30 -0.60	12.10								4.99	0.05	133	33.0	100 100		Viton Stinger Viton Stinger
HSVE-005R	01/11/16	Zone 2	Rand	NA NA	NA	19.60	11.20	19.07	-0.00	12.10								7.33	0.00	133	55.0	16.7		Viton Stinger
HSVE-005R	01/19/16	Zone 2	Rand	ND	13.86	20.07	11.20	19.07	2.66													16.7		Viton Stinger
HSVE-005R	01/25/16	Zone 2	Rand	ND	13.76	19.76	11.20	19.07	2.56													16.7		Viton Stinger
HSVE-005R	02/08/16	Zone 2	Rand	ND	13.57	19.80	11.20	19.07	2.37													16.7		Viton Stinger
HSVE-005R	02/22/16	Zone 2	Rand	ND	14.10	19.78	11.20	19.07	2.90	12.10	490	136	20.0	0.60	354	0.00	33.0	13.3	0.31	87.0	47.0	50		Viton Stinger
HSVE-005R HSVE-005R	03/02/16 03/09/16	Zone 2 Zone 2	Rand Rand	NA ND	NA 15.20	19.78 19.86	11.20 11.20	19.07 19.07	4.00	12.10												83.3 83.3		Viton Stinger Viton Stinger
HSVE-005R	03/09/16	Zone 2 Zone 2	Rand	NA NA	15.20 NA	19.86	11.20	19.07	4.00	14.10												100		Viton Stinger
HSVE-005R	03/21/16	Zone 2	Rand	ND	14.40	19.77	11.20	19.07	3.20	14.10	1,500	510	19.9	0.80	990	0.00	87.0					100		Viton Stinger
HSVE-006R	10/02/15	Zone 2	Main Sand	NA	NA	31.74	27.12	31.12									-					16.7		None
HSVE-006R	10/05/15	Zone 2	Main Sand	ND	24.35	31.85	27.12	31.12	-2.77													16.7		None
HSVE-006R	10/12/15	Zone 2	Main Sand	ND	25.20	31.78	27.12	31.12	-1.92									0.00	0.00	80.0	66.0	16.7		None
HSVE-006R	10/26/15	Zone 2	Main Sand	30.38	30.52	31.94	27.12	31.12	3.26													16.7		None
HSVE-006R HSVE-006R	11/09/15 11/16/15	Zone 2	Main Sand Main Sand	29.52 30.28	31.00 31.18	32.23 31.08	27.12 27.12	31.12 31.12	2.40 3.16		843,000	815,200	4.60	8.90	27,800	OVR	700	11.2	0.19	28.0	53.0	16.7 16.7		None None
113 V E-000K	11/10/13	Zone 2	Main Sand	30.28	31.18	31.98	27.12	31.12	3.16		043,000	010,200	4.00	0.90	21,000	UVK	100	11.2	0.19	∠0.∪	55.0	16.7		None

201605_SVEOMMdata_APP-B 2 of 35

						Fluid Le	vel and Stin	ger Data				Soil	Vapor Fie	ld Screening	g Results				Flow Rate	Estimation Da	ta	SV	E Control V	/alve Data
				Depth to	Depth to Groundwat er	Total Depth	Top of Screen	Bottom of Screen	Open Screen	Stinger Depth	Total Volatile Petroleum Hydrocarbons	Petroleum Hydrocabons	Oxygen	Carbon Dioxide	Methane	LEL	PID Reading		Differential Pressure	SVE Wellhead Vacuum	Venturi Surface Temperature	Header Valve Percent Open	Straw Stinger Valve Percent Open	Stinger Type
Location	Date	Zone	Stratum	ft-btoc	ft-btoc	ft-btoc	ft-btoc	ft-btoc	ft	ft-btoc	ppmv	ppmv	<u>%</u>	%	ppmv	%	ppmv	scfm	in-H ₂ O	in-H ₂ O	°F	%	%	
HSVE-006R	12/03/15 12/07/15	Zone 2	Main Sand	NA	NA	32.00	27.12	31.12	1 15		1 000 000	052 500	1 20	10.6	46,500	OVR	650					0		None
HSVE-006R HSVE-006R	12/07/15	Zone 2 Zone 2	Main Sand Main Sand	ND NA	28.27 NA	31.87 31.87	27.12 27.12	31.12 31.12	1.15		1,000,000	953,500	1.30	10.6	40,500	OVK	000					16.7		None None
HSVE-006R	12/21/15	Zone 2	Main Sand	18.30	30.52	31.74	27.12	31.12	-8.82													16.7		None
HSVE-006R	12/28/15	Zone 2	Main Sand	NA	NA	31.74	27.12	31.12														0		None
HSVE-006R HSVE-006R	01/04/16 01/11/16	Zone 2 Zone 2	Main Sand Main Sand	16.86 19.55	25.45 27.40	31.84 33.10	27.12 27.12	31.12 31.12	-10.26 -7.57													0		None None
HSVE-006R	01/11/16	Zone 2	Main Sand	ND	24.47	31.78	27.12	31.12	-7.57 -2.65													0		None
HSVE-006R	02/08/16	Zone 2	Main Sand	26.42	27.46	31.80	27.12	31.12	-0.70													0		None
HSVE-006R	02/22/16	Zone 2	Main Sand	ND	26.10	31.82	27.12	31.12	-1.02													0		None
HSVE-006R	03/09/16	Zone 2	Main Sand	ND	Dry	31.80	27.12	31.12	4.00		267.000	202 500	4.00	0.00	64 500	OV/D	507					0		None
HSVE-006R HSVE-006R	03/21/16 03/28/16	Zone 2 Zone 2	Main Sand Main Sand	28.80 NA	30.20 NA	31.70 31.70	27.12 27.12	31.12 31.12	1.68		367,000	302,500	1.80	9.80	64,500	OVR	507					16.7		None None
HSVE-007D	10/06/15	Zone 5	Multiple Strata	ND	18.40	24.72	6.74	26.14	11.66													100		Flow Tube
HSVE-007D	10/14/15	Zone 5	Multiple Strata	ND	19.73	24.65	6.74	26.14	12.99		15.0	12.1	20.8	0.00	2.86	0.00	4.00	15.1	0.05	24.0	68.0	100		Flow Tube
HSVE-007D	10/19/15	Zone 5	Multiple Strata	NA	NA 22.66	24.65	6.74	26.14	45.00													0		Flow Tube
HSVE-007D HSVE-007D	10/27/15 11/10/15	Zone 5 Zone 5	Multiple Strata Multiple Strata	ND ND	22.66 15.15	24.75 24.68	6.74 6.74	26.14 26.14	15.92 8.41													0		Flow Tube Flow Tube
HSVE-007D	11/18/15	Zone 5	Multiple Strata	ND	8.44	24.75	6.74	26.14	1.70		360	357	20.8	0.00	2.82	0.00	92.0					0		Flow Tube
HSVE-007D	12/01/15	Zone 5	Multiple Strata	ND	10.00	24.26	6.74	26.14	3.26													0		Flow Tube
HSVE-007D	12/08/15	Zone 5	Multiple Strata	ND	11.55	23.72	6.74	26.14	4.81		540	371	20.6	0.20	169	0.00	41.0					0		Flow Tube
HSVE-007D HSVE-007D	12/15/15 12/22/15	Zone 5 Zone 5	Multiple Strata Multiple Strata	NA ND	NA 10.84	23.72 22.80	6.74 6.74	26.14 26.14	4.10													16.7 16.7		Flow Tube Flow Tube
HSVE-007D	01/05/16	Zone 5	Multiple Strata	ND	10.88	22.30	6.74	26.14	4.14													16.7		Flow Tube
HSVE-007D	01/12/16	Zone 5	Multiple Strata	ND	10.95	21.98	6.74	26.14	4.21		450	436	20.8	0.00	14.5	0.00	83.0					0		Flow Tube
HSVE-007D	01/15/16	Zone 5	Multiple Strata	NA	NA 44.00	21.98	6.74	26.14	4.50													16.7		Flow Tube
HSVE-007D HSVE-007D	01/19/16 01/22/16	Zone 5 Zone 5	Multiple Strata Multiple Strata	ND NA	11.30 NA	21.40 21.40	6.74 6.74	26.14 26.14	4.56													16.7 33.3		Flow Tube Flow Tube
HSVE-007D	01/26/16	Zone 5	Multiple Strata	ND	12.63	22.30	6.74	26.14	5.89													33.3		Flow Tube
HSVE-007D	02/09/16	Zone 5	Multiple Strata	ND	13.18	22.30	6.74	26.14	6.44													33.3		Flow Tube
HSVE-007D	02/12/16	Zone 5	Multiple Strata	NA	NA 10.50	22.30	6.74	26.14	F 70		4.074	705	00.0	0.00	070	0.00	404	40.0	0.55	40.0	50.0	50		Flow Tube
HSVE-007D HSVE-007D	02/23/16 03/01/16	Zone 5 Zone 5	Multiple Strata Multiple Strata	ND NA	12.52 NA	20.22 20.22	6.74 6.74	26.14 26.14	5.78		1,074	795	20.6	0.20	279	0.00	104	49.6	0.55	43.0	52.0	33.3 66.7		Flow Tube Flow Tube
HSVE-007D	03/07/16	Zone 5	Multiple Strata	ND	13.80	20.00	6.74	26.14	7.06													66.7		Flow Tube
HSVE-007D	03/14/16	Zone 5	Multiple Strata	NA	NA	20.00	6.74	26.14														100		Flow Tube
HSVE-007D	03/22/16	Zone 5	Multiple Strata	ND	11.75	19.68	6.74	26.14	5.01		2,970	2,136	20.5	0.40	834	4.00	173	15.0	0.05	40.0	53.0	100		Flow Tube
HSVE-007S HSVE-007S	10/06/15 10/14/15	Zone 5 Zone 5	N. Olive N. Olive	ND ND	Dry Dry	9.50 8.52	4.76 4.76	9.26 9.26	4.50 4.50		262	191	20.5	0.20	71.4	0.00	27.0	88.0	1.67	19.0	66.0	100 100		Flow Tube Flow Tube
HSVE-007S	10/27/15	Zone 5	N. Olive	ND	Dry	8.54	4.76	9.26	4.50		202	131	20.0	0.20	7 1	0.00	27.0	00.0	1.07	10.0	00.0	100		Flow Tube
HSVE-007S	11/10/15	Zone 5	N. Olive	ND	Dry	8.50	4.76	9.26	4.50													100		Flow Tube
HSVE-007S	11/18/15	Zone 5	N. Olive	ND	7.08	8.52	4.76	9.26	2.32		2,925	2,129	20.4	0.50	796	0.00	244	95.7	2.08	44.0	58.0	100		Flow Tube
HSVE-007S HSVE-007S	12/01/15 12/08/15	Zone 5 Zone 5	N. Olive N. Olive	ND ND	7.70 Dry	8.60 8.50	4.76 4.76	9.26 9.26	2.94 4.50		1,265	938	20.2	0.40	327	0.00	94.0	87.3	1.65	32.0	51.0	100 100		Flow Tube Flow Tube
HSVE-007S	01/05/16	Zone 5	N. Olive	ND	8.05	8.35	4.76	9.26	3.29		1,200	330	20.2	0.40	021	0.00	J- 1 .U	07.5	1.00	02.0	51.0	100		Flow Tube
HSVE-007S	01/12/16	Zone 5	N. Olive	ND	Dry	8.70	4.76	9.26	4.50		317	313	20.8	0.00	4.35	0.00	62.0	83.6	1.52	45.0	35.0	100		Flow Tube
	01/26/16	Zone 5	N. Olive	ND	Dry	8.35	4.76	9.26	4.50													100		Flow Tube
HSVE-007S HSVE-007S	02/09/16 02/23/16	Zone 5 Zone 5	N. Olive N. Olive	ND ND	Dry 8.04	8.32 9.75	4.76 4.76	9.26 9.26	4.50 3.28		552	373	20.8	0.00	179	0.00	59.0	37.1	0.30	38.0	47.0	100 100		Flow Tube Flow Tube
HSVE-007S		Zone 5	N. Olive	ND	Dry	9.75 8.75	4.76	9.26	4.50		552	010	20.0	0.00	110	0.00	00.0] 07.1	0.00	50.0	71.0	100		Flow Tube
HSVE-007S	03/22/16	Zone 5	N. Olive	ND	8.09	8.77	4.76	9.26	3.33		411	283	20.7	0.10	128	0.00	32.0	91.8	1.84	35.0	51.0	100		Flow Tube
HSVE-009D	10/01/15	Zone 5	Rand	NA	NA	26.20	6.73	26.13	45 = 1													0		None
HSVE-009D HSVE-009D	10/06/15 10/14/15	Zone 5 Zone 5	Rand Rand	ND ND	22.44 22.46	26.27 26.24	6.73 6.73	26.13 26.13	15.71 15.73		36.0	23.1	20.6	0.20	12.9	0.00	5.00					0		None None
HSVE-009D	10/14/15	Zone 5 Zone 5	Rand Rand	ND ND	22.46	26.24 26.28	6.73 6.73	26.13 26.13	15.73 15.97		30.0	۷۵.۱	20.0	0.20	12.9	0.00	5.00					0		None
HSVE-009D	11/10/15	Zone 5	Rand	ND	23.84	26.27	6.73	26.13	17.11													0		None
HSVE-009D	11/18/15	Zone 5	Rand	ND	24.06	26.05	6.73	26.13	17.33		200	200	20.8	0.00	0.00	0.00	57.0					0		None
HSVE-009D	12/01/15	Zone 5	Rand	ND	22.68	26.28	6.73	26.13	15.95		50.0	50.0	20.9	0.00	0.00	0.00	13.0					0		None
HSVE-009D	12/09/15	Zone 5	Rand	ND	22.25	26.35	6.73	26.13	15.52		50.0	JU.U	20.8	0.00	0.00	0.00	13.0	I				U		None

201605_SVEOMMdata_APP-B

						Fluid Le	vel and Stir	nger Data				Soil	Vapor Fie	ld Screening	g Results				Flow Rate	Estimation Date	ta	SV	Έ Control \	/alve Data
				Depth to			Top of	Bottom of	Open	Stinger	Total Volatile Petroleum	Petroleum	<u>.</u>	Carbon					Differential	SVE Wellhead	Venturi Surface	Header Valve Percent	Straw Stinger Valve Percent	
Location	Date	Zone	Stratum	Product ft-btoc	er ft-btoc	Total Depth ft-btoc	Screen ft-btoc	Screen ft-btoc	Screen ft	Depth ft-btoc	Hydrocarbons ppmv	Hydrocabons ppmv	Oxygen %	Dioxide %	Methane ppmv	LEL %	PID Reading ppmv	Flow Rate scfm	Pressure in-H₂O	Vacuum in-H₂O	Temperature °F	Open %	Open %	Stinger Type
HSVE-009D	01/05/16	Zone 5	Rand	ND	15.80	26.16	6.73	26.13	9.07	11 5100	рршу	ррши	70	70	ррпи	70	ррин	301111	1.120		<u> </u>	0	70	None
HSVE-009D	01/26/16	Zone 5	Rand	ND	19.79	26.15	6.73	26.13	13.06													0		None
HSVE-009D HSVE-009S	02/09/16 10/06/15	Zone 5 Zone 5	Rand A Clay	ND ND	21.00 10.75	26.16 10.90	6.73 5.74	26.13 10.24	14.27 4.50													0		None Flow Tube
HSVE-009S	10/00/15	Zone 5	A Clay	ND	10.75	10.87	5.74	10.24	4.50		29.0	29.0	19.9	0.60	0.00	0.00	11.0					0		Flow Tube
HSVE-009S	10/27/15	Zone 5	A Clay	ND	10.66	10.89	5.74	10.24	4.50													0		Flow Tube
HSVE-009S HSVE-009S	11/10/15 11/18/15	Zone 5 Zone 5	A Clay A Clay	ND ND	10.64 10.65	10.88 10.90	5.74 5.74	10.24 10.24	4.50 4.50		118	118	19.6	0.70	0.00	0.00	36.0					0		Flow Tube Flow Tube
HSVE-009S	12/01/15	Zone 5	A Clay	ND	10.60	10.90	5.74	10.24	4.50		110	110	13.0	0.70	0.00	0.00	30.0					0		Flow Tube
HSVE-009S	12/09/15	Zone 5	A Clay	ND	Dry	10.90	5.74	10.24	4.50		104	73.0	20.2	0.40	31.0	0.00	18.0					0		Flow Tube
HSVE-009S HSVE-009S	01/05/16 01/26/16	Zone 5 Zone 5	A Clay A Clay	ND ND	10.55 Dry	10.85 10.85	5.74 5.74	10.24 10.24	4.50 4.50													0		Flow Tube Flow Tube
HSVE-009S	02/09/16	Zone 5	A Clay	ND	Dry	10.85	5.74	10.24	4.50													0		Flow Tube
HSVE-010D	10/01/15	Zone 5	Multiple Strata	NA	NA	22.40	6.70	26.10														0		Flow Tube
HSVE-010D HSVE-010D	10/06/15 10/14/15	Zone 5 Zone 5	Multiple Strata Multiple Strata	ND ND	22.28 Dry	22.32 22.26	6.70 6.70	26.10 26.10	15.58 19.40		300	176	19.6	0.40	124	0.00	26.0					0		Flow Tube Flow Tube
HSVE-010D	10/14/15	Zone 5	Multiple Strata	NA	NA	22.26	6.70	26.10	19.40		300	170	19.0	0.40	124	0.00	20.0					100		Flow Tube
HSVE-010D	10/27/15	Zone 5	Multiple Strata	ND	Dry	22.32	6.70	26.10	19.40													100		Flow Tube
HSVE-010D HSVE-010D	11/10/15 11/18/15	Zone 5 Zone 5	Multiple Strata Multiple Strata	ND ND	22.08 Dry	22.30 22.37	6.70 6.70	26.10 26.10	15.38 19.40		27,300	18,666	18.5	1.80	8,634	21.0	578	0.00	0.00	0.00	59.0	100 100		Flow Tube Flow Tube
HSVE-010D	12/01/15	Zone 5	Multiple Strata	ND	22.30	22.35	6.70	26.10	15.60		27,000	10,000	10.0	1.00	0,004	21.0	010	0.00	0.00	0.00	00.0	100		Flow Tube
HSVE-010D	12/09/15	Zone 5	Multiple Strata	ND	22.20	22.32	6.70	26.10	15.50		4,400	2,428	20.1	0.60	1,972	6.00	228	0.00	0.00	0.00	49.0	100		Flow Tube
HSVE-010D HSVE-010D	01/05/16 01/13/16	Zone 5 Zone 5	Multiple Strata Multiple Strata	ND ND	21.21 21.18	25.51 22.30	6.70 6.70	26.10 26.10	14.51 14.48		5,670	3,666	19.8	0.90	2,004	6.00	310					100 0		Flow Tube Flow Tube
HSVE-010D	01/15/16	Zone 5	Multiple Strata	NA	NA	22.30	6.70	26.10	14.40		3,070	3,000	13.0	0.30	2,004	0.00	310					16.7		Flow Tube
HSVE-010D	01/19/16	Zone 5	Multiple Strata	ND	21.28	22.39	6.70	26.10	14.58													16.7		Flow Tube
HSVE-010D HSVE-010D	01/22/16 01/26/16	Zone 5 Zone 5	Multiple Strata Multiple Strata	NA ND	NA 21.48	22.39 25.51	6.70 6.70	26.10 26.10	14.78													33.3 33.3		Flow Tube Flow Tube
HSVE-010D	02/09/16	Zone 5	Multiple Strata	ND	22.00	25.50	6.70	26.10	15.30													33.3		Flow Tube
HSVE-010D	03/07/16	Zone 5	Multiple Strata	ND	22.20	22.34	6.70	26.10	15.50													33.3		Flow Tube
HSVE-010S HSVE-010S	10/01/15 10/06/15	Zone 5 Zone 5	N. Olive N. Olive	NA ND	NA 10.37	11.55 11.38	7.83 7.83	12.33 12.33	2.54													0		None None
HSVE-010S	10/00/15	Zone 5	N. Olive	ND	Dry	11.20	7.83	12.33	4.50		11.0	11.0	19.9	0.20	0.00	0.00	3.00					0		None
HSVE-010S	10/27/15	Zone 5	N. Olive	ND	Dry	11.40	7.83	12.33	4.50													0		None
HSVE-010S HSVE-010S	11/10/15 11/18/15	Zone 5 Zone 5	N. Olive N. Olive	ND ND	10.04 9.98	11.35 11.50	7.83 7.83	12.33 12.33	2.21 2.15		250	226	20.4	0.40	23.9	0.00	61.0	0.00	0.00	0.00	60.0	0 100		None None
HSVE-010S	12/01/15	Zone 5	N. Olive	ND	10.81	11.85	7.83	12.33	2.98		250	220	20.4	0.40	20.0	0.00	01.0	0.00	0.00	0.00	00.0	100		None
HSVE-010S	12/09/15	Zone 5	N. Olive	ND	Dry	11.40	7.83	12.33	4.50		131	103	20.6	0.30	28.2	0.00	33.0	0.00	0.00	0.00	47.0	100		None
HSVE-010S HSVE-010S	01/05/16 01/13/16	Zone 5 Zone 5	N. Olive N. Olive	ND ND	10.98 11.15	11.91 11.37	7.83 7.83	12.33 12.33	3.15 3.32		73.0	51.9	20.5	0.30	21.1	0.00	15.0					100 0		None None
HSVE-010S	01/13/16	Zone 5	N. Olive	ND ND	Dry	11.90	7.83	12.33	4.50		73.0	51.5	20.0	0.50	۲.۱	0.00	13.0					0		None
HSVE-010S	02/09/16	Zone 5	N. Olive	ND	Dry	11.90	7.83	12.33	4.50													0		None
HSVE-010S HSVE-012D	03/07/16 10/01/15	Zone 5 Zone 4	N. Olive Main Silt	ND NA	11.05 NA	11.35 26.50	7.83 6.74	12.33 26.14	3.22	17.80												0 100		None Viton Stinger
HSVE-012D	10/01/15	Zone 4	Main Silt	ND ND	24.14	26.53	6.74	26.14	17.40	17.00												100		Viton Stinger
HSVE-012D	10/14/15	Zone 4	Main Silt	ND	24.90	26.47	6.74	26.14	18.16	17.80	10,500	10,050	19.5	1.20	450	7.00	712	42.7	8.25	113	63.0	100		Viton Stinger
HSVE-012D HSVE-012D	10/22/15 10/27/15	Zone 4 Zone 4	Main Silt Main Silt	ND	25.55	26.53	6.74	26.14	18.81	23.90												100 100		Viton Stinger Viton Stinger
HSVE-012D	11/10/15	Zone 4	Main Silt	ND ND	25.80	26.56	6.74	26.14	19.06													100		Viton Stinger
HSVE-012D	11/18/15	Zone 4	Main Silt	ND	23.50	26.50	6.74	26.14	16.76	23.90	10,500	9,955	19.5	0.90	545	7.00	696		4.11	118	58.0	100		Viton Stinger
HSVE-012D HSVE-012D	11/20/15 12/01/15	Zone 4 Zone 4	Main Silt Main Silt	ND	25.40	26.44	6.74	26.14	18.66	22.50												100 100		Viton Stinger Viton Stinger
HSVE-012D	12/01/15	Zone 4 Zone 4	Main Silt	ND ND	24.84	26.25	6.74	26.14	18.10	22.50	1,300	1,262	20.8	0.20	38.0	0.00	189	45.8	9.54	115	62.0	100		Viton Stinger
HSVE-012D	12/30/15	Zone 4	Main Silt	NA	22.92	26.55	6.74	26.14	16.18	22.50		•										100		Viton Stinger
HSVE-012D HSVE-012D	12/31/15 01/05/16	Zone 4 Zone 4	Main Silt Main Silt	ND	20.45	25.75	6.74	26.14	13.71	21.60												100 100		Viton Stinger Viton Stinger
HSVE-012D HSVE-012D	01/05/16	Zone 4 Zone 4	Main Silt Main Silt	ND ND	20.45 20.45	25.75 25.75	6.74 6.74	26.14 26.14	13.71	21.60	73.0	73.0	20.8	0.00	0.00	0.00	26.0	30.3	3.76	94.0	43.0	100		Viton Stinger
		Zone 4	Main Silt	ND	20.72	26.44	6.74	26.14	13.98										-	-		100		Viton Stinger

201605_SVEOMMdata_APP-B 4 of 35

						Fluid Le	vel and Stin	ger Data			T	Soil	Vapor Fiel	d Screening	g Results				Flow Rate	Estimation Da	а	SV	E Control V	'alve Data
				Depth to Product	Depth to Groundwat er	Total Depth	Top of Screen	Bottom of Screen	Open Screen	Stinger Depth	Total Volatile Petroleum Hydrocarbons	Petroleum Hydrocabons	Oxygen	Carbon Dioxide	Methane	LEL	PID Reading	Flow Rate	Differential Pressure	SVE Wellhead Vacuum	Venturi Surface Temperature	Header Valve Percent Open	Straw Stinger Valve Percent Open	Stinger Type
Location	Date	Zone	Stratum	ft-btoc	ft-btoc	ft-btoc	ft-btoc	ft-btoc	ft	ft-btoc	ppmv	ppmv	%	%	ppmv	%	ppmv	scfm	in-H ₂ O	in-H ₂ O	°F	%	%	
HSVE-012D	02/09/16	Zone 4	Main Silt	ND	20.75	25.72	6.74	26.14	14.01					-	-	-						100	<u>-</u>	Viton Stinger
HSVE-012D	02/25/16	Zone 4	Main Silt	ND	23.50	26.45	6.74	26.14	16.76	21.60	275	267	20.8	0.00	8.45	0.00	73.0	43.6	7.24	69.0	47.0	100		Viton Stinger
HSVE-012D	03/08/16	Zone 4	Main Silt	ND	6.17	13.65	6.74	26.14	-0.57	04.00	5.000	4.700	00.0	0.70	540	F 00	400	00.4	5.05	00.0	50.0	100		Viton Stinger
HSVE-012D HSVE-012S	03/22/16 10/01/15	Zone 4 Zone 4	Main Silt N. Olive	ND	24.35	26.50	6.74	26.14	17.61	21.60	5,269	4,729	20.2	0.70	540	5.00	408	36.1 0.00	5.05 0.00	66.0 108	59.0 72.0	100		Viton Stinger
HSVE-012S	10/01/15	Zone 4	N. Olive	ND	7.55	13.97	5.66	15.16	1.89									0.00	0.00	100	72.0	0		None None
HSVE-012S	10/14/15	Zone 4	N. Olive	ND	8.18	13.98	5.66	15.16	2.52		20.0	15.7	20.7	0.10	4.29	0.00	6.00					0		None
HSVE-012S	10/27/15	Zone 4	N. Olive	ND	8.70	14.70	5.66	15.16	3.04													0		None
HSVE-012S	11/10/15	Zone 4	N. Olive	ND	7.33	13.95	5.66	15.16	1.67													0		None
HSVE-012S	11/18/15	Zone 4	N. Olive	ND	5.86	13.96	5.66	15.16	0.20		157	157	20.7	0.10	0.00	0.00	49.0					0		None
HSVE-012S HSVE-012S	12/01/15 12/09/15	Zone 4 Zone 4	N. Olive N. Olive	ND ND	5.55 7.84	13.00 13.92	5.66 5.66	15.16 15.16	-0.11 2.18		78.0	78.0	20.8	0.20	0.00	0.00	21.0					0		None None
HSVE-012S	12/30/15	Zone 4	N. Olive	NA	6.20	13.85	5.66	15.16	0.54		70.0	70.0	20.0	0.20	0.00	0.00	21.0					0		None
HSVE-012S	12/31/15	Zone 4	N. Olive	NA	NA	13.85	5.66	15.16	0.0.													0		None
HSVE-012S	01/05/16	Zone 4	N. Olive	ND	7.58	12.50	5.66	15.16	1.92													0		None
HSVE-012S	01/13/16	Zone 4	N. Olive	ND	7.65	13.90	5.66	15.16	1.99		22.0	22.0	20.7	0.20	0.00	0.00	8.00					0		None
HSVE-012S	01/26/16	Zone 4	N. Olive	ND	5.85	14.92	5.66	15.16	0.19													0		None
HSVE-012S	02/09/16	Zone 4	N. Olive	ND NA	8.30	13.90	5.66	15.16 15.16	2.64													16.7		None
HSVE-012S HSVE-012S	02/12/16 02/25/16	Zone 4 Zone 4	N. Olive N. Olive	NA ND	NA 5.90	13.90 12.50	5.66 5.66	15.16 15.16	0.24		51.0	51.0	20.7	0.20	0.00	0.00	12.0		0.29	43.0	42.0	16.7 16.7		None None
HSVE-012S	03/08/16	Zone 4	N. Olive	ND	23.65	26.47	5.66	15.16	9.50		01.0	01.0	20.1	0.20	0.00	0.00	12.0		0.20	40.0	42.0	16.7		None
HSVE-012S	03/14/16	Zone 4	N. Olive	NA	NA	26.47	5.66	15.16														33.3		None
HSVE-012S	03/22/16	Zone 4	N. Olive	ND	8.00	13.30	5.66	15.16	2.34		173	173	20.8	0.00	0.00	0.00	39.0	73.0	0.08	61.0	63.0	33.3		None
HSVE-017D	10/01/15	Zone 4	Multiple Strata															46.3	0.60	108	66.0	0		Flow Tube
HSVE-017D	10/06/15	Zone 4	Multiple Strata	ND	23.98	25.05	6.63	26.03	17.35			44.0			400		45.0			101	a= a	0		Flow Tube
HSVE-017D	10/14/15	Zone 4	Multiple Strata	ND NA	18.98	25.05	6.63	26.03	12.35		177	41.3	20.8	0.00	136	0.00	15.0	52.4	0.76	104	67.0	33.3		Flow Tube
HSVE-017D HSVE-017D	10/19/15 10/27/15	Zone 4 Zone 4	Multiple Strata Multiple Strata	NA ND	NA 23.76	25.05 25.05	6.63 6.63	26.03 26.03	17.13													100 100		Flow Tube Flow Tube
HSVE-017D	11/10/15	Zone 4	Multiple Strata	ND	16.90	25.20	6.63	26.03	10.27													100		Flow Tube
HSVE-017D	11/19/15	Zone 4	Multiple Strata	ND	24.10	25.20	6.63	26.03	17.47		158	146	20.8	0.00	12.5	0.00	37.0	75.2	1.58	113	56.0	100		Flow Tube
HSVE-017D	12/02/15	Zone 4	Multiple Strata	ND	16.80	25.20	6.63	26.03	10.17													100		Flow Tube
HSVE-017D	12/09/15	Zone 4	Multiple Strata	ND	16.80	25.20	6.63	26.03	10.17		269	269	20.8	0.00	0.00	0.00	65.0	43.0	0.50	104	55.0	100		Flow Tube
HSVE-017D	01/05/16	Zone 4	Multiple Strata	ND	10.35	25.57	6.63	26.03	3.72		440	44.0	00.5	0.00	0.00	0.00	0.00			105	47.0	100		Flow Tube
HSVE-017D HSVE-017D	01/13/16 01/26/16	Zone 4 Zone 4	Multiple Strata Multiple Strata	ND ND	11.12 16.00	25.57 25.12	6.63 6.63	26.03 26.03	4.49 9.37		14.0	14.0	20.5	0.30	0.00	0.00	6.00			125	47.0	100 100		Flow Tube Flow Tube
HSVE-017D		Zone 4 Zone 4	Multiple Strata	ND ND	17.65	25.12	6.63	26.03	11.02													100		Flow Tube
HSVE-017D	02/25/16	Zone 4	Multiple Strata	ND	17.90	25.22	6.63	26.03	11.27		32.0	32.0	20.8	0.00	0.00	0.00	10.0	39.5	0.43	114	48.0	100		Flow Tube
HSVE-017D	03/08/16	Zone 4	Multiple Strata	ND	16.12	24.80	6.63	26.03	9.49													100		Flow Tube
HSVE-017D		Zone 4	Multiple Strata	ND	16.74	27.00	6.63	26.03	10.11		63.0	63.0	20.8	0.00	0.00	0.00	17.0	54.9	0.84	109	63.0	100		Flow Tube
HSVE-017S		Zone 4	A Clay	ND	Dry	9.55	5.50	10.20	4.70		40.0	46.5	00 =	0.00	0.00	0.00	4.00					0		Flow Tube
HSVE-017S		Zone 4	A Clay	ND	Dry	9.55	5.50 5.50	10.20	4.70 4.70		12.0	12.0	20.7	0.30	0.00	0.00	4.00					0		Flow Tube
HSVE-017S HSVE-017S		Zone 4 Zone 4	A Clay A Clay	ND ND	Dry 10.76	9.57 11.15	5.50 5.50	10.20 10.20	4.70 4.70													n		Flow Tube Flow Tube
HSVE-017S		Zone 4	A Clay	ND ND	Dry	9.55	5.50	10.20	4.70		143	143	20.6	0.30	0.00	0.00	37.0					ő		Flow Tube
HSVE-017S		Zone 4	A Clay	NA	NA	9.55	5.50	10.20	•			-		, .			2					50		Flow Tube
HSVE-017S		Zone 4	A Clay	ND	8.36	11.20	5.50	10.20	2.86													50		Flow Tube
HSVE-017S		Zone 4	A Clay	NA	NA	11.20	5.50	10.20									±		A ==			100		Flow Tube
HSVE-017S		Zone 4	A Clay	ND	8.94	13.60	5.50	10.20	3.44		352	352	20.8	0.00	0.00	0.00	81.0	43.1	0.50	104	54.0	50		Flow Tube
HSVE-017S HSVE-017S		Zone 4 Zone 4	A Clay A Clay	NA ND	NA 7.20	13.60 11.10	5.50 5.50	10.20 10.20	1.70													100 100		Flow Tube Flow Tube
HSVE-017S		Zone 4 Zone 4	A Clay A Clay	ND NA	7.20 NA	11.10	5.50 5.50	10.20	1.70													0		Flow Tube
HSVE-017S		Zone 4	A Clay	ND	Dry	10.10	5.50	10.20	4.70													ő		Flow Tube
HSVE-017S		Zone 4	A Clay	ND	Dry	25.56	5.50	10.20	4.70		49.0	49.0	20.6	0.00	0.00	0.00	17.0					0		Flow Tube
HSVE-017S		Zone 4	A Clay	ND	Dry	10.10	5.50	10.20	4.70													0		Flow Tube
HSVE-017S		Zone 4	A Clay	ND	Dry	10.13	5.50	10.20	4.70													0		Flow Tube
HSVE-017S		Zone 4	A Clay	NA	NA D=1	10.13	5.50	10.20	4.70		40.0	40.0	20.0	0.00	0.00	0.00	4.00	47.0	0.00	44.0	44.0	16.7		Flow Tube
HSVE-017S HSVE-017S		Zone 4 Zone 4	A Clay	ND NA	Dry NA	10.22 10.22	5.50 5.50	10.20 10.20	4.70		12.0	12.0	20.8	0.00	0.00	0.00	4.00	17.2	0.06	11.0	44.0	16.7 33.3		Flow Tube Flow Tube
11375-0179	03/02/10	ZUITE 4	A Clay	NA	INA	10.22	5.50	10.20														აა.ა		Flow Tube

201605_SVEOMMdata_APP-B 5 of 35

						Fluid Le	vel and Stin	ger Data				Soil	Vapor Fiel	ld Screening	g Results				Flow Rate	Estimation Da	ta	SV	E Control V	/alve Data
				Depth to Product	Depth to Groundwat er	Total Depth	Top of Screen	Bottom of Screen	Open Screen	Stinger Depth	Total Volatile Petroleum Hydrocarbons	Petroleum Hydrocabons	Oxygen	Carbon Dioxide	Methane	LEL	PID Reading	Flow Rate	Differential Pressure	SVE Wellhead Vacuum	Venturi Surface Temperature	Header Valve Percent Open	Valve	Stinger Type
Location	Date	Zone	Stratum	ft-btoc	ft-btoc	ft-btoc	ft-btoc	ft-btoc	ft	ft-btoc	ppmv	ppmv	%	%	ppmv	%	ppmv	scfm	in-H ₂ O	in-H ₂ O	°F	%	%	
HSVE-017S	03/08/16	Zone 4	A Clay	ND	8.38	10.25	5.50	10.20	2.88													33.3		Flow Tube
HSVE-017S	03/14/16	Zone 4	A Clay	NA	NA	10.25	5.50	10.20				24.2										50		Flow Tube
HSVE-017S	03/23/16	Zone 4	A Clay	ND	8.15	10.15	5.50	10.20	2.65		91.0	91.0	20.8	0.00	0.00	0.00	23.0	36.6	0.37	110	56.0	50		Flow Tube
HSVE-018D HSVE-018D	10/06/15 10/14/15	Zone 4 Zone 4	Multiple Strata Multiple Strata	ND ND	14.12 15.72	26.05 26.00	6.62 6.62	26.02 26.02	7.50 9.10		48.0	46.6	20.8	0.00	1.43	0.00	13.0					100 100		None None
HSVE-018D	10/19/15	Zone 4	Multiple Strata	NA	NA	26.00	6.62	26.02	5.10		40.0	40.0	20.0	0.00	1.40	0.00	10.0					100		None
HSVE-018D	10/27/15	Zone 4	Multiple Strata	ND	16.68	26.00	6.62	26.02	10.06													100		None
HSVE-018D	11/03/15	Zone 4	Multiple Strata	NA	NA	26.00	6.62	26.02														0		None
HSVE-018D	11/10/15	Zone 4	Multiple Strata	ND	25.52	26.02	6.62	26.02	18.90		400	100	00.0	0.50	0.00	0.00	00.0					0		None
HSVE-018D HSVE-018D	11/19/15 11/30/15	Zone 4	Multiple Strata Multiple Strata	ND NA	24.14 NA	26.00 26.00	6.62 6.62	26.02 26.02	17.52		132	132	20.2	0.50	0.00	0.00	36.0					50		None
HSVE-018D	12/02/15	Zone 4 Zone 4	Multiple Strata	NA ND	17.84	26.10	6.62	26.02	11.22													50		None None
HSVE-018D	12/02/15	Zone 4	Multiple Strata	ND	18.30	26.15	6.62	26.02	11.68		236	236	20.8	0.00	0.00	0.00	56.0	57.8	0.06	123	53.0	100		None
HSVE-018D	01/05/16	Zone 4	Multiple Strata	ND	12.70	26.00	6.62	26.02	6.08													100		None
HSVE-018D	01/05/16	Zone 4	Multiple Strata	ND	12.70	26.00	6.62	26.02	6.08													100		None
HSVE-018D	01/13/16	Zone 4	Multiple Strata	ND	13.40	26.00	6.62	26.02	6.78		26.0	26.0	20.8	0.00	0.00	0.00	10.0	53.2	0.05	121	49.0	100		None
HSVE-018D	01/26/16 02/10/16	Zone 4	Multiple Strata	ND	14.10	26.05	6.62	26.02	7.48													100		None
HSVE-018D HSVE-018D	02/10/10	Zone 4 Zone 4	Multiple Strata Multiple Strata	ND ND	15.10 16.85	26.00 26.00	6.62 6.62	26.02 26.02	8.48 10.23		26.0	26.0	20.8	0.00	0.00	0.00	8.00	52.7	0.05	128	46.0	100 100		None None
HSVE-018D	03/08/16	Zone 4	Multiple Strata	ND	16.30	26.00	6.62	26.02	9.68		20.0	20.0	20.0	0.00	0.00	0.00	0.00	02.1	0.00	120	40.0	100		None
HSVE-018D	03/23/16	Zone 4	Multiple Strata	ND	16.05	26.10	6.62	26.02	9.43		58.0	58.0	20.8	0.00	0.00	0.00	17.0	51.3	0.05	132	66.0	100		None
HSVE-018S	10/06/15	Zone 4	A Clay	ND	Dry	11.05	5.52	10.22	4.70													0		None
HSVE-018S	10/14/15	Zone 4	A Clay	ND	10.79	11.05	5.52	10.22	4.70		10.0	10.0	20.8	0.00	0.00	0.00	4.00					0		None
HSVE-018S	10/27/15	Zone 4	A Clay	ND	10.85	11.08	5.52	10.22	4.70															None
HSVE-018S HSVE-018S	11/10/15 11/19/15	Zone 4 Zone 4	A Clay A Clay	ND ND	10.55 10.50	11.03 11.06	5.52 5.52	10.22 10.22	4.70 4.70		69.0	66.2	20.7	0.00	2.78	0.00	19.0					0		None None
HSVE-018S	11/30/15	Zone 4	A Clay	NA	NA	11.06	5.52	10.22	4.70		03.0	00.2	20.7	0.00	2.70	0.00	13.0					50		None
HSVE-018S	12/02/15	Zone 4	A Clay	ND	7.20	11.05	5.52	10.22	1.68													50		None
HSVE-018S	12/03/15	Zone 4	A Clay	NA	NA	11.05	5.52	10.22														100		None
HSVE-018S	12/09/15	Zone 4	A Clay	ND	8.82	11.00	5.52	10.22	3.30		312	302	20.7	0.20	9.86	0.00	57.0	52.7	0.05	123	54.0	50		None
HSVE-018S	12/14/15	Zone 4	A Clay	NA	NA 0.00	11.00	5.52	10.22	4.40													100		None
HSVE-018S HSVE-018S	12/22/15 01/05/16	Zone 4 Zone 4	A Clay A Clay	ND ND	9.62 7.44	11.05 10.78	5.52 5.52	10.22 10.22	4.10 1.92													100 100		None None
HSVE-018S	01/05/16	Zone 4	A Clay	ND	7.44	10.78	5.52	10.22	1.92													100		None
HSVE-018S	01/13/16	Zone 4	A Clay	ND	7.56	10.78	5.52	10.22	2.04		13.0	13.0	20.8	0.00	0.00	0.00	5.00		4.26	124	47.0	100		None
HSVE-018S	01/26/16	Zone 4	A Clay	ND	9.15	10.54	5.52	10.22	3.63													100		None
HSVE-018S	02/10/16	Zone 4	A Clay	ND	9.40	10.76	5.52	10.22	3.88													100		None
HSVE-018S	02/25/16	Zone 4	A Clay	ND	8.32	10.45	5.52	10.22	2.80		6.00	6.00	20.8	0.20	0.00	0.00	2.0		0.68	125	46.0	100		None
HSVE-018S HSVE-018S	03/08/16 03/23/16	Zone 4 Zone 4	A Clay A Clay	ND ND	7.00 7.25	10.48 10.47	5.52 5.52	10.22 10.22	1.48 1.73		30.0	30.0	20.8	0.00	0.00	0.00	11.0	83.1	0.13	131	62.0	100 100		None None
HSVE-019D	10/06/15	Zone 4 Zone 4	Multiple Strata	ND	14.20	24.55	6.66	26.06	7.54		30.0	50.0	20.0	5.00	0.00	0.00	11.0	55.1	0.10	101	02.0	100		None
HSVE-019D	10/14/15	Zone 4	Multiple Strata	ND	15.79	24.80	6.66	26.06	9.13		60.0	57.1	20.8	0.00	2.86	0.00	17.0	79.2	0.12	131	71.0	100		None
HSVE-019D	10/27/15	Zone 4	Multiple Strata	ND	16.77	24.85	6.66	26.06	10.11													100		None
HSVE-019D	11/03/15	Zone 4	Multiple Strata	NA	NA	24.85	6.66	26.06	40.55													0		None
HSVE-019D	11/10/15	Zone 4	Multiple Strata	ND ND	24.86 Dry	25.24 25.18	6.66 6.66	26.06 26.06	18.20 10.40		070	671	20.6	0.30	200	0.00	100					0		None
HSVE-019D HSVE-019D	11/19/15 11/20/15	Zone 4 Zone 4	Multiple Strata Multiple Strata	ND NA	Dry NA	25.18 25.18	6.66 6.66	26.06 26.06	19.40		970	0/1	20.6	0.30	299	0.00	122					50		None None
HSVE-019D	11/20/15	Zone 4 Zone 4	Multiple Strata	NA NA	NA	25.18	6.66	26.06														100		None
HSVE-019D	12/02/15	Zone 4	Multiple Strata	ND	9.20	25.30	6.66	26.06	2.54													100		None
HSVE-019D	12/09/15	Zone 4	Multiple Strata	ND	10.10	25.25	6.66	26.06	3.44		113	113	20.8	0.00	0.00	0.00	28.0	79.0	0.11	121	47.0	100		None
HSVE-019D	01/05/16	Zone 4	Multiple Strata	ND	15.98	24.00	6.66	26.06	9.32													100		None
HSVE-019D	01/13/16	Zone 4	Multiple Strata	ND	16.65	23.80	6.66	26.06	9.99		27.0	27.0	20.8	0.00	0.00	0.00	10.0		0.97	124	46.0	100		None
HSVE-019D HSVE-019D	01/26/16 02/10/16	Zone 4 Zone 4	Multiple Strata Multiple Strata	ND ND	14.65 15.90	23.60 22.60	6.66 6.66	26.06 26.06	7.99 9.24													100 100		None None
HSVE-019D	02/10/10	Zone 4 Zone 4	Multiple Strata	ND	13.15	23.45	6.66	26.06	6.49		16.0	16.0	20.8	0.00	0.00	0.00	5.00	77.3	0.11	133	47.0	100		None
HSVE-019D	03/08/16	Zone 4	Multiple Strata	ND	9.70	23.88	6.66	26.06	3.04		. 5.0	. 3.3	_5.0	0.00	0.00	0.00	0.00		V.11	.00		100		None
HSVE-019D	03/24/16	Zone 4	Multiple Strata	ND	14.90	23.28	6.66	26.06	8.24		116	73.4	20.7	0.20	42.7	0.00	15.0	125	0.30	139	57.0	100		None
HSVE-019S	10/06/15	Zone 4	N. Olive	ND	Dry	9.30	4.19	8.89	4.70									I				0		Viton Stinger

201605_SVEOMMdata_APP-B 6 of 35

						Fluid Le	vel and Stin	ger Data				Soil	Vapor Fiel	ld Screenin	g Results				Flow Rate	Estimation Da	nta	SV	E Control Va	lve Data
				Depth to Product	Depth to Groundwat er	Total Depth	Top of Screen	Bottom of Screen	Open Screen	Stinger Depth	Total Volatile Petroleum Hydrocarbons	Petroleum Hydrocabons	Oxygen	Carbon Dioxide	Methane	LEL	PID Reading	Flow Rate	Differential Pressure	SVE Wellhead Vacuum	Venturi Surface Temperature	Header Valve Percent Open	Straw Stinger Valve Percent Open	Stinger Type
Location	Date	Zone	Stratum	ft-btoc	ft-btoc	ft-btoc	ft-btoc	ft-btoc	ft	ft-btoc	ppmv	ppmv	%	%	ppmv	%	ppmv	scfm	in-H ₂ O	in-H ₂ O	°F	%	%	
HSVE-019S	10/14/15	Zone 4	N. Olive	ND	Dry	9.30	4.19	8.89	4.70	8.80	10.0	10.0	20.6	0.20	0.00	0.00	4.00					0	,	Viton Stinger
HSVE-019S	10/27/15	Zone 4	N. Olive	ND	Dry	9.30	4.19	8.89	4.70													0	•	Viton Stinger
HSVE-019S	11/10/15	Zone 4	N. Olive	ND	Dry	10.23	4.19	8.89	4.70													0		Viton Stinger
HSVE-019S	11/19/15	Zone 4	N. Olive	ND	Dry	9.30	4.19	8.89	4.70	8.80	70.0	70.0	20.7	0.30	0.00	0.00	21.0					0 50		Viton Stinger
HSVE-019S HSVE-019S	11/30/15 12/02/15	Zone 4 Zone 4	N. Olive N. Olive	NA ND	NA Dry	9.30 9.06	4.19 4.19	8.89 8.89	4.70	8.80												50 50		Viton Stinger Viton Stinger
HSVE-019S	12/03/15	Zone 4	N. Olive	NA	NA	9.06	4.19	8.89	4.70	8.80												100		Viton Stinger
HSVE-019S	12/09/15	Zone 4	N. Olive	ND	Dry	9.00	4.19	8.89	4.70	8.80	33.0	33.0	20.8	0.20	0.00	0.00	9.00	45.1	1.79	118	47.0	100		Viton Stinger
HSVE-019S	01/05/16	Zone 4	N. Olive	ND	Dry	9.00	4.19	8.89	4.70													100		Viton Stinger
HSVE-019S	01/13/16	Zone 4	N. Olive	ND	Dry	9.30	4.19	8.89	4.70	8.80	8.00	8.00	20.8	0.00	0.00	0.00	3.00	46.6	1.89	120	36.0	100		Viton Stinger
HSVE-019S	01/26/16	Zone 4	N. Olive	ND	9.85	10.05	4.19	8.89	4.70													100		Viton Stinger
HSVE-019S HSVE-019S	02/10/16 02/25/16	Zone 4 Zone 4	N. Olive N. Olive	ND ND	Dry Dry	9.05 9.04	4.19 4.19	8.89 8.89	4.70 4.70	8.80	11.0	11.0	20.8	0.00	0.00	0.00	4.00	47.5	1.99	121	41.0	100 100		Viton Stinger Viton Stinger
HSVE-019S	03/08/16	Zone 4	N. Olive	ND	8.80	9.05	4.19	8.89	4.61	0.00	11.0	11.0	20.0	0.00	0.00	0.00	1.00	17.0	1.00		11.0	100		Viton Stinger
HSVE-019S	03/24/16	Zone 4	N. Olive	ND	8.90	9.03	4.19	8.89	4.70	8.80	8.00	8.00	20.8	0.00	0.00	0.00	3.00	45.4	1.93	130	55.0	100		Viton Stinger
HSVE-020D	10/01/15	Zone 1	Multiple Strata															187	0.55	76.0	65.0	0		None
HSVE-020D	10/05/15	Zone 1	Multiple Strata	ND	23.80	25.72	5.68	25.18	18.12		0.00	0.00	00.7	0.40	0.00	0.00	4.00					0		None
HSVE-020D HSVE-020D	10/13/15 10/26/15	Zone 1 Zone 1	Multiple Strata Multiple Strata	ND ND	24.10 Dry	25.85 25.86	5.68 5.68	25.18 25.18	18.42 19.50		3.00	3.00	20.7	0.10	0.00	0.00	1.00					0		None None
HSVE-020D	11/09/15	Zone 1	Multiple Strata	ND	Dry	25.45	5.68	25.18	19.50													0		None
HSVE-020D	11/16/15	Zone 1	Multiple Strata	ND	Dry	25.66	5.68	25.18	19.50		2.00	2.00	20.6	0.20	0.00	0.00	0.00					0		None
HSVE-020D	11/30/15	Zone 1	Multiple Strata	NA	NA	25.66	5.68	25.18														50		None
HSVE-020D	12/01/15	Zone 1	Multiple Strata	ND	Dry	25.50	5.68	25.18	19.50													50		None
HSVE-020D	12/08/15	Zone 1	Multiple Strata	ND	22.90 NA	25.48 25.48	5.68 5.68	25.18 25.18	17.22		73.0	12.4	20.8	0.00	60.6	0.00	4.00	158	0.38	73.0	50.0	50 33.3		None
HSVE-020D HSVE-020D	12/15/15 12/21/15	Zone 1 Zone 1	Multiple Strata Multiple Strata	NA ND	19.75	25.46 25.46	5.68	25.16 25.18	14.07													33.3		None None
HSVE-020D	01/04/16	Zone 1	Multiple Strata	ND	12.80	25.48	5.68	25.18	7.12													33.3		None
HSVE-020D	01/12/16	Zone 1	Multiple Strata	ND	10.85	15.65	5.68	25.18	5.17		4.00	4.00	20.8	0.00	0.00	0.00	2.00	53.9	0.05	114	48.0	50		None
HSVE-020D	01/26/16	Zone 1	Multiple Strata	ND	12.75	25.55	5.68	25.18	7.07													50		None
HSVE-020D	02/09/16	Zone 1	Multiple Strata	ND	14.00	25.50	5.68	25.18	8.32													50		None
HSVE-020D HSVE-020D	02/12/16 02/23/16	Zone 1 Zone 1	Multiple Strata Multiple Strata	NA ND	NA 13.40	25.50 25.48	5.68 5.68	25.18 25.18	7.72		48.0	48.0	20.8	0.00	0.00	0.00	16.0	68.2	0.08	108	58.0	66.7 66.7		None None
HSVE-020D	03/01/16	Zone 1	Multiple Strata	NA NA	NA	25.48	5.68	25.18	1.12		40.0	40.0	20.0	0.00	0.00	0.00	10.0	00.2	0.00	100	36.0	100		None
HSVE-020D	03/08/16	Zone 1	Multiple Strata	ND	13.45	25.50	5.68	25.18	7.77													100		None
HSVE-020D	03/14/16	Zone 1	Multiple Strata	NA	NA	25.50	5.68	25.18														83.3		None
HSVE-020D	03/22/16	Zone 1	Multiple Strata		13.50	25.70	5.68	25.18			43.0	43.0	20.8	0.00	0.00	0.00	17.0	64.0	0.07	108	54.0	100		None
HSVE-020S	10/05/15 10/13/15	Zone 1	N. Olive	ND	Dry	14.25	5.69 5.69	14.49 14.49	8.80 8.80		855	101	20.8	0.10	754	0.00	12.0	140	0.32	97.0	62.0	100 50		None
HSVE-020S HSVE-020S	10/13/15	Zone 1 Zone 1	N. Olive N. Olive	ND NA	Dry NA	14.23 14.23	5.69	14.49	0.00		000	101	20.0	0.10	734	0.00	13.0	140	0.32	87.0	62.0	100		None None
HSVE-020S	10/26/15	Zone 1	N. Olive	ND	Dry	14.30	5.69	14.49	8.80													100		None
HSVE-020S	11/09/15	Zone 1	N. Olive	ND	11.87	14.30	5.69	14.49	6.18													100		None
HSVE-020S	11/16/15	Zone 1	N. Olive	ND	11.58	14.25	5.69	14.49	5.89		14.0	5.43	20.7	0.00	8.57	0.00	1.00	134	0.29	89.0	53.0	100		None
HSVE-020S		Zone 1	N. Olive	ND	Dry	14.10	5.69	14.49	8.80		25.0	40.4	00.0	0.00	40.0	0.00	F 00	00.0	0.40	400	40.0	100		None
HSVE-020S HSVE-020S		Zone 1 Zone 1	N. Olive N. Olive	ND NA	9.35 NA	14.32 14.32	5.69 5.69	14.49 14.49	3.66		35.0	18.1	20.8	0.00	16.9	0.00	5.00	98.0	0.16	103	49.0	100 33.3		None None
HSVE-020S		Zone 1 Zone 1	N. Olive	ND ND	9.62	14.32	5.69	14.49	3.93													33.3		None
		Zone 1	N. Olive	ND	8.75	14.95	5.69	14.49	3.06													33.3		None
HSVE-020S	01/12/16	Zone 1	N. Olive	ND	10.85	15.65	5.69	14.49	5.16		18.0	7.86	20.8	0.00	10.1	0.00	3.00		0.23	120	47.0	50		None
		Zone 1	N. Olive	ND	8.60	13.62	5.69	14.49	2.91													50		None
HSVE-020S		Zone 1	N. Olive	ND NA	8.80 NA	14.95 14.95	5.69 5.60	14.49	3.11													50 66.7		None
		Zone 1 Zone 1	N. Olive N. Olive	NA ND	NA 8.55	14.95 14.95	5.69 5.69	14.49 14.49	2.86		21.0	21.0	20.8	0.00	0.00	0.00	6.00	54.9	0.05	102	49.0	66.7 66.7		None None
HSVE-020S		Zone 1	N. Olive	NA NA	NA	14.95	5.69	14.49	2.00		21.0	21.0	20.0	0.00	0.00	0.00	0.00	J-7.8	0.00	102	₹3.0	66.7		None
HSVE-020S	03/08/16	Zone 1	N. Olive	ND	8.75	11.46	5.69	14.49	3.06													66.7		None
HSVE-020S	03/22/16	Zone 1	N. Olive	ND	8.36	15.00	5.69	14.49	2.67		22.0	22.0	20.8	0.00	0.00	0.00	9.00	133	0.31	118	49.0	83.3		None
HSVE-021	10/05/15	Zone 3	Multiple Strata	ND	12.60	23.15	6.99	26.39	5.61			100	co =	0.05	22.5		24-	60.		40-	21.5	100		None
HSVE-021	10/12/15	Zone 3	Multiple Strata	ND	16.90	23.23 23.25	6.99 6.99	26.39 26.39	9.91 6.99		155	133	20.7	0.30	22.2	0.00	34.0	33.1	2.22	120	61.0	100 100		None

201605_SVEOMMdata_APP-B 7 of 35

						Fluid Le	vel and Stir	nger Data				Soil	Vapor Fiel	d Screening	g Results			1	Flow Rate	Estimation Da	nta	S۱	/E Control \	/alve Data
Location	Date	Zone	Stratum	Depth to Product ft-btoc	Depth to Groundwat er ft-btoc		Top of Screen ft-btoc	Bottom of Screen ft-btoc	Open Screen ft	Stinger Depth ft-btoc	Total Volatile Petroleum Hydrocarbons ppmv	Petroleum Hydrocabons ppmv	Oxygen %	Carbon Dioxide %	Methane ppmv	LEL %	PID Reading ppmv	Flow Rate scfm	Differential Pressure in-H ₂ O	SVE Wellhead Vacuum in-H ₂ O	Venturi Surface Temperature °F	Header Valve Percent Open %	Valve	Stinger Type
HSVE-021	11/09/15	Zone 3	Multiple Strata	ND	Dry	23.25	6.99	26.39	19.40													100		None
HSVE-021	11/17/15	Zone 3	Multiple Strata	ND	18.00	23.15	6.99	26.39	11.01		120	120	20.6	0.40	0.00	0.00	25.0	32.4	2.10	119	58.0	100		None
HSVE-021 HSVE-021	12/01/15 12/07/15	Zone 3 Zone 3	Multiple Strata Multiple Strata	ND ND	14.40 18.11	23.80 23.65	6.99 6.99	26.39 26.39	7.41 11.12		442	435	20.6	0.40	7.14	0.00	96.0	27.2	1.46	119	51.0	100 100		None
HSVE-021	01/04/16	Zone 3	Multiple Strata	ND ND	Dry	23.50	6.99	26.39	19.40		442	433	20.0	0.40	7.14	0.00	90.0	21.2	1.40	119	51.0	100		None None
HSVE-021	01/11/16	Zone 3	Multiple Strata	ND	17.05	23.45	6.99	26.39	10.06		23.0	17.4	20.6	0.20	5.63	0.00	4.00	23.8	1.12	127	38.0	100		None
HSVE-021	01/25/16	Zone 3	Multiple Strata	ND	11.80	23.44	6.99	26.39	4.81													100		None
HSVE-021 HSVE-021	02/08/16 02/22/16	Zone 3 Zone 3	Multiple Strata Multiple Strata	ND ND	19.53 16.80	23.82 23.40	6.99 6.99	26.39 26.39	12.54 9.81		717	339	20.5	0.30	378	0.00	52.0	23.2	1.04	113	50.0	100 100		None None
HSVE-021	03/10/16	Zone 3	Multiple Strata	ND ND	Dry	23.50	6.99	26.39	19.40		/ 1/	339	20.5	0.50	370	0.00	32.0	25.2	1.04	113	30.0	100		None
HSVE-021	03/21/16	Zone 3	Multiple Strata	ND	17.79	23.50	6.99	26.39	10.80		373	264	20.4	0.40	109	0.00	69.0					100		None
HSVE-022	10/06/15	Zone 5	Main Silt	ND	15.98	23.80	6.26	25.76	9.72		450	404			40.0			40.0		400		100		Flow Tube
HSVE-022 HSVE-022	10/14/15 10/27/15	Zone 5 Zone 5	Main Silt Main Silt	ND ND	11.85 16.48	23.40 22.22	6.26 6.26	25.76 25.76	5.59 10.22		150	131	20.7	0.20	18.6	0.00	35.0	19.0	0.11	133	66.0	100 100		Flow Tube Flow Tube
HSVE-022	11/10/15	Zone 5	Main Silt	ND ND	17.90	21.30	6.26	25.76	11.64													100		Flow Tube
HSVE-022	11/18/15	Zone 5	Main Silt	ND	15.70	21.18	6.26	25.76	9.44		350	335	20.5	0.30	15.5	0.00	78.0	22.2	0.15	135	60.0	100		Flow Tube
HSVE-022	12/01/15	Zone 5	Main Silt	ND	15.10	20.14	6.26	25.76	8.84		0.54						24.2			400		100		Flow Tube
HSVE-022 HSVE-022	12/09/15 01/05/16	Zone 5 Zone 5	Main Silt Main Silt	ND ND	14.40 14.90	19.66 24.84	6.26 6.26	25.76 25.76	8.14 8.64		354	327	20.8	0.30	26.8	0.00	61.0	14.2	0.06	130	55.0	100 100		Flow Tube Flow Tube
HSVE-022	01/03/16	Zone 5	Main Silt	ND ND	13.90	19.53	6.26	25.76	7.64		35.0	35.0	20.8	0.00	0.00	0.00	12.0	13.2	0.05	127	49.0	100		Flow Tube
HSVE-022	01/26/16	Zone 5	Main Silt	ND	14.90	19.54	6.26	25.76	8.64													100		Flow Tube
HSVE-022	02/09/16	Zone 5	Main Silt	ND	14.52	19.25	6.26	25.76	8.26						242					45.0	4- 0	100		Flow Tube
HSVE-022 HSVE-022	02/25/16 03/08/16	Zone 5 Zone 5	Main Silt Main Silt	ND ND	17.90 19.10	19.36 19.42	6.26 6.26	25.76 25.76	11.64 12.84		1,055	445	20.5	0.30	610	0.00	65.0	17.7	0.07	45.0	47.0	100 100		Flow Tube Flow Tube
HSVE-022	03/00/10	Zone 5	Main Silt	ND ND	18.90	19.42	6.26	25.76	12.64		330	240	20.8	0.00	89.7	0.00	49.0		0.00	30.0		100		Flow Tube
HSVE-023D	10/05/15	Zone 1	Multiple Strata	ND	11.18	24.10	6.51	25.91	4.67													100		None
HSVE-023D		Zone 1	Multiple Strata	ND	11.62	24.45	6.51	25.91	5.11		11,500	2,297	19.5	1.30	9,203	8.00	110	53.0	0.05	117	60.0	100		None
HSVE-023D HSVE-023D		Zone 1 Zone 1	Multiple Strata Multiple Strata	ND ND	11.40 11.10	24.02 24.10	6.51 6.51	25.91 25.91	4.89 4.59													100 100		None None
HSVE-023D		Zone 1	Multiple Strata	ND	14.90	25.15	6.51	25.91	8.39		7,700	1,386	19.8	0.70	6,314	5.00	71.0	0.00	0.00	113	55.0	100		None
HSVE-023D	12/01/15	Zone 1	Multiple Strata	ND	7.35	24.10	6.51	25.91	0.84		,	,			,							100		None
HSVE-023D		Zone 1	Multiple Strata	ND	8.70	24.15	6.51	25.91	2.19		6,520	1,027	20.2	0.50	5,493	10.0	51.0	153	0.40	110	51.0	100		None
HSVE-023D HSVE-023D		Zone 1 Zone 1	Multiple Strata Multiple Strata	NA ND	NA 12.60	24.15 24.00	6.51 6.51	25.91 25.91	6.09													0		None None
HSVE-023D		Zone 1	Multiple Strata	ND ND	14.20	23.96	6.51	25.91	7.69		9.00	9.00	20.8	0.00	0.00	0.00	1.00					0		None
HSVE-023D	01/25/16	Zone 1	Multiple Strata	ND	Dry	20.00	6.51	25.91	19.40													0		None
HSVE-023D		Zone 1	Multiple Strata	ND	Dry	19.98	6.51	25.91	19.40													0		None
HSVE-023S HSVE-023S		Zone 1 Zone 1	N. Olive N. Olive	ND ND	9.95 12.70	15.54 15.46	6.47 6.47	15.97 15.97	3.48 6.23		160	44.1	20.8	0.00	116	0.00	8.00	44.9	0.57	113	62.0	100 100		Flow Tube Flow Tube
HSVE-023S		Zone 1	N. Olive	ND ND	10.88	15.72	6.47	15.97	4.41		100	77.1	20.0	0.00	110	0.00	0.00	77.3	0.51	110	02.0	100		Flow Tube
HSVE-023S	11/09/15	Zone 1	N. Olive	ND	10.70	15.73	6.47	15.97	4.23													100		Flow Tube
HSVE-023S		Zone 1	N. Olive	ND	7.44	15.70	6.47	15.97	0.97		32.0	29.1	20.8	0.00	2.86	0.00	4.00	14.6	0.06	115	56.0	100		Flow Tube
HSVE-023S HSVE-023S		Zone 1 Zone 1	N. Olive N. Olive	NA ND	NA 10.74	15.70 15.72	6.47 6.47	15.97 15.97	4.27													0		Flow Tube Flow Tube
HSVE-023S		Zone 1	N. Olive	NA NA	NA	15.72	6.47	15.97	7.41													50		Flow Tube
HSVE-023S	12/08/15	Zone 1	N. Olive	ND	13.10	15.74	6.47	15.97	6.63		92.0	54.0	20.8	0.00	38.0	0.00	13.0	21.1	0.12	106	48.0	100		Flow Tube
HSVE-023S		Zone 1	N. Olive	ND	10.70	15.48	6.47	15.97	4.23		45.0	7 75	00.0	0.00	7.05	0.00	0.00	0.00	0.00	44.4	45.0	100		Flow Tube
HSVE-023S HSVE-023S		Zone 1 Zone 1	N. Olive N. Olive	ND ND	11.15 10.70	15.50 15.25	6.47 6.47	15.97 15.97	4.68 4.23		15.0	7.75	20.8	0.00	7.25	0.00	3.00	0.00	0.00	111	45.0	100 100		Flow Tube Flow Tube
HSVE-023S		Zone 1	N. Olive	ND ND	10.70	15.48	6.47	15.97	4.23													100		Flow Tube
HSVE-023S	02/22/16	Zone 1	N. Olive	ND	10.80	15.40	6.47	15.97	4.33		47.0	47.0	20.8	0.00	0.00	0.00	16.0	14.9	0.06	105	52.0	100		Flow Tube
HSVE-023S		Zone 1	N. Olive	ND	10.60	15.64	6.47	15.97	4.13				05 -				4			=		100		Flow Tube
HSVE-023S		Zone 1	N. Olive	ND NA	9.25	15.60 15.60	6.47	15.97 15.07	2.78		151	148	20.8	0.00	2.94	0.00	45.0	0.00	0.00	115	43.0	50 100		Flow Tube
HSVE-023S HSVE-024D		Zone 1 Zone 1	N. Olive Multiple Strata	NA ND	NA 18.60	15.60 24.50	6.47 6.58	15.97 25.98	12.02													100 100		Flow Tube Flow Tube
HSVE-024D		Zone 1	Multiple Strata	ND	18.95	24.37	6.58	25.98	12.37		205	23.8	20.8	0.00	181	0.00	0.00	34.4	0.34	114	68.0	100		Flow Tube
HSVE-024D	10/26/15	Zone 1	Multiple Strata	ND	18.90	24.55	6.58	25.98	12.32													100		Flow Tube
HSVE-024D	11/09/15	Zone 1	Multiple Strata	ND	Dry	24.48	6.58	25.98	19.40													100		Flow Tube

201605_SVEOMMdata_APP-B 8 of 35

						Fluid Le	vel and Stin	ger Data				Soil	Vapor Fie	ld Screenin	g Results			I	Flow Rate	Estimation Da	ta	S١	/E Control \	/alve Data
				Depth to	Depth to Groundwat		Top of	Bottom of	Open	Stinger	Total Volatile Petroleum	Petroleum	0.0	Carbon	Mathana	1.51	DID Deading	Flaw Data	Differential	SVE Wellhead	Venturi Surface	Header Valve Percent	Straw Stinger Valve Percent	China and Tura
Location	Date	Zone	Stratum	Product ft-btoc	er ft-btoc	Total Depth ft-btoc	Screen ft-btoc	Screen ft-btoc	Screen ft	Depth ft-btoc	Hydrocarbons ppmv	Hydrocabons ppmv	Oxygen %	Dioxide %	Methane ppmv	LEL %	PID Reading ppmv	scfm	Pressure in-H₂O	Vacuum in-H₂O	Temperature °F	Open %	Open %	Stinger Type
HSVE-024D	11/16/15	Zone 1	Multiple Strata	ND	Dry	24.50	6.58	25.98	19.40		20,000	1,429	19.6	1.20	18,571	13.0	76.0	25.0	0.17	103	60.0	100		Flow Tube
HSVE-024D	11/30/15	Zone 1	Multiple Strata	ND	18.70	24.50	6.58	25.98	12.12		400	540	00.7	0.40	444	0.00	40.0	00.0	0.00	407	40.0	100		Flow Tube
HSVE-024D HSVE-024D	12/08/15 01/04/16	Zone 1 Zone 1	Multiple Strata Multiple Strata	ND ND	Dry 11.78	24.46 24.62	6.58 6.58	25.98 25.98	19.40 5.20		198	54.3	20.7	0.10	144	0.00	12.0	29.2	0.23	107	48.0	100 100		Flow Tube Flow Tube
HSVE-024D	01/12/16	Zone 1	Multiple Strata	ND	12.60	24.60	6.58	25.98	6.02		10.0	10.0	20.8	0.00	0.00	0.00	4.00	0.00	0.00	119	38.0	100		Flow Tube
HSVE-024D	01/25/16	Zone 1	Multiple Strata	ND	17.08	24.50	6.58	25.98	10.50													100		Flow Tube
HSVE-024D HSVE-024D	02/09/16 02/22/16	Zone 1 Zone 1	Multiple Strata Multiple Strata	ND ND	12.14 11.92	24.60 24.60	6.58 6.58	25.98 25.98	5.56 5.34													100 50		Flow Tube Flow Tube
HSVE-024D	02/25/16	Zone 1	Multiple Strata	ND	17.75	24.52	6.58	25.98	11.17		304	71.6	20.5	0.00	232	0.00	7.00	13.5	0.05	113	45.0	100		Flow Tube
HSVE-024D	03/08/16	Zone 1	Multiple Strata	ND	15.55	24.36	6.58	25.98	8.97													100		Flow Tube
HSVE-024D	03/21/16	Zone 1	Multiple Strata	ND	19.45	24.35	6.58	25.98	12.87		175	66.4	20.8	0.00	109	0.00	18.0	0.00	0.00	118	53.0	100		Flow Tube
HSVE-024S HSVE-024S	10/01/15 10/05/15	Zone 1 Zone 1	N. Olive N. Olive	NA ND	NA 12.60	15.90 16.00	7.51 7.51	17.01 17.01	5.09													100 100		Flow Tube Flow Tube
HSVE-024S	10/13/15	Zone 1	N. Olive	ND	12.69	15.90	7.51	17.01	5.18		76.0	9.33	20.7	0.20	66.7	0.00	3.00	38.0	0.41	114	64.0	100		Flow Tube
HSVE-024S	10/26/15	Zone 1	N. Olive	ND	12.40	16.00	7.51	17.01	4.89													100		Flow Tube
HSVE-024S HSVE-024S	11/09/15 11/16/15	Zone 1 Zone 1	N. Olive N. Olive	ND ND	12.50 11.85	15.98 15.86	7.51 7.51	17.01 17.01	4.99 4.34		1,400	92.9	19.5	1.30	1,307	0.00	13.0	38.0	0.35	105	0.60	100 100		Flow Tube Flow Tube
HSVE-024S	11/30/15	Zone 1	N. Olive	ND	10.20	15.90	7.51	17.01	2.69		1,400	32.3	19.5	1.50	1,507	0.00	13.0	30.0	0.55	103	0.00	100		Flow Tube
HSVE-024S	12/08/15	Zone 1	N. Olive	ND	10.85	15.95	7.51	17.01	3.34		252	57.6	18.9	1.50	194	0.00	16.0	41.4	0.46	102	54.0	100		Flow Tube
HSVE-024S	01/04/16	Zone 1	N. Olive	ND	10.58	15.68	7.51	17.01	3.07		3.00	2.00	20 E	0.40	0.00	0.00	1.00		1.70	115	47.0	100		Flow Tube
HSVE-024S HSVE-024S	01/12/16 01/25/16	Zone 1 Zone 1	N. Olive N. Olive	ND ND	10.85 12.26	15.65 15.80	7.51 7.51	17.01 17.01	3.34 4.75		3.00	3.00	20.5	0.40	0.00	0.00	1.00		1.79	115	47.0	100 100		Flow Tube Flow Tube
HSVE-024S	02/09/16	Zone 1	N. Olive	ND	11.15	15.70	7.51	17.01	3.64													100		Flow Tube
HSVE-024S	02/22/16	Zone 1	N. Olive	ND	12.65	15.80	7.51	17.01	5.14		721	18.1	20.6	0.60	703	0.00	11.0	16.0	0.07	110	53.0	100		Flow Tube
HSVE-024S HSVE-024S	03/08/16 03/21/16	Zone 1 Zone 1	N. Olive N. Olive	ND ND	11.92 12.25	15.85 15.86	7.51 7.51	17.01 17.01	4.41 4.74		1,130	161	20.3	0.60	969	0.00	25.0	44.2	0.55	117	54.0	100 100		Flow Tube Flow Tube
HSVE-0243	10/05/15	Zone 1	Multiple Strata	ND	15.43	25.50	6.77	26.37	8.66		1,130	101	20.5	0.00	303	0.00	23.0	44.2	0.55	117	34.0	100		Viton Stinger
HSVE-025D	10/12/15	Zone 1	Multiple Strata	ND	15.47	25.60	6.77	26.37	8.70	14.90	1,100	267	20.6	0.20	833	0.00	22.0	31.7	4.54	109	69.0	100		Viton Stinger
HSVE-025D	10/26/15	Zone 1	Multiple Strata	ND	15.55	25.74	6.77	26.37	8.78													100		Viton Stinger
HSVE-025D HSVE-025D	11/09/15 11/16/15	Zone 1 Zone 1	Multiple Strata Multiple Strata	ND ND	15.73 15.50	25.69 25.68	6.77 6.77	26.37 26.37	8.96 8.73	14.90	310	80.0	20.7	0.10	230	0.00	6.00	22.9	2.36	118	53.0	100 100		Viton Stinger Viton Stinger
HSVE-025D	11/30/15	Zone 1	Multiple Strata	ND	15.38	25.60	6.77	26.37	8.61			00.0	20	00	200	0.00	0.00		2.00		00.0	100		Viton Stinger
HSVE-025D	12/07/15	Zone 1	Multiple Strata	ND	15.30	25.52	6.77	26.37	8.53	14.90	1,300	436	20.6	0.40	864	1.00	52.0	19.7	1.70	108	54.0	100		Viton Stinger
HSVE-025D HSVE-025D	12/29/15 12/30/15	Zone 1 Zone 1	Multiple Strata Multiple Strata	NA NA	10.20 10.22	25.56 25.60	6.77 6.77	26.37 26.37	3.43 3.45	14.90 10.20												0 100		Viton Stinger Viton Stinger
HSVE-025D	12/30/15	Zone 1	Multiple Strata	NA NA	9.15	25.60	6.77	26.37	2.38	8.60												100		Viton Stinger
HSVE-025D	01/04/16	Zone 1	Multiple Strata	ND	9.15	25.60	6.77	26.37	2.38													100		Viton Stinger
HSVE-025D	01/11/16	Zone 1	Multiple Strata	ND	9.52	25.50	6.77	26.37	2.75	8.60	600	50.7	20.8	0.00	549 540	0.00	6.00	14.1	0.86	112	43.0	100		Viton Stinger
HSVE-025D HSVE-025D	01/11/16 01/19/16	Zone 1 Zone 1	Multiple Strata Multiple Strata	ND ND	9.26 9.60	21.20 25.50	6.77 6.77	26.37 26.37	2.49 2.83	8.60	600	50.7	20.8	0.00	549	0.00	6.00	14.1	0.86	112	43.0	100 100		Viton Stinger Viton Stinger
HSVE-025D	01/25/16	Zone 1	Multiple Strata	ND	9.28	25.58	6.77	26.37	2.51													100		Viton Stinger
HSVE-025D	02/02/16	Zone 1	Multiple Strata							13.60												100		Viton Stinger
HSVE-025D HSVE-025D	02/04/16 02/08/16	Zone 1 Zone 1	Multiple Strata Multiple Strata	ND	17.10	25.60	6.77	26.37	10.33	17.00												100 100		Viton Stinger Viton Stinger
HSVE-025D	02/08/16	Zone 1	Multiple Strata	שאו	17.10	۵.00	0.11	20.01	10.55	18.10												100		Viton Stinger
HSVE-025D	02/22/16	Zone 1	Multiple Strata	ND	19.65	25.40	6.77	26.37	12.88	18.10	410	101	20.8	0.00	309	0.00	19.0			106		100		Viton Stinger
HSVE-025D HSVE-025D	03/03/16 03/08/16	Zone 1	Multiple Strata	ND	20.45	25.70	6 77	26 27	12 20	20.10												100		Viton Stinger Viton Stinger
HSVE-025D HSVE-025D	03/08/16	Zone 1 Zone 1	Multiple Strata Multiple Strata	ND ND	20.15 20.15	25.78 25.65	6.77 6.77	26.37 26.37	13.38 13.38	20.10	938	364	20.7	0.10	574	0.00	47.0	37.0	6.06	115	48.0	100 100		Viton Stinger Viton Stinger
HSVE-025D	03/21/16	Zone 1	Multiple Strata	ND	20.15	25.65	6.77	26.37	13.38	20.10	938	364	20.7	0.10	574	0.00	47.0	36.9	6.06	115	51.0	83.3		Viton Stinger
HSVE-025D	03/28/16	Zone 1	Multiple Strata	NA	NA 0.54	25.65	6.77	26.37	4.00	20.10												100		Viton Stinger
HSVE-026D HSVE-026D	10/05/15 10/12/15	Zone 1 Zone 1	Multiple Strata Multiple Strata	ND ND	8.51 8.60	24.19 24.20	6.53 6.53	26.13 26.13	1.98 2.07	7.80	785	368	20.3	0.20	417	0.00	16.0	20.9	2.03	116	71.0	66.7 83.3		Viton Stinger Viton Stinger
HSVE-026D	10/12/15	Zone 1	Multiple Strata	NA NA	NA	24.20	6.53	26.13	2.01	7.80 7.80	703	300	20.3	0.20	417	0.00	10.0	20.3	2.00	110	11.0	100		Viton Stinger
HSVE-026D	10/26/15	Zone 1	Multiple Strata	ND	8.90	22.95	6.53	26.13	2.37													100		Viton Stinger
	11/09/15	Zone 1	Multiple Strata	ND	9.72	22.40	6.53	26.13	3.19	7.00	075	220	20.0	0.60	E00	0.00	24.0		4.70	110	F6.0	100		Viton Stinger
			•							7.80	8/5	339	20.2	0.60	536	0.00	24.0		1./6	170	0.00			Viton Stinger Viton Stinger
HSVE-026D HSVE-026D HSVE-026D HSVE-026D			·							7.80	875	339	20.2	0.60	536	0.00	24.0		1.76	110	56.0			Vite Vite

201605_SVEOMMdata_APP-B

						Fluid Le	vel and Stir	nger Data				Soil	Vapor Fiel	ld Screenin	g Results			1	Flow Rate	Estimation Da	ta	SV	E Control \	/alve Data
				Depth to Product	Depth to Groundwat er		Top of Screen	Bottom of Screen	Open Screen	Stinger Depth	Total Volatile Petroleum Hydrocarbons	Petroleum Hydrocabons	Oxygen	Carbon Dioxide	Methane	LEL	PID Reading	Flow Rate	Differential Pressure	SVE Wellhead Vacuum	Venturi Surface Temperature	Header Valve Percent Open	Valve Percent Open	Stinger Type
Location	Date	Zone	Stratum	ft-btoc	ft-btoc	ft-btoc	ft-btoc	ft-btoc	ft	ft-btoc	ppmv	ppmv	%	%	ppmv	%	ppmv	scfm	in-H ₂ O	in-H ₂ O	°F	%	%	
HSVE-026D	12/07/15	Zone 1	Multiple Strata	ND	8.96	21.32	6.53	26.13	2.43	7.80	463	289	20.5	0.30	174	0.00	55.0	13.5	0.81	114	53.0	100		Viton Stinger
HSVE-026D	12/29/15	Zone 1	Multiple Strata	NA	7.05	21.25 21.20	6.53 6.53	26.13 26.13	0.52 1.62	7.80												0		Viton Stinger
HSVE-026D HSVE-026D	01/04/16 01/11/16	Zone 1 Zone 1	Multiple Strata Multiple Strata	ND	8.15	21.20	0.55	20.13	1.02		1,165	0.00	17.7	0.70	1,165	0.00	7.00					0		Viton Stinger Viton Stinger
HSVE-026D	01/15/16	Zone 1	Multiple Strata	NA	NA	21.20	6.53	26.13		7.80	1,103	0.00	17.7	0.70	1,100	0.00	7.00					16.7		Viton Stinger
HSVE-026D	01/19/16	Zone 1	Multiple Strata	ND	8.68	21.20	6.53	26.13	2.15	7.00												16.7		Viton Stinger
HSVE-026D	01/22/16	Zone 1	Multiple Strata	NA	NA	21.20	6.53	26.13		7.80												33.3		Viton Stinger
HSVE-026D	01/25/16	Zone 1	Multiple Strata	ND	8.80	20.40	6.53	26.13	2.27													33.3		Viton Stinger
HSVE-026D	02/08/16	Zone 1	Multiple Strata	ND	9.47	25.58	6.53	26.13	2.94													33.3		Viton Stinger
HSVE-026D	02/12/16	Zone 1	Multiple Strata	NA	NA	25.58	6.53	26.13	4.00	7.80	0.757	4.440	00.0	0.00	4.047	0.00	22.2	447	0.04	444	40.0	66.7		Viton Stinger
HSVE-026D	02/22/16	Zone 1	Multiple Strata	ND	8.45	20.14	6.53	26.13	1.92	7.80	2,757	1,110	20.6	0.30	1,647	2.00	62.0	14.7	0.94	111	48.0	66.7		Viton Stinger
HSVE-026D HSVE-026D	03/02/16 03/08/16	Zone 1 Zone 1	Multiple Strata Multiple Strata	ND	10.09	20.08	6.53	26.13	3.56	9.80												66.7 66.7		Viton Stinger Viton Stinger
HSVE-026D	03/14/16	Zone 1	Multiple Strata	NA	NA	20.08	6.53	26.13	0.00	9.80												83.3		Viton Stinger
HSVE-026D	03/21/16	Zone 1	Multiple Strata	ND	10.50	19.93	6.53	26.13	3.97	9.80	239	146	20.8	0.00	92.9	0.00	65.0	17.9	1.41	112	53.0	100		Viton Stinger
HSVE-027D	10/05/15	Zone 1	Rand	ND	20.94	25.55	19.16	25.66	1.78													50		Viton Stinger
HSVE-027D	10/12/15	Zone 1	Rand	ND	21.11	22.70	19.16	25.66	1.95	20.40	2,500	736	20.0	0.90	1,764	1.00	53.0	7.18	0.24	119	67.0	50		Viton Stinger
HSVE-027D	10/16/15	Zone 1	Rand							19.70												50		Viton Stinger
HSVE-027D	10/26/15	Zone 1	Rand	ND	20.70	26.22	19.16	25.66	1.54													50		Viton Stinger
HSVE-027D	11/09/15	Zone 1	Rand	ND	17.55	26.43	19.16	25.66	-1.61	40.70												50		Viton Stinger
HSVE-027D HSVE-027D	11/11/15 11/16/15	Zone 1 Zone 1	Rand Rand	NA ND	NA Dry	26.43 25.95	19.16 19.16	25.66 25.66	6.50	19.70 19.70	725	418	16.3	1.60	307	0.00	64.0					0		Viton Stinger Viton Stinger
HSVE-027D	11/10/15	Zone 1	Rand	NA NA	NA	25.95	19.16	25.66	0.50	19.70	725	410	10.5	1.00	307	0.00	04.0					50		Viton Stinger
HSVE-027D	11/30/15	Zone 1	Rand	ND	17.60	23.05	19.16	25.66	-1.56	10.70												50		Viton Stinger
HSVE-027D	12/03/15	Zone 1	Rand	NA	NA	23.05	19.16	25.66		19.70												0		Viton Stinger
HSVE-027D	12/07/15	Zone 1	Rand	ND	Dry	26.50	19.16	25.66	6.50	19.70	3,490	1,840	13.6	2.60	1,650	6.00	18.2					0		Viton Stinger
HSVE-027D	12/21/15	Zone 1	Rand	ND	Dry	24.57	19.16	25.66	6.50													0		Viton Stinger
HSVE-027D	12/30/15	Zone 1	Rand	NA	10.76	26.09	19.16	25.66	-8.40	19.70												50		Viton Stinger
HSVE-027D	12/31/15	Zone 1	Rand	NA	NA 10.00	26.09	19.16	25.66	0.40	19.70												0		Viton Stinger
HSVE-027D HSVE-027D	01/04/16 01/12/16	Zone 1	Rand	ND	19.00 22.05	26.10 26.14	19.16 19.16	25.66 25.66	-0.16	10.70	180	24.9	10.2	0.30	155	0.00	7.00					0		Viton Stinger
HSVE-027D		Zone 1 Zone 1	Rand Rand	ND NA	22.05 NA	26.14	19.16	25.66	2.89	19.70 19.70	100	24.9	19.3	0.30	155	0.00	7.00					16.7		Viton Stinger Viton Stinger
HSVE-027D		Zone 1	Rand	ND	15.30	26.10	19.16	25.66	-3.86	13.70												16.7		Viton Stinger
HSVE-027D	01/21/16	Zone 1	Rand	NA	NA	26.10	19.16	25.66	0.00	19.70												0		Viton Stinger
HSVE-027D	01/25/16	Zone 1	Rand	ND	24.38	26.30	19.16	25.66	5.22													0		Viton Stinger
HSVE-027D	02/08/16	Zone 1	Rand	ND	Dry	26.00	19.16	25.66	6.50													0		Viton Stinger
HSVE-027D	02/22/16	Zone 1	Rand	ND	Dry	26.10	19.16	25.66	6.50	19.70	26.0	26.0	20.8	0.00	0.00	0.00	9.00					0		Viton Stinger
HSVE-027D	03/01/16	Zone 1	Rand	NA	NA	26.10	19.16	25.66	- 40	19.70												16.7		Viton Stinger
HSVE-027D		Zone 1	Rand	ND	24.35	26.14	19.16	25.66	5.19	40.70												16.7		Viton Stinger
HSVE-027D HSVE-027D	03/14/16 03/21/16	Zone 1 Zone 1	Rand Rand	NA ND	NA 18.60	26.14 26.10	19.16 19.16	25.66 25.66	-0.56	19.70 19.70	116	84.6	20.8	0.00	31.4	0.00	20.0	3.62	0.06	118	61.0	33.3 33.3		Viton Stinger Viton Stinger
HSVE-027D	03/21/16	Zone 5	Rand	ND ND	10.80	12.37	18.12	24.62	-0.36 -7.32	13.70	110	04.0	20.0	0.00	51.4	0.00	20.0	3.02	0.00	110	01.0	0		None
HSVE-028S	10/06/15	Zone 5	N. Olive	ND	11.18	12.40	7.14	11.64	4.04													100		Viton Stinger
HSVE-028S	10/14/15	Zone 5	N. Olive	ND	11.16	12.38	7.14	11.64	4.02	10.00	365	36.4	20.5	0.20	329	0.00	10.0	29.5	4.27	136	63.0	100		Viton Stinger
HSVE-028S	10/27/15	Zone 5	N. Olive	ND	11.19	12.40	7.14	11.64	4.05													100		Viton Stinger
HSVE-028S		Zone 5	N. Olive	ND	9.70	12.37	7.14	11.64	2.56													100		Viton Stinger
HSVE-028S		Zone 5	N. Olive							10.00		0						0.5 -		,		100		Viton Stinger
HSVE-028S	11/18/15	Zone 5	N. Olive	ND	11.16	12.35	7.14	11.64	4.02	10.00	2,680	286	20.3	0.40	2,394	3.00	82.0	30.2	4.47	139	56.0	100		Viton Stinger
HSVE-028S	12/01/15 12/09/15	Zone 5	N. Olive	ND ND	11.17	12.35	7.14 7.14	11.64 11.64	4.03	10.00	1,985	100	20.7	0.30	1 977	2.00	25.0	29.3	4.07	124	40.0	100		Viton Stinger
HSVE-028S HSVE-028S	12/09/15	Zone 5 Zone 5	N. Olive N. Olive	ND ND	11.18 10.76	12.35 12.30	7.14 7.14	11.64 11.64	4.04 3.62	10.00 10.00	1,800	108	20.7	0.30	1,877	2.00	25.0	29.3	4.07	134	49.0	100 100		Viton Stinger Viton Stinger
HSVE-028S		Zone 5	N. Olive	NA NA	10.76	12.30	7.14	11.64	3.62	10.00												100		Viton Stinger
HSVE-028S		Zone 5	N. Olive	ND	10.73	15.84	7.14	11.64	3.59	. 3.00												100		Viton Stinger
HSVE-028S	01/13/16	Zone 5	N. Olive	ND	10.78	12.35	7.14	11.64	3.64	10.00	60.0	41.7	20.8	0.10	18.3	0.00	13.0	27.3	3.42	129	40.0	100		Viton Stinger
HSVE-028S	01/26/16	Zone 5	N. Olive	ND	11.12	15.82	7.14	11.64	3.98													100		Viton Stinger
HSVE-028S	02/23/16	Zone 5	N. Olive	ND	10.86	15.82	7.14	11.64	3.72	10.00	1,050	7.14	20.8	0.30	1,043	0.00	14.0	24.2	2.77	133	48.0	100		Viton Stinger
HSVE-028S	03/08/16	Zone 5	N. Olive	ND	10.90	12.34	7.14	11.64	3.76													100		Viton Stinger
HSVE-028S	03/22/16	Zone 5	N. Olive	ND	11.10	11.98	7.14	11.64	3.96	10.00	865	111	20.6	0.30	754	0.00	36.0	23.3	2.62	135	54.0	100		Viton Stinger

201605_SVEOMMdata_APP-B 10 of 35

						Fluid Le	vel and Stin	ger Data				Soil	Vapor Fie	ld Screenin	g Results				Flow Rate	Estimation Da	ta	S\	/E Control Va	alve Data
				Depth to Product	Depth to Groundwat er	Total Depth	Top of Screen	Bottom of Screen	Open Screen	Stinger Depth	Total Volatile Petroleum Hydrocarbons	Petroleum Hydrocabons	Oxygen	Carbon Dioxide	Methane	LEL	PID Reading	Flow Rate	Differential Pressure	SVE Wellhead Vacuum	Venturi Surface Temperature	Header Valve Percent Open	Valve Percent	Stinger Type
Location	Date	Zone	Stratum	ft-btoc	ft-btoc	ft-btoc	ft-btoc	ft-btoc	ft	ft-btoc	ppmv	ppmv	%	%	ppmv	%	ppmv	scfm	in-H ₂ O	in-H ₂ O	°F	%	%	
HSVE-029D	10/06/15	Zone 5	Rand	ND	20.12	24.96	18.62	25.12	1.50													50		Viton Stinger
HSVE-029D	10/14/15	Zone 5	Rand	ND	20.08	25.05	18.62	25.12	1.46	19.20	30,000	11,000	14.1	6.10	19,000	20.0	110	6.55	0.21	134	65.0	50		Viton Stinger
HSVE-029D HSVE-029D	11/10/15 11/18/15	Zone 5 Zone 5	Rand Rand	ND ND	19.95 20.16	24.80 24.80	18.62 18.62	25.12 25.12	1.33 1.54	19.20	71,000	28,746	16.5	4.00	42,254	52.0	359	3.47	0.06	141	61.0	50 50		Viton Stinger Viton Stinger
HSVE-029D	11/23/15	Zone 5	Rand	ND	19.95	24.82	18.62	25.12	1.33	13.20	7 1,000	20,740	10.5	4.00	72,207	32.0	333	5.47	0.00	171	01.0	50		Viton Stinger
HSVE-029D	12/01/15	Zone 5	Rand	ND	20.00	24.85	18.62	25.12	1.38													50		Viton Stinger
HSVE-029D	12/09/15	Zone 5	Rand	ND	20.35	24.82	18.62	25.12	1.73	19.20	8,540	3,019	19.7	1.10	5,521	9.00	252	5.97	0.17	132	56.0	50		Viton Stinger
HSVE-029D	12/29/15	Zone 5	Rand	NA	19.66	24.85	18.62	25.12	1.04	19.20												50		Viton Stinger
HSVE-029D HSVE-029D	01/05/16 01/13/16	Zone 5 Zone 5	Rand Rand	ND ND	17.98 18.30	25.00 24.86	18.62 18.62	25.12 25.12	-0.64 -0.32	19.20								0.00	0.00	128	38.0	50 50		Viton Stinger Viton Stinger
HSVE-029D	01/13/16	Zone 5	Rand	ND ND	19.26	24.00	18.62	25.12	0.64	13.20								0.00	0.00	120	30.0	50		Viton Stinger
HSVE-029D	02/08/16	Zone 5	Rand	ND	18.85	24.70	18.62	25.12	0.23													50		Viton Stinger
HSVE-029D	02/23/16	Zone 5	Rand	ND	19.30	25.00	18.62	25.12	0.68	19.20	15,600	1,171	20.3	0.60	14,429	11.0	73.0	7.96	0.30	131	53.0	50		Viton Stinger
HSVE-029D	03/03/16	Zone 5	Rand		0.4.00	05.00	40.00	05.40		21.20												50		Viton Stinger
HSVE-029D HSVE-029D	03/08/16 03/14/16	Zone 5 Zone 5	Rand Rand	ND NA	21.39 NA	25.00 25.00	18.62 18.62	25.12 25.12	2.77	21.20												50 83.3		Viton Stinger Viton Stinger
HSVE-029D	03/14/16	Zone 5	Rand	ND	21.43	24.95	18.62	25.12	2.81	21.20	124,000	50,765	16.1	4.40	73,235	78.0	216	7.34	0.26	133	59.0	83.3		Viton Stinger
HSVE-029D	03/28/16	Zone 5	Rand	NA	NA	24.95	18.62	25.12	2.0.	21.20	.2.,000	33,. 33			. 0,200		2.0		0.20	.00	00.0	66.7		Viton Stinger
HSVE-029S	10/01/15	Zone 5	N. Olive	NA	NA	13.92	7.63	13.13														0		None
HSVE-029S	10/06/15	Zone 5	N. Olive	ND	Dry	13.90	7.63	13.13	5.50								40.0					0		None
HSVE-029S HSVE-029S	10/14/15 11/10/15	Zone 5 Zone 5	N. Olive	ND	Dry	13.92 13.90	7.63 7.63	13.13	5.50 5.50		50.0	50.0	20.6	0.20	0.00	0.00	13.0					0		None
HSVE-029S	11/10/15	Zone 5 Zone 5	N. Olive N. Olive	ND ND	Dry 13.40	13.90	7.63 7.63	13.13 13.13	5.50 5.50		212	168	20.6	0.20	43.7	0.00	55.0					0		None None
HSVE-029S	11/20/15	Zone 5	N. Olive	NA	NA	13.92	7.63	13.13	0.00		212	100	20.0	0.20	40.1	0.00	00.0					50		None
HSVE-029S	11/30/15	Zone 5	N. Olive	NA	NA	13.92	7.63	13.13														100		None
HSVE-029S	12/01/15	Zone 5	N. Olive	ND	12.88	13.90	7.63	13.13	5.25													100		None
HSVE-029S	12/09/15	Zone 5	N. Olive	ND	12.30	13.90	7.63	13.13	4.67		108	108	20.8	0.00	0.00	0.00	30.0		0.00	133		100		None
HSVE-029S HSVE-029S	01/05/16 01/13/16	Zone 5 Zone 5	N. Olive N. Olive	ND ND	5.40 6.52	13.80 13.88	7.63 7.63	13.13 13.13	-2.23 -1.11									62.5	0.07	129	41.0	100 100		None
HSVE-029S	01/13/16	Zone 5	N. Olive	ND ND	5.95	13.88	7.63	13.13	-1.68									02.5	0.07	129	41.0	100		None None
HSVE-029S		Zone 5	N. Olive	ND	10.20	13.90	7.63	13.13	2.57													100		None
HSVE-029S	02/23/16	Zone 5	N. Olive	ND	25.00	13.90	7.63	13.13	5.50		195	152	20.8	0.00	42.9	0.00	38.0	65.9	0.08	130	53.0	50		None
HSVE-029S	03/08/16	Zone 5	N. Olive	ND	11.55	13.90	7.63	13.13	3.92		400	400					40.0			400		50		None
HSVE-029S HSVE-031D	03/22/16 10/06/15	Zone 5 Zone 3	N. Olive Main Silt	ND	12.14 Dn/	13.88 23.76	7.63 14.07	13.13 23.56	4.51 9.49		162	162	20.8	0.00	0.00	0.00	42.0	0.00	0.00	133	57.0	50 100		None
HSVE-031D	10/00/15	Zone 3	Main Silt	ND ND	Dry Dry	23.68	14.07	23.56	9.49		1,520	621	19.0	1.50	899	1.00	133	23.2	1.13	124	72.0	100		None None
HSVE-031D	10/28/15	Zone 3	Main Silt	ND	Dry	23.70	14.07	23.56	9.49		1,020	021	10.0	1.00	000	1.00	100	20.2	1.10		72.0	100		None
HSVE-031D	11/11/15	Zone 3	Main Silt	ND	Dry	23.70	14.07	23.56	9.49													100		None
HSVE-031D		Zone 3	Main Silt	ND	Dry	23.70	14.07	23.56	9.49		1,460	1,320	18.2	2.00	140	0.00	278	26.3	1.44	132	55.0	100		None
HSVE-031D		Zone 3	Main Silt	ND	Dry	23.70	14.07	23.56	9.49		055	704	10 /	1.00	60.6	0.00	160	22.4	1.00	120	52.0	100		None
HSVE-031D HSVE-031D		Zone 3 Zone 3	Main Silt Main Silt	ND ND	Dry Dry	23.68 23.80	14.07 14.07	23.56 23.56	9.49 9.49		855	794	18.4	1.90	60.6	0.00	160	22.4	1.00	120	52.0	100 100		None None
HSVE-031D		Zone 3	Main Silt	ND ND	19.00	23.75	14.07	23.56	4.93		18.0	18.0	20.8	0.00	0.00	0.00	6.00	16.1	0.49	114	37.0	100		None
HSVE-031D		Zone 3	Main Silt	ND	Dry	23.75	14.07	23.56	9.49										- · -	• •		100		None
HSVE-031D		Zone 3	Main Silt	ND	Dry	23.78	14.07	23.56	9.49						,						_	100		None
HSVE-031D		Zone 3	Main Silt	ND	Dry	23.67	14.07	23.56	9.49		5,395	977	19.2	1.30	4,418	4.00	93.0	25.7	1.33	123	52.0	100		None
HSVE-031D HSVE-031D		Zone 3 Zone 3	Main Silt Main Silt	ND ND	Dry Dry	23.65 23.67	14.07 14.07	23.56 23.56	9.49 9.49		1,778	696	19.1	1.40	1,082	0.00	106	23.2	1.10	125	57.0	100 100		None None
HSVE-031D	10/01/15	Zone 3	Main Silt	NA NA	NA	23.67	13.61	23.56	J.43		1,776	090	13.1	1.40	1,002	0.00	100	20.2	1.10	120	37.0	0		None
HSVE-033	10/05/15	Zone 3	Main Silt	ND	21.22	21.66	13.61	21.09	7.48													0		None
HSVE-033	10/12/15	Zone 3	Main Silt	ND	Dry	21.56	13.61	21.09	7.48		0.00	0.00	17.0	2.50	0.00	0.00	0.00					0		None
HSVE-033	10/26/15	Zone 3	Main Silt	ND	21.10	21.58	13.61	21.09	7.48													0		None
HSVE-033	11/09/15	Zone 3	Main Silt	ND	21.05	21.57	13.61	21.09	7.44		F60	404	10.4	E F0	160	0.00	10.0					0		None
HSVE-033 HSVE-033	11/16/15 11/20/15	Zone 3 Zone 3	Main Silt Main Silt	ND NA	Dry NA	21.60 21.60	13.61 13.61	21.09 21.09	7.48		569	401	13.4	5.50	168	0.00	10.8					50		None None
HSVE-033	11/20/15	Zone 3	Main Silt	NA NA	NA	21.60	13.61	21.09														100		None
HSVE-033	11/30/15	Zone 3	Main Silt	ND	16.64	21.65	13.61	21.09	3.03													100		None
HSVE-033	12/07/15	Zone 3	Main Silt	ND	16.50	21.50	13.61	21.09	2.89		5.00	5.00	19.8	1.20	0.00	0.00	2.00	10.9	0.21	89.0	49.0	100		None

201605_SVEOMMdata_APP-B 11 of 35

						Fluid Le	vel and Stin	iger Data				Soil	Vapor Fiel	d Screenin	g Results				Flow Rate	Estimation Da	ata	SV	/E Control \	/alve Data
				Depth to	Depth to Groundwat	:	Top of	Bottom of	Open	Stinger	Total Volatile Petroleum	Petroleum	·	Carbon			DID 5 "		Differential	SVE Wellhead	Venturi Surface	Header Valve Percent	Straw Stinger Valve Percent	
Location	Date	Zone	Stratum	Product ft-btoc	er ft-btoc	Total Depth ft-btoc	Screen ft-btoc	Screen ft-btoc	Screen ft	Depth ft-btoc	Hydrocarbons ppmv	Hydrocabons ppmv	Oxygen %	Dioxide %	Methane ppmv	LEL %	PID Reading ppmv	Flow Rate scfm	Pressure in-H₂O	Vacuum in-H₂O	Temperature °F	Open %	Open %	Stinger Type
HSVE-033	12/07/15	Zone 3	Main Silt	ND	16.50	21.50	13.61	21.09	2.89		5.00	5.00	19.8	1.20	0.00	0.00	2.00	10.9	0.21	89.0	49.0	100		None
HSVE-033	01/04/16	Zone 3	Main Silt	ND	14.08	21.65	13.61	21.09	0.47		0.00	0.00	20.0	0.00	0.00	0.00	0.00	40.0	0.67	447	25.0	100		None
HSVE-033 HSVE-033	01/11/16 01/25/16	Zone 3 Zone 3	Main Silt Main Silt	ND ND	13.88 13.10	21.60 21.66	13.61 13.61	21.09 21.09	0.27 -0.51		0.00	0.00	20.8	0.00	0.00	0.00	0.00	18.8	0.67	117	35.0	100 100		None None
HSVE-033	02/08/16	Zone 3	Main Silt	ND	14.40	21.55	13.61	21.09	0.79													100		None
HSVE-033 HSVE-033	02/23/16 03/09/16	Zone 3 Zone 3	Main Silt Main Silt	ND ND	15.32 15.80	21.42 21.53	13.61 13.61	21.09 21.09	1.71 2.19		10.0	10.0	20.6	0.50	0.00	0.00	4.00	10.7	0.19	70.0	43.0	100 100		None None
HSVE-033	03/09/10	Zone 3	Main Silt	ND	17.19	26.62	13.61	21.09	3.58		0.00	0.00	20.4	0.50	0.00	0.00	0.00	12.7	0.27	77.0	39.0	100		None
HSVE-034	10/01/15	Zone 3	Main Silt	NA	NA	15.62	12.44	21.95	0 = 4													0		None
HSVE-034 HSVE-034	10/05/15 10/13/15	Zone 3 Zone 3	Main Silt Main Silt	ND ND	Dry Dry	15.70 14.50	12.44 12.44	21.95 21.95	9.51 9.51		120	120	19.2	0.70	0.00	0.00	25.0					0		None None
HSVE-034	10/19/15	Zone 3	Main Silt	NA	NA	14.50	12.44	21.95	0.01		120	120	10.2	0.70	0.00	0.00	20.0					100		None
HSVE-034	10/26/15	Zone 3	Main Silt	ND	Dry	10.45	12.44	21.95	9.51													100		None
HSVE-034 HSVE-034	11/09/15 11/16/15	Zone 3 Zone 3	Main Silt Main Silt	ND ND	Dry 15.00	12.50 15.54	12.44 12.44	21.95 21.95	9.51 2.56		210	210	20.3	0.50	0.00	0.00	45.0	138	37.0	115	51.0	100 100		None None
HSVE-034	11/30/15	Zone 3	Main Silt	ND	13.90	15.20	12.44	21.95	1.46		2.0	210	20.0	0.00	0.00	0.00	10.0	100	07.0	110	01.0	100		None
HSVE-034	12/07/15	Zone 3	Main Silt	ND	Dry	15.20	12.44	21.95	9.51		6.00	6.00	20.7	0.30	0.00	0.00	2.00	15.4	0.44	99.0	51.0	100		None
HSVE-034 HSVE-034	01/04/16 01/11/16	Zone 3 Zone 3	Main Silt Main Silt	ND ND	Dry Dry	15.36 15.33	12.44 12.44	21.95 21.95	9.51 9.51		0.00	0.00	20.6	0.30	0.00	0.00	0.00	27.1	1.46	126	41.0	100 100		None None
HSVE-034	01/25/16	Zone 3	Main Silt	ND	Dry	15.35	12.44	21.95	9.51		0.00	0.00	20.0	0.00	0.00	0.00	0.00			0		100		None
HSVE-034	02/08/16	Zone 3	Main Silt	ND	Dry	15.35	12.44	21.95	9.51		22.0	22.0	20.7	0.40	0.00	0.00	C 00	40.0	2.62	74.0	50.0	100		None
HSVE-034 HSVE-034	02/23/16 03/21/16	Zone 3 Zone 3	Main Silt Main Silt	ND ND	13.40 Dry	14.95 15.30	12.44 12.44	21.95 21.95	0.96 9.51		23.0 0.00	23.0 0.00	20.7 20.7	0.10 0.10	0.00 0.00	0.00	6.00 0.00	46.0 42.7	3.62 3.15	74.0 80.0	50.0 46.0	100 100		None None
HSVE-035	10/01/15	Zone 2	Main Silt	NA	NA	25.87	15.52	25.13														0		None
HSVE-035	10/05/15	Zone 2	Main Silt	ND	23.42	25.88	15.52	25.13	7.90		0.00	0.00	44.4	2.40	0.00	0.00	0.00					0		None
HSVE-035 HSVE-035	10/12/15 10/26/15	Zone 2 Zone 2	Main Silt Main Silt	ND ND	23.92 25.00	25.70 25.67	15.52 15.52	25.13 25.13	8.40 9.48		0.00	0.00	14.1	2.10	0.00	0.00	0.00					0		None None
HSVE-035	11/10/15	Zone 2	Main Silt	ND	25.35	25.70	15.52	25.13	9.61													0		None
HSVE-035 HSVE-035	11/17/15 11/20/15	Zone 2 Zone 2	Main Silt Main Silt	ND NA	23.40 NA	25.88 25.88	15.52	25.13 25.13	7.88		470	470	12.4	2.50	0.00	0.00	15.0					0 50		None
HSVE-035	11/20/15	Zone 2 Zone 2	Main Silt	NA NA	NA NA	25.88	15.52 15.52	25.13														100		None None
HSVE-035	11/30/15	Zone 2	Main Silt	ND	18.05	25.88	15.52	25.13	2.53													100		None
HSVE-035 HSVE-035	12/07/15 01/04/16	Zone 2 Zone 2	Main Silt Main Silt	ND ND	18.30 14.00	25.40 25.74	15.52 15.52	25.13 25.13	2.78 -1.52		75.0	67.9	18.9	2.00	7.14	0.00	10.0	15.6	0.43	85.0	49.0	100 100		None
HSVE-035	01/04/16	Zone 2	Main Silt	ND ND	13.90	25.74	15.52	25.13	-1.52 -1.62									0.00	0.00	93.0	35.0	100		None None
HSVE-035	01/25/16	Zone 2	Main Silt	ND	16.52	25.75	15.52	25.13	1.00													100		None
HSVE-035 HSVE-035	02/08/16 02/22/16	Zone 2 Zone 2	Main Silt Main Silt	ND ND	17.95 18.35	25.70 25.70	15.52 15.52	25.13 25.13	2.43 2.83		890	105	20.4	0.40	785	0.00	26.0	12.7	0.26	58.0	43.0	100 100		None None
HSVE-035	03/09/16	Zone 2	Main Silt	ND	18.00	25.75	15.52	25.13	2.48		090	103	20.4	0.40	700	0.00	20.0	12.7	0.20	30.0	45.0	100		None
HSVE-035	03/21/16	Zone 2	Main Silt	ND	17.25	25.75	15.52	25.13	1.73		8.00	8.00	19.3	1.40	0.00	0.00	4.00	13.4	0.31	80.0	43.0	100		None
HSVE-036 HSVE-036	10/05/15 10/12/15	Zone 2 Zone 2	Main Silt Main Silt	ND ND	17.16 18.35	23.56 23.70	12.15 12.15	24.68 24.68	5.01 6.20	16.00	2,500	556	20.3	0.50	1,944	1.00	53.0	20.8	0.85	110	65.0	100 100		Viton Stinger Viton Stinger
HSVE-036	10/12/15	Zone 2	Main Silt	ND	18.10	23.75	12.15	24.68	5.95	10.00	2,000	000	_0.0	5.00	,, , , , ,	1.50	00.0	_5.5	3.00		00.0	100		Viton Stinger
HSVE-036	11/10/15	Zone 2	Main Silt	ND	18.20	23.80	12.15	24.68	6.05	40.00	4.000	77.4	00.0	0.00	400	0.00	404	04.7	0.00	407	50.0	100		Viton Stinger
HSVE-036 HSVE-036	11/17/15 11/30/15	Zone 2 Zone 2	Main Silt Main Silt	ND ND	17.79 17.84	23.79 23.86	12.15 12.15	24.68 24.68	5.64 5.69	16.00	1,200	771	20.2	0.60	429	0.00	104	21.7	0.90	107	56.0	100 100		Viton Stinger Viton Stinger
HSVE-036	12/07/15	Zone 2	Main Silt	ND	17.97	23.80	12.15	24.68	5.82	16.00	345	306	20.5	0.40	38.6	0.00	50.0	21.4	0.86	104	53.0	100		Viton Stinger
HSVE-036	12/29/15	Zone 2	Main Silt	NA NA	NA 10.07	23.80	12.15	24.68	6.00	16.00												0		Viton Stinger
HSVE-036 HSVE-036	12/30/15 01/04/16	Zone 2 Zone 2	Main Silt Main Silt	NA ND	19.07 16.95	23.78 23.82	12.15 12.15	24.68 24.68	6.92 4.80	16.00												0		Viton Stinger Viton Stinger
HSVE-036	01/11/16	Zone 2	Main Silt	ND	16.90	23.80	12.15	24.68	4.75	16.00	49,100	9,663	16.3	1.40	39,437	47.0	57.0					0		Viton Stinger
HSVE-036	01/15/16	Zone 2	Main Silt	NA ND	NA 17.00	23.80	12.15	24.68	4.85	16.00												16.7		Viton Stinger
HSVE-036 HSVE-036	01/19/16 01/22/16	Zone 2 Zone 2	Main Silt Main Silt	ND NA	17.00 NA	23.80 23.80	12.15 12.15	24.68 24.68	4.83	16.00												16.7 33.3		Viton Stinger Viton Stinger
HSVE-036	01/25/16	Zone 2	Main Silt	ND	16.32	23.60	12.15	24.68	4.17													33.3		Viton Stinger
HSVE-036 HSVE-036	02/08/16 02/12/16	Zone 2	Main Silt Main Silt	ND NA	16.65 NA	23.50 23.50	12.15 12.15	24.68 24.68	4.50	16.00												33.3 66.7		Viton Stinger Viton Stinger
HSVE-036	02/12/16	Zone 2 Zone 2	Main Silt	NA ND	16.23	23.50 24.41	12.15	24.68	4.08	16.00	0.00	0.00	20.3	0.60	0.00	0.00	0.00	17.6	0.55	92.0	44.0	66.7		Viton Stinger

201605_SVEOMMdata_APP-B 12 of 35

						Fluid Le	vel and Stin	nger Data				Soil	Vapor Fiel	d Screening	g Results				Flow Rate	Estimation Da	ta	S\	/E Control \	Valve Data
Location	Date	Zone	Stratum	Depth to Product ft-btoc	Depth to Groundwat er ft-btoc		Top of Screen ft-btoc	Bottom of Screen ft-btoc	Open Screen ft	Stinger Depth ft-btoc	Total Volatile Petroleum Hydrocarbons ppmv	Petroleum Hydrocabons ppmv	Oxygen %	Carbon Dioxide %	Methane ppmv	LEL %	PID Reading	Flow Rate	Differential Pressure in-H ₂ O	SVE Wellhead Vacuum in-H ₂ O	Venturi Surface Temperature °F	Header Valve Percent Open %	Straw Stinger Valve	Stinger Type
HSVE-036	03/09/16	Zone 2	Main Silt	ND	16.42	23.40	12.15	24.68	4.27	11 5100	PPIIIV	PPIIIV	70	70	PPIIIV	70	РРШ	001111	20	20	· · · · · · · · · · · · · · · · · · ·	66.7	70	Viton Stinger
HSVE-036 HSVE-036	03/14/16 03/21/16	Zone 2 Zone 2	Main Silt Main Silt	NA ND	NA 17.00	23.40 23.80	12.15 12.15	24.68 24.68	4.85	16.00 16.00	2,840	826	20.5	0.40	2,014	3.00	57.0	14.3	0.39	109	48.0	100 100		Viton Stinger Viton Stinger
HSVE-037 HSVE-037 HSVE-037	10/05/15 10/12/15 10/15/15	Zone 2 Zone 2 Zone 2	Main Silt Main Silt Main Silt	ND ND NA	12.20 18.20 NA	22.90 22.87 22.87	12.81 12.81 12.81	22.32 22.32 22.32	-0.61 5.39		1,400	379	20.4	0.40	1,021	0.00	52.0	25.2	1.26	111	66.0	100 100 50		None None None
HSVE-037 HSVE-037	10/19/15 10/26/15	Zone 2 Zone 2	Main Silt Main Silt	NA ND	NA 17.10	22.87 22.98	12.81 12.81	22.32 22.32	4.29													100 100		None None
HSVE-037 HSVE-037 HSVE-037	11/10/15 11/16/15 11/30/15	Zone 2 Zone 2 Zone 2	Main Silt Main Silt Main Silt	ND ND ND	Dry 15.00 12.00	22.90 22.88 22.76	12.81 12.81 12.81	22.32 22.32 22.32	9.51 2.19 -0.81		645	524	20.4	0.50	121	0.00	99.0	27.8	1.48	106	58.0	100 100 100		None None None
HSVE-037 HSVE-037	12/03/15 12/07/15	Zone 2 Zone 2	Main Silt Main Silt	NA ND	NA 20.20	22.76 22.70	12.81 12.81	22.32 22.32	7.39		675	542	20.0	0.80	133	0.00	115	32.8	1.99	96.0	56.0	50 50		None None
HSVE-037 HSVE-037 HSVE-037	12/14/15 12/21/15 01/04/16	Zone 2 Zone 2 Zone 2	Main Silt Main Silt Main Silt	NA ND ND	NA Dry 17.86	22.70 22.85 22.35	12.81 12.81 12.81	22.32 22.32 22.32	9.51 5.05													100 100 100		None None None
HSVE-037 HSVE-037	01/11/16 01/25/16	Zone 2 Zone 2	Main Silt Main Silt	ND ND	17.80 16.25	22.35 22.36	12.81 12.81	22.32 22.32	4.99 3.44		62.0	56.4	20.5	0.10	5.63	0.00	15.0	16.6	0.51	108	39.0	100 100		None None
HSVE-037 HSVE-037 HSVE-037	02/08/16 02/22/16 03/09/16	Zone 2 Zone 2 Zone 2	Main Silt Main Silt Main Silt	ND ND ND	15.70 19.55 11.60	22.35 22.32 22.42	12.81 12.81 12.81	22.32 22.32 22.32	2.89 6.74 -1.21		1,130	248	20.7	0.30	882	0.00	20.0	22.5	0.94	102	50.0	100 100 100		None None None
HSVE-037 HSVE-038	03/21/16 10/06/15	Zone 2 Zone 2	Main Silt Main Silt	ND ND	19.68 Dry	22.30 23.30	12.81 12.18	22.32 21.70	6.87 9.52		2,715	782	20.4	0.60	1,933	0.00	85.0	26.5	1.34	109	50.0	100 100		None None
HSVE-038 HSVE-038 HSVE-038	10/13/15 10/28/15 11/11/15	Zone 2 Zone 2 Zone 2	Main Silt Main Silt Main Silt	ND ND ND	Dry Dry Dry	23.12 23.30 23.27	12.18 12.18 12.18	21.70 21.70 21.70	9.52 9.52 9.52		2,130	884	19.4	1.20	1,246	1.00	160	9.22	0.17	112	69.0	100 100 100		None None None
HSVE-038 HSVE-038	11/19/15 12/02/15	Zone 2 Zone 2	Main Silt Main Silt	ND ND	Dry Dry	23.05 23.70	12.18 12.18	21.70 21.70	9.52 9.52		1,627	1,331	19.4	1.10	296	0.00	220	11.4	0.26	118	59.0	100 100		None None
HSVE-038 HSVE-038 HSVE-038	12/08/15 01/05/16 01/14/16	Zone 2 Zone 2 Zone 2	Main Silt Main Silt Main Silt	ND ND ND	Dry Dry 15.60	23.20 23.28 23.30	12.18 12.18 12.18	21.70 21.70 21.70	9.52 9.52 3.42		1,370 18.0	1,290 18.0	19.6 20.8	1.10 0.00	80.3 0.00	0.00	205 6.00	9.56 0.00	0.18	113 98.0	60.0 42.0	100 100 100		None None None
HSVE-038 HSVE-038	01/26/16 02/10/16	Zone 2 Zone 2	Main Silt Main Silt	ND ND	Dry Dry	23.35 23.36	12.18 12.18	21.70 21.70	9.52 9.52		4.047										50.0	100 100		None None
HSVE-038 HSVE-038 HSVE-038	02/25/16 03/10/16 03/24/16	Zone 2 Zone 2 Zone 2	Main Silt Main Silt Main Silt	ND ND ND	Dry Dry Dry	23.28 23.27 23.26	12.18 12.18 12.18	21.70 21.70 21.70	9.52 9.52 9.52		1,047 2,490	453 1,044	20.00	0.80 1.10	594 1,446	0.00 4.00	96.0 164	11.2	0.24	109 115	53.0 59.0	100 100 100		None None None
HSVE-039 HSVE-039	10/05/15 10/12/15	Zone 2 Zone 2	Main Silt Main Silt	ND ND	Dry Dry	23.52 23.50	14.13 14.13	23.65 23.65	9.52 9.52	14.60	103	103	11.5	3.10	0.00	0.00	1.80					0		Viton Stinger Viton Stinger
HSVE-039 HSVE-039 HSVE-039	10/15/15 10/26/15 11/03/15	Zone 2 Zone 2 Zone 2	Main Silt Main Silt Main Silt	NA ND NA	NA Dry NA	23.50 23.00 23.00	14.13 14.13 14.13	23.65 23.65 23.65	9.52 9.52	14.60 14.60												0 0 100		Viton Stinger Viton Stinger Viton Stinger
HSVE-039 HSVE-039	11/09/15 11/16/15	Zone 2 Zone 2	Main Silt Main Silt	ND ND	18.24 Dry	23.65 23.62	14.13 14.13	23.65 23.65	4.11 9.52	14.60	1,130	516	16.2	3.30	614	0.00	124					100 0		Viton Stinger Viton Stinger
HSVE-039 HSVE-039 HSVE-039	11/20/15 11/30/15 11/30/15	Zone 2 Zone 2 Zone 2	Main Silt Main Silt Main Silt	NA NA ND	NA NA 17.55	23.62 23.62 23.66	14.13 14.13 14.13	23.65 23.65 23.65	3.42	14.60 14.60 14.60												50 100 100		Viton Stinger Viton Stinger Viton Stinger
HSVE-039 HSVE-039	12/07/15 12/29/15	Zone 2 Zone 2	Main Silt Main Silt	ND NA	17.46 NA	23.68 23.68	14.13 14.13	23.65 23.65	3.33	14.60 14.60	638	502	19.6	1.40	136	0.00	81.0	36.9	2.51	96.0	54.0	100		Viton Stinger Viton Stinger
HSVE-039 HSVE-039 HSVE-039	01/04/16 01/11/16 01/25/16 02/08/16	Zone 2 Zone 2 Zone 2 Zone 2	Main Silt Main Silt Main Silt Main Silt	ND ND ND ND	16.52 16.50 16.86 21.92	23.53 23.30 23.50 23.62	14.13 14.13 14.13 14.13	23.65 23.65 23.65 23.65	2.39 2.37 2.73 7.79	14.60	10.0	10.0	20.3	0.30	0.00	0.00	1.00					0 0		Viton Stinger Viton Stinger Viton Stinger Viton Stinger
HSVE-039 HSVE-039	02/12/16 02/22/16	Zone 2 Zone 2 Zone 2	Main Silt Main Silt	NA ND	NA 17.06	23.62 23.60	14.13 14.13	23.65 23.65	2.93	14.60 14.60	7.00	7.00	19.0	1.90	0.00	0.00	2.00	28.7	1.48	89.0	52.0	66.7 66.7		Viton Stinger Viton Stinger
HSVE-039 HSVE-040	03/09/16 03/21/16 10/05/15	Zone 2 Zone 2 Zone 2	Main Silt Main Silt Main Silt	ND ND ND	17.10 18.10 20.70	23.68 23.50 24.80	14.13 14.13 14.69	23.65 23.65 24.19	2.97 3.97 6.01	14.60	14.0	11.1	18.8	1.90	2.86	0.00	2.00	29.3	1.58	96.0	52.0	66.7 100 100		Viton Stinger Viton Stinger Viton Stinger
HSVE-040	10/05/15	Zone 2	Main Silt	ND ND	20.78	24.60 24.75	14.69	24.19	6.09	16.30	1,550	1,161	19.0	1.60	389	1.00	188	31.1	1.96	114	73.0	100		Viton Stinger

201605_SVEOMMdata_APP-B

						Fluid Le	vel and Stin	ger Data				Soil	Vapor Fiel	ld Screenin	g Results				Flow Rate	Estimation Da	ta	S۱	/E Control \	/alve Data
				Depth to Product	Depth to Groundwat er	Total Depth	Top of Screen	Bottom of Screen	Open Screen	Stinger Depth	Total Volatile Petroleum Hydrocarbons	Petroleum Hydrocabons	Oxygen	Carbon Dioxide	Methane	LEL	PID Reading	Flow Rate	Differential Pressure	SVE Wellhead Vacuum	Venturi Surface Temperature	Header Valve Percent Open	Straw Stinger Valve Percent Open	Stinger Type
Location	Date	Zone	Stratum	ft-btoc	ft-btoc	ft-btoc	ft-btoc	ft-btoc	ft	ft-btoc	ppmv	ppmv	%	%	ppmv	%	ppmv	scfm	in-H ₂ O	in-H ₂ O	°F	%	%	
HSVE-040	10/20/15	Zone 2	Main Silt							19.75												100		Viton Stinger
HSVE-040 HSVE-040	10/26/15 11/09/15	Zone 2 Zone 2	Main Silt Main Silt	ND ND	21.92 21.48	24.65 24.73	14.69 14.69	24.19 24.19	7.23 6.79													100		Viton Stinger
HSVE-040	11/09/15	Zone 2	Main Silt	ND ND	21.40	24.73	14.69	24.19	6.41	19.75	1,185	968	20.3	0.40	217	0.00	137	36.7	2.67	112	66.0	100 100		Viton Stinger Viton Stinger
HSVE-040	11/30/15	Zone 2	Main Silt	ND	21.52	24.75	14.69	24.19	6.83		1,100											100		Viton Stinger
HSVE-040	12/07/15	Zone 2	Main Silt	ND	21.65	24.65	14.69	24.19	6.96	19.75	1,843	1,803	18.4	1.70	40.0	1.00	310	32.5	2.09	110	66.0	100		Viton Stinger
HSVE-040 HSVE-040	12/29/15 01/04/16	Zone 2 Zone 2	Main Silt Main Silt	NA ND	21.14 18.15	24.75 24.76	14.69 14.69	24.19 24.19	6.45 3.46	19.75												100 100		Viton Stinger Viton Stinger
HSVE-040	01/11/16	Zone 2	Main Silt	ND	18.11	24.50	14.69	24.19	3.42	19.75	13.0	13.0	4.80	3.70	0.00	0.00	0.20	13.2	0.33	111	43.0	100		Viton Stinger
HSVE-040	01/25/16	Zone 2	Main Silt	ND	19.18	24.77	14.69	24.19	4.49													100		Viton Stinger
HSVE-040	02/08/16	Zone 2	Main Silt	ND	18.20	24.75	14.69	24.19	3.51	10.75	900	557	40.5	4.00	0.40	0.00	100	07.4	4.20	400	E7.0	100		Viton Stinger
HSVE-040 HSVE-040	02/22/16 03/09/16	Zone 2 Zone 2	Main Silt Main Silt	ND ND	21.63 15.90	24.85 24.74	14.69 14.69	24.19 24.19	6.94 1.21	19.75	800	557	19.5	1.30	243	0.00	106	27.1	1.39	103	57.0	100 100		Viton Stinger Viton Stinger
HSVE-040	03/21/16	Zone 2	Main Silt	ND	18.46	24.75	14.69	24.19	3.77	19.75	885	728	19.5	1.20	157	0.00	140	30.4	1.79	114	51.0	100		Viton Stinger
HSVE-041	10/01/15	Zone 2	Main Silt	NA	NA	23.23	14.86	23.43		20.00												0		Viton Stinger
HSVE-041 HSVE-041	10/05/15	Zone 2	Main Silt	ND	Dry	23.30	14.86	23.43	8.57	20.00	270	270	20.7	0.20	0.00	0.00	E1 0					0		Viton Stinger Viton Stinger
HSVE-041	10/12/15 10/19/15	Zone 2 Zone 2	Main Silt Main Silt	ND NA	Dry NA	23.24 23.24	14.86 14.86	23.43 23.43	8.57	20.00	270	270	20.7	0.30	0.00	0.00	51.0					100		Viton Stinger
HSVE-041	10/26/15	Zone 2	Main Silt	ND	Dry	23.20	14.86	23.43	8.57													100		Viton Stinger
HSVE-041	11/09/15	Zone 2	Main Silt	ND	Dry	23.22	14.86	23.43	8.57		404	404		0.40						404		100		Viton Stinger
HSVE-041 HSVE-041	11/17/15 11/30/15	Zone 2 Zone 2	Main Silt Main Silt	ND ND	Dry Dry	23.20 23.25	14.86 14.86	23.43 23.43	8.57 8.57	20.00	131	131	20.7	0.10	0.00	0.00	30.0	0.00	0.00	121	55.0	100 100		Viton Stinger Viton Stinger
HSVE-041	12/07/15	Zone 2	Main Silt	ND	Dry	23.20	14.86	23.43	8.57	20.00	4,800	4,719	18.0	2.80	81.4	4.00	468	0.00	0.00	121	46.0	100		Viton Stinger
HSVE-041	01/04/16	Zone 2	Main Silt	ND	Dry	23.30	14.86	23.43	8.57			,										100		Viton Stinger
HSVE-041	01/11/16	Zone 2	Main Silt	ND	Dry	23.30	14.86	23.43	8.57	20.00	640	634	20.4	0.40	5.63	0.00	127	11.5	0.26	127	33.0	100		Viton Stinger
HSVE-041 HSVE-041	01/25/16 02/08/16	Zone 2 Zone 2	Main Silt Main Silt	ND ND	Dry Dry	23.27 23.25	14.86 14.86	23.43 23.43	8.57 8.57													100 100		Viton Stinger Viton Stinger
HSVE-041	02/00/10	Zone 2	Main Silt	ND ND	Dry	23.30	14.86	23.43	8.57	20.00	55.0	55.0	20.8	0.00	0.00	0.00	17.0	5.12	0.05	113	43.0	100		Viton Stinger
HSVE-041	03/09/16	Zone 2	Main Silt	ND	Dry	23.30	14.86	23.43	8.57													100		Viton Stinger
HSVE-041	03/21/16	Zone 2	Main Silt	ND	Dry	23.28	14.86	23.43	8.57	20.00	192	192	20.8	0.00	0.00	0.00	62.0	0.00	0.00	121	45.0	100		Viton Stinger
HSVE-042 HSVE-042	10/05/15 10/12/15	Zone 2 Zone 2	Main Silt Main Silt	ND ND	21.95 21.83	25.22 25.23	16.47 16.47	25.00 25.00	5.48 5.36	20.50	1,700	1,492	20.3	0.80	208	1.00	225	13.0	0.35	125	66.0	100 100		Viton Stinger Viton Stinger
HSVE-042	10/26/15	Zone 2	Main Silt	ND	23.10	25.45	16.47	25.00	6.63	20.00	1,700	1,102	20.0	0.00	200	1.00	220	10.0	0.00	120	00.0	100		Viton Stinger
HSVE-042	11/09/15	Zone 2	Main Silt	ND	21.63	25.40	16.47	25.00	5.16													100		Viton Stinger
HSVE-042 HSVE-042	11/17/15 11/30/15	Zone 2	Main Silt Main Silt	ND	21.97 21.82	25.26 25.24	16.47 16.47	25.00	5.50 5.35	20.50	2,730	2,561	19.9	0.90	169	1.00	317	13.5	0.37	122	58.0	100 100		Viton Stinger Viton Stinger
HSVE-042	12/07/15	Zone 2 Zone 2	Main Silt	ND ND	21.02 Dry	24.90	16.47	25.00 25.00	8.53	20.50	4,540	4,097	20.5	0.50	443	4.00	508	12.7	0.32	121	46.0	100		Viton Stinger
HSVE-042	01/04/16	Zone 2	Main Silt	ND	20.78	24.95	16.47	25.00	4.31		1,515	1,221										100		Viton Stinger
HSVE-042	01/11/16	Zone 2	Main Silt	ND	20.70	24.95	16.47	25.00	4.23	20.50	9,340	9,206	19.5	0.90	134	6.00	788	30.1	1.82	129	41.0	100		Viton Stinger
HSVE-042 HSVE-042	01/25/16 02/08/16	Zone 2 Zone 2	Main Silt Main Silt	ND ND	21.00 21.00	25.05 24.93	16.47 16.47	25.00 25.00	4.53 4.53													100 100		Viton Stinger Viton Stinger
HSVE-042	02/06/16	Zone 2 Zone 2	Main Silt	ND ND	21.00	24.93	16.47	25.00	4.53	20.50	3,150	2,951	20.1	0.80	199	2.00	430	9.57	0.18	118	50.0	100		Viton Stinger
HSVE-042	03/09/16	Zone 2	Main Silt	ND	21.11	24.95	16.47	25.00	4.64													100		Viton Stinger
HSVE-042	03/21/16	Zone 2	Main Silt	ND	20.80	24.95	16.47	25.00	4.33	20.50	8,215	7,262	19.9	1.00	953	7.00	589	11.0	0.24	121	49.0	100		Viton Stinger
HSVE-043 HSVE-043	10/01/15 10/06/15	Zone 2 Zone 2	Rand Rand	NA ND	NA 21.62	22.74 22.75	17.31 17.31	21.79 21.79	4.31													0		None None
HSVE-043	10/13/15	Zone 2	Rand	ND	21.74	22.75	17.31	21.79	4.43		22.0	22.0	16.2	1.80	0.00	0.00	5.00					0		None
HSVE-043	10/28/15	Zone 2	Rand	ND	21.88	22.72	17.31	21.79	4.48													0		None
HSVE-043	11/11/15	Zone 2	Rand Pand	ND ND	22.00	22.72	17.31 17.31	21.79	4.48		52.0	53.0	12.0	2 10	0.00	0.00	1 70					0		None
HSVE-043 HSVE-043	11/19/15 11/30/15	Zone 2 Zone 2	Rand Rand	ND NA	21.36 NA	22.55 22.55	17.31 17.31	21.79 21.79	4.05		53.0	53.0	12.0	2.10	0.00	0.00	1.70					50		None None
HSVE-043	12/02/15	Zone 2	Rand	ND	15.66	22.75	17.31	21.79	-1.65													50		None
HSVE-043	12/03/15	Zone 2	Rand	NA	NA	22.75	17.31	21.79									_					0		None
HSVE-043	12/08/15	Zone 2	Rand	ND	20.35	22.70	17.31	21.79	3.04		20.0	20.0	19.2	1.60	0.00	0.00	5.00					0		None
HSVE-043 HSVE-043	01/05/16 01/14/16	Zone 2 Zone 2	Rand Rand	ND ND	13.18 14.33	22.70 22.75	17.31 17.31	21.79 21.79	-4.13 -2.98													0		None None
HSVE-043	01/26/16	Zone 2	Rand	ND	17.20	22.73	17.31	21.79	-0.11													0		None
HSVE-043	02/10/16	Zone 2	Rand	ND	19.18	22.48	17.31	21.79	1.87													0		None

201605_SVEOMMdata_APP-B 14 of 35

						Fluid Le	vel and Stin	iger Data			T	Soil	Vapor Fiel	ld Screenin	g Results				Flow Rate	Estimation Da	ata	SV	E Control \	Valve Data
l 0*:	Dete	7	Charles	Depth to	Depth to Groundwar er	t Total Depth	Top of Screen	Bottom of Screen	Open Screen	Stinger Depth	Total Volatile Petroleum Hydrocarbons	Petroleum Hydrocabons	Oxygen	Carbon Dioxide	Methane	LEL 0/	PID Reading		Differential Pressure	SVE Wellhead Vacuum	Venturi Surface Temperature °F	Header Valve Percent Open	Straw Stinger Valve Percent Open	Stinger Type
Location	Date	Zone	Stratum	ft-btoc	ft-btoc	ft-btoc	ft-btoc	ft-btoc	π	ft-btoc	ppmv	ppmv	%	%	ppmv	%	ppmv	scfm	in-H ₂ O	in-H ₂ O		%	%	N
HSVE-043 HSVE-043 HSVE-043 HSVE-044 HSVE-045 HSVE-045 HSVE-045 HSVE-045 HSVE-045	02/25/16 03/01/16 03/10/16 03/24/16 10/06/15 10/13/15 10/28/15 11/11/15 11/19/15 12/02/15 12/08/15 01/05/16 01/14/16 02/25/16 03/10/16 03/24/16 10/05/15 10/12/15 10/12/15 10/12/15 11/16/15 11/16/15 11/30/15	Zone 2	Rand Rand Rand Rand Rand Rand Rand Rand	ND NA ND	20.30 NA 15.65 16.65 17.84 18.10 18.30 18.33 16.96 16.60 16.72 11.98 12.48 14.15 15.94 17.30 17.60 17.70 20.08 19.32 20.38 20.42 20.35 18.36 18.66	22.70 22.70 22.66 22.65 23.65 23.64 23.60 23.58 23.55 23.60 23.65 23.67 23.57 23.60 23.65 21.61 23.65 24.70 22.58 24.77 24.70 24.62 24.66	17.31 17.31 17.31 17.31 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.19 19.19 19.19 19.19 19.19	21.79 21.79 21.79 21.79 21.79 22.51 22.51 22.51 22.51 22.51 22.51 22.51 22.51 22.51 22.51 22.51 22.51 22.51 23.67 23.67 23.67 23.67 23.67 23.67 23.67	2.99 -1.66 -0.66 -1.16 -0.90 -0.70 -0.67 -2.04 -2.40 -2.28 -7.02 -6.52 -4.85 -3.06 -1.70 -1.40 -1.30 0.89 0.13 1.19 1.23 1.16 -0.83 -0.53	Tr-DioC	18.0 162	18.0 162	20.8	0.00	0.00	0.00	5.00 36.0	5.19	0.05	96.0	58.0	0 16.7 16.7 33.3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0	None None None None None None None None
HSVE-045 HSVE-045 HSVE-045 HSVE-045 HSVE-045 HSVE-047 HSVE-047 HSVE-047 HSVE-047 HSVE-047 HSVE-047 HSVE-047	01/04/16 01/11/16 01/25/16 02/08/16 02/22/16 03/09/16 03/21/16 10/01/15 10/05/15 10/12/15 10/20/15 11/03/15 11/09/15	Zone 2	Rand Rand Rand Rand Rand Rand Rand Rand	ND ND ND ND ND ND ND ND NA ND ND ND NA ND NA ND NA ND NA	19.20 15.08 16.60 18.05 18.09 19.50 19.07 NA 20.82 20.82 NA 20.50 NA 19.62	24.65 24.65 24.72 24.50 24.62 24.65 24.65 1047.00 21.24 21.22 21.22 21.28 21.28 21.22	19.19 19.19 19.19 19.19 19.19 19.19 16.19 16.19 16.19 16.19 16.19 16.19	23.67 23.67 23.67 23.67 23.67 23.67 23.67 20.68 20.68 20.68 20.68 20.68 20.68 20.68	0.01 -4.11 -2.59 -1.14 -1.10 0.31 -0.12 4.49 4.31 3.43	16.70 16.70 16.70 19.40	800	536	16.7	1.20	264	0.00	88.0					0 0 0 0 0 0 0 0 0 0 50 50 50		Straw Stinger Straw Stinger Straw Stinger Straw Stinger Straw Stinger Straw Stinger Viton Stinger Viton Stinger Viton Stinger Viton Stinger Viton Stinger Viton Stinger Viton Stinger
HSVE-047	11/12/15	Zone 2	Rand	110	10.02	21.22	10.10	20.00	0.10	18.50												100		Viton Stinger
HSVE-047	11/17/15	Zone 2	Rand	ND	19.20	21.25	16.19	20.68	3.01	18.50	106	87.4	20.5	0.50	18.6	0.00	15.0	41.6	3.52	125	55.0	100		Viton Stinger
HSVE-047 HSVE-047 HSVE-047 HSVE-047 HSVE-047	12/01/15 12/07/15 12/29/15 01/04/16 01/11/16 01/15/16	Zone 2	Rand Rand Rand Rand Rand Rand	ND ND NA ND ND NA	19.14 19.15 9.52 15.35 18.20 NA	21.25 21.20 21.20 21.22 21.24 21.24	16.19 16.19 16.19 16.19 16.19 16.19	20.68 20.68 20.68 20.68 20.68 20.68	2.95 2.96 -6.67 -0.84 2.01	18.50 18.50 18.50 18.50	1,712 390	1,218 390	20.2	0.60 2.90	494 0.00	0.00	171 5.00	16.5	0.54	121	49.0	100 100 0 0 0 0		Viton Stinger Viton Stinger Viton Stinger Viton Stinger Viton Stinger Viton Stinger
HSVE-047 HSVE-047 HSVE-047 HSVE-047 HSVE-047 HSVE-047	01/19/16 01/22/16 01/25/16 02/08/16 02/22/16 03/01/16 03/10/16	Zone 2	Rand Rand Rand Rand Rand Rand Rand	ND NA ND ND ND NA	18.45 NA 18.76 18.56 18.57 NA 18.55	21.21 21.21 21.22 21.20 21.20 21.20 21.20 21.22	16.19 16.19 16.19 16.19 16.19 16.19	20.68 20.68 20.68 20.68 20.68 20.68 20.68	2.26 2.57 2.37 2.38 2.36	18.50 18.50 18.50	450	244	20.0	0.60	206	0.00	46.0	5.62	0.06	112	43.0	16.7 33.3 33.3 33.3 50 100 100		Viton Stinger
HSVE-047 HSVE-047 HSVE-048 HSVE-048	03/21/16 03/28/16 03/28/16 10/05/15 10/12/15	Zone 2 Zone 2 Zone 2 Zone 2 Zone 2	Rand Rand Main Silt Main Silt	ND NA ND ND	18.67 NA 22.40 23.08	21.27 21.27 26.76 26.75	16.19 16.19 16.95 16.95	20.68 20.68 26.47 26.47	2.48 5.45 6.13	18.50 18.50 17.90	1,310 27,300	1,029 22,578	20.4	0.50 3.60	281 4,722	0.00	175 680	7.39 9.62	0.11	124 119	52.0 71.0	50 66.7 100 100		Viton Stinger Viton Stinger Viton Stinger Viton Stinger

201605_SVEOMMdata_APP-B 15 of 35

				1		Fluid Le	vel and Stin	ger Data				Soil	Vapor Fiel	d Screening	g Results			I	Flow Rate	Estimation Da	ata	S\	/E Control \	Valve Data
				Depth to Product	Depth to Groundwat er	Total Depth	Top of Screen	Bottom of Screen	Open Screen	Stinger Depth	Total Volatile Petroleum Hydrocarbons	Petroleum Hydrocabons	Oxygen	Carbon Dioxide	Methane	LEL	PID Reading	1	Differential Pressure	SVE Wellhead Vacuum	Venturi Surface Temperature	Header Valve Percent Open	Straw Stinger Valve Percent Open	Stinger Type
Location	Date	Zone	Stratum	ft-btoc	ft-btoc	ft-btoc	ft-btoc	ft-btoc	ft	ft-btoc	ppmv	ppmv	%	%	ppmv	%	ppmv	scfm	in-H ₂ O	in-H ₂ O	°F	%	%	
HSVE-048	10/20/15	Zone 2	Main Silt	ND	04.05	00.70	40.05	00.47	0.00	21.90												100		Viton Stinger
HSVE-048 HSVE-048	10/26/15 11/09/15	Zone 2 Zone 2	Main Silt Main Silt	ND ND	24.95 25.20	26.76 26.72	16.95 16.95	26.47 26.47	8.00 8.25													100 100		Viton Stinger Viton Stinger
HSVE-048	11/09/15	Zone 2 Zone 2	Main Silt	ND ND	22.30	26.72	16.95	26.47	5.35	21.90	34,700	29,600	13.3	5.7	5,100	23.0	310	21.9	0.85	114	6.00	100		Viton Stinger
HSVE-048	12/01/15	Zone 2	Main Silt	ND	24.62	26.65	16.95	26.47	7.67	21.00	01,700	20,000	10.0	0.7	0,100	20.0	0.10	21.0	0.00		0.00	100		Viton Stinger
HSVE-048	12/07/15	Zone 2	Main Silt	ND	24.47	26.60	16.95	26.47	7.52	21.90	16,700	14,890	14.6	5.30	1,810	20.0	243	28.1	1.61	118	68.0	100		Viton Stinger
HSVE-048	12/30/15	Zone 2	Main Silt	NA	23.05	26.60	16.95	26.47	6.10	21.90												100		Viton Stinger
HSVE-048	01/04/16	Zone 2	Main Silt	ND ND	22.07	26.54	16.95	26.47	5.12	21.00	2 120	1 021	10.7	1.00	1 000	0.00	124	25.0	1 20	112	55.0	100		Viton Stinger
HSVE-048 HSVE-048	01/11/16 01/25/16	Zone 2 Zone 2	Main Silt Main Silt	ND ND	22.17 22.04	26.55 26.50	16.95 16.95	26.47 26.47	5.22 5.09	21.90	2,120	1,021	19.7	1.00	1,099	0.00	134	25.8	1.30	113	55.0	100 100		Viton Stinger Viton Stinger
HSVE-048	02/08/16	Zone 2	Main Silt	ND	22.16	26.50	16.95	26.47	5.21													100		Viton Stinger
HSVE-048	02/22/16	Zone 2	Main Silt	ND	22.05	26.50	16.95	26.47	5.10	21.90	15,000	8,776	17.5	2.80	6,224	11.0	465	22.1	0.95	111	57.0	100		Viton Stinger
HSVE-048	03/03/16	Zone 2	Main Silt							23.80												100		Viton Stinger
HSVE-048	03/10/16	Zone 2	Main Silt	ND	24.35	26.50	16.95	26.47	7.40	00.00	00.700	04.004	40.5	4.00	0.000	40.0	200	40.0	0.00	400	50.0	100		Viton Stinger
HSVE-048 HSVE-049	03/21/16 10/05/15	Zone 2 Zone 2	Main Silt Main Silt	ND ND	22.30 21.95	26.50 25.09	16.95 17.04	26.47 24.64	5.35 4.91	23.80	30,700	24,364	16.5	4.20	6,336	13.0	630	13.3	0.36	122	58.0	100 100		Viton Stinger Viton Stinger
HSVE-049	10/03/13	Zone 2	Main Silt	ND ND	23.03	25.08	17.04	24.64	5.99	19.10	51,000	49,444	16.7	3.20	1,556	34.0	857	39.3	3.20	123	67.0	100		Viton Stinger
HSVE-049	10/20/15	Zone 2	Main Silt							21.90	.,,,,,,,,	,			,,,,,,							100		Viton Stinger
HSVE-049	10/26/15	Zone 2	Main Silt	ND	23.00	25.08	17.04	24.64	5.96													100		Viton Stinger
HSVE-049	11/09/15	Zone 2	Main Silt	ND	23.62	25.06	17.04	24.64	6.58													100		Viton Stinger
HSVE-049	11/17/15	Zone 2	Main Silt	ND	22.00	25.38	17.04	24.64	4.96	21.90	43,750	42,550	17.0	3.00	1,200	29.0	785	54.8	6.22	125	64.0	100		Viton Stinger
HSVE-049 HSVE-049	12/01/15 12/07/15	Zone 2 Zone 2	Main Silt Main Silt	ND ND	23.60 23.85	25.50 25.00	17.04 17.04	24.64 24.64	6.56 6.81	21.90	10,600	7,571	16.4	4.20	3,029	29.0	942	53.7	5.78	120	57.0	100 100		Viton Stinger Viton Stinger
HSVE-049	01/04/16	Zone 2	Main Silt	ND	17.20	25.10	17.04	24.64	0.16	21.30	10,000	7,571	10.4	4.20	3,023	23.0	342	33.7	3.70	120	37.0	100		Viton Stinger
HSVE-049	01/11/16	Zone 2	Main Silt	ND	16.81	25.00	17.04	24.64	-0.23	21.90								0.00	0.00	121	38.0	100		Viton Stinger
HSVE-049	01/25/16	Zone 2	Main Silt	ND	17.26	25.10	17.04	24.64	0.22													100		Viton Stinger
HSVE-049	02/08/16	Zone 2	Main Silt	ND	17.80	25.10	17.04	24.64	0.76	04.00	00.000	00.050	47.0	0.00	4.047	04.0	004	40.0	0.70	440	57.0	100		Viton Stinger
HSVE-049 HSVE-049	02/22/16 03/10/16	Zone 2 Zone 2	Main Silt Main Silt	ND ND	17.35 23.28	25.10 25.05	17.04 17.04	24.64 24.64	0.31 6.24	21.90	30,000	28,353	17.3	2.90	1,647	21.0	204	43.9	3.76	112	57.0	100 100		Viton Stinger Viton Stinger
HSVE-049	03/10/16	Zone 2	Main Silt	ND ND	23.26	25.03	17.04	24.64	5.13	21.90	61,000	58,900	16.4	4.20	2,100	23.0	818	67.5	9.11	119	57.0	100		Viton Stinger
HSVE-050	10/05/15	Zone 2	Main Silt	ND	22.78	24.32	14.27	23.78	8.51	200	0.,000	33,333		0	2,.00	20.0	0.0	0.10	0		07.0	100		Viton Stinger
HSVE-050	10/12/15	Zone 2	Main Silt	ND	22.60	24.25	14.27	23.78	8.33	19.90	4,200	4,026	19.7	1.00	174	2.00	450	33.7	2.35	123	67.0	100		Viton Stinger
HSVE-050	10/26/15	Zone 2	Main Silt	ND	21.20	24.30	14.27	23.78	6.93													100		Viton Stinger
HSVE-050	11/09/15	Zone 2	Main Silt	ND	22.76	24.30	14.27	23.78	8.49	10.00	4.000	4 200	10.0	1.10	F00	2.00	424	20.4	2.42	101	50.0	100		Viton Stinger
HSVE-050 HSVE-050	11/17/15 12/01/15	Zone 2 Zone 2	Main Silt Main Silt	ND ND	22.75 22.43	24.24 24.45	14.27 14.27	23.78 23.78	8.48 8.16	19.90	4,800	4,300	19.6	1.10	500	3.00	434	39.1	3.12	124	58.0	100 100		Viton Stinger Viton Stinger
HSVE-050	12/07/15	Zone 2	Main Silt	ND	22.45	24.26	14.27	23.78	8.18	19.90	8,162	7,942	19.2	1.40	220	6.00	620	36.5	2.69	122	57.0	100		Viton Stinger
HSVE-050	01/04/16	Zone 2	Main Silt	ND	17.07	24.34	14.27	23.78	2.80		,	•										100		Viton Stinger
HSVE-050	01/11/16	Zone 2	Main Silt	ND	20.94	24.25	14.27	23.78	6.67	19.90	160	157	20.6	0.30	2.82	0.00	31.0	26.3	1.44	131	54.0	0		Viton Stinger
HSVE-050	01/15/16	Zone 2	Main Silt	NA	NA 22.05	24.25	14.27	23.78	0.70	19.90												16.7		Viton Stinger
HSVE-050 HSVE-050	01/19/16 01/22/16	Zone 2 Zone 2	Main Silt Main Silt	ND NA	23.05 NA	24.34 24.34	14.27 14.27	23.78 23.78	8.78	19.90												16.7 33.3		Viton Stinger Viton Stinger
HSVE-050	01/22/16	Zone 2 Zone 2	Main Silt	NA ND	20.45	24.34	14.27	23.78	6.18	13.50												33.3		Viton Stinger
HSVE-050	02/08/16	Zone 2	Main Silt	ND	21.40	24.30	14.27	23.78	7.13													33.3		Viton Stinger
HSVE-050	02/12/16	Zone 2	Main Silt	NA	NA	24.30	14.27	23.78		19.90												66.7		Viton Stinger
HSVE-050	02/22/16	Zone 2	Main Silt	ND	17.22	24.32	14.27	23.78	2.95	19.90	3,220	2,838	20.1	0.80	382	2.00	357	31.1	1.89	113	56.0	50		Viton Stinger
HSVE-050	03/10/16	Zone 2	Main Silt	ND NA	22.80 NA	24.40	14.27	23.78	8.53	10.00												50 83 3		Viton Stinger
HSVE-050 HSVE-050	03/14/16 03/21/16	Zone 2 Zone 2	Main Silt Main Silt	NA ND	NA 20.27	24.40 24.34	14.27 14.27	23.78 23.78	6.00	19.90 19.90	4,453	4,082	19.5	1.10	371	4.00	500	36.8	2.73	124	52.0	83.3 83.3		Viton Stinger Viton Stinger
HSVE-050	03/28/16	Zone 2	Main Silt	NA	NA	24.34	14.27	23.78	3.00	19.90	1, 100	1,002	10.0	5	0.1	1.50	000]		·	02.0	100		Viton Stinger
HSVE-051	10/05/15	Zone 2	Main Silt	ND	22.95	24.94	15.02	24.54	7.93													100		Viton Stinger
HSVE-051	10/12/15	Zone 2	Main Silt	ND	23.28	24.94	15.02	24.54	8.26	20.80	4,000	2,236	19.8	0.80	1,764	2.00	300	45.8	4.33	124	64.0	100		Viton Stinger
HSVE-051	10/26/15	Zone 2	Main Silt	ND	22.85	24.92	15.02	24.54	7.83													100		Viton Stinger
HSVE-051	11/09/15	Zone 2	Main Silt	ND	23.10	24.90	15.02	24.54	8.08	20.00	E 025	3.035	10.4	1.00	1 100	2.00	205	40.0	4.04	400	E4.0	100		Viton Stinger
HSVE-051 HSVE-051	11/17/15 12/01/15	Zone 2 Zone 2	Main Silt Main Silt	ND ND	22.90 23.26	24.90 24.98	15.02 15.02	24.54 24.54	7.88 8.24	20.80	5,035	3,935	19.4	1.20	1,100	3.00	385	48.8	4.81	123	54.0	100 100		Viton Stinger Viton Stinger
HSVE-051	12/01/15	Zone 2	Main Silt	ND ND	23.20	24.93	15.02	24.54	8.37	20.80	8,930	8,153	18.6	1.90	777	6.00	665	42.2	3.57	121	54.0	100		Viton Stinger
HSVE-051	01/04/16	Zone 2	Main Silt	ND	20.74	24.95	15.02	24.54	5.72		2,300	2,.00	. 5.0				300			· - ·	3	100		Viton Stinger

201605_SVEOMMdata_APP-B 16 of 35

						Fluid Le	vel and Stin	iger Data			T	Soil	Vapor Fiel	d Screenin	g Results				Flow Rate	Estimation Da	ata	S۱	E Control	Valve Data
				Depth to Product	Depth to Groundwat er	t Total Depth	Top of Screen	Bottom of Screen	Open Screen	Stinger Depth	Total Volatile Petroleum Hydrocarbons	Petroleum Hydrocabons	Oxygen	Carbon Dioxide	Methane	LEL	PID Reading	Flow Rate	Differential Pressure	SVE Wellhead Vacuum	Venturi Surface Temperature	Header Valve Percent Open	Valve	Stinger Type
Location	Date	Zone	Stratum	ft-btoc	ft-btoc	ft-btoc	ft-btoc	ft-btoc	ft	ft-btoc	ppmv	ppmv	%	%	ppmv	%	ppmv	scfm	in-H ₂ O	in-H ₂ O	°F	%	%	
HSVE-051	01/11/16	Zone 2	Main Silt	ND	20.75	24.90	15.02	24.54	5.73	20.80	50.0	50.0	20.5	0.40	0.00	0.00	17.0	16.6	0.56	128	49.0	100		Viton Stinger
HSVE-051	01/25/16	Zone 2	Main Silt	ND	20.75	24.95	15.02	24.54	5.73													100		Viton Stinger
HSVE-051 HSVE-051	02/08/16 02/22/16	Zone 2 Zone 2	Main Silt Main Silt	ND ND	20.80 20.75	24.92 24.95	15.02 15.02	24.54 24.54	5.78 5.73	20.80	3,567	2,868	19.4	1.30	699	3.00	372	35.6	2.51	118	54.0	100 100		Viton Stinger Viton Stinger
HSVE-051	03/10/16	Zone 2	Main Silt	ND	22.55	24.92	15.02	24.54	7.53	20.00	0,001	2,000	10.4	1.00	000	0.00	012	00.0	2.01	110	04.0	100		Viton Stinger
HSVE-051	03/21/16	Zone 2	Main Silt	ND	23.00	24.90	15.02	24.54	7.98	20.80	4,780	3,427	19.0	1.40	1,353	5.00	418	42.6	3.66	123	55.0	100		Viton Stinger
HSVE-051	03/21/16	Zone 2	Main Silt	ND	23.00	24.90	15.02	24.54	7.98	20.80	4,780	3,427	19.0	1.40	1,353	5.00	418	27.3	1.49	123	48.0	100		Viton Stinger
HSVE-052 HSVE-052	10/06/15 10/14/15	Zone 5 Zone 5	Rand Rand	ND ND	21.72 21.56	22.70 22.52	17.63 17.63	22.12 22.12	4.09 3.93	20.00	35,600	32,314	17.0	3.30	3,286	24.0	685	11.2	0.27	135	62.0	100 100		Viton Stinger Viton Stinger
HSVE-052	10/14/15	Zone 5	Rand	ND	21.35	22.75	17.63	22.12	3.72	20.00	33,000	32,314	17.0	3.30	3,200	24.0	000	11.2	0.27	100	02.0	100		Viton Stinger
HSVE-052	11/10/15	Zone 5	Rand	ND	21.65	22.52	17.63	22.12	4.02													100		Viton Stinger
HSVE-052	11/18/15	Zone 5	Rand	ND	20.60	21.55	17.63	22.12	2.97	20.00	63,500	58,973	17.1	3.40	4,527	23.0	820	12.7	0.34	134	55.0	100		Viton Stinger
HSVE-052	11/23/15	Zone 5	Rand	ND	21.70	22.50 22.70	17.63	22.12 22.12	4.07													100		Viton Stinger
HSVE-052 HSVE-052	12/01/15 12/08/15	Zone 5 Zone 5	Rand Rand	ND ND	21.65 21.60	22.70	17.63 17.63	22.12	4.02 3.97	20.00	29,200	27,693	17.6	2.70	1,507	16.0	752	11.5	0.27	129	51.0	100 100		Viton Stinger Viton Stinger
HSVE-052	12/29/15	Zone 5	Rand	NA	NA	22.45	17.63	22.12	0.0.	20.00	20,200	2.,000		20	.,00.		. 02		0.2.	0	00	0		Viton Stinger
HSVE-052	12/30/15	Zone 5	Rand	NA	21.96	22.40	17.63	22.12	4.33	20.00												0		Viton Stinger
HSVE-052	01/05/16	Zone 5	Rand	ND	21.66	22.68	17.63	22.12	4.03	00.00	0.050	0.000	00.5	0.00	10.7	0.00	540					0		Viton Stinger
HSVE-052 HSVE-052	01/13/16 01/15/16	Zone 5 Zone 5	Rand Rand	ND NA	Dry NA	22.38 22.38	17.63 17.63	22.12 22.12	4.49	20.00 20.00	2,250	2,230	20.5	0.30	19.7	0.00	513					16.7		Viton Stinger Viton Stinger
HSVE-052	01/19/16	Zone 5	Rand	ND	21.92	22.66	17.63	22.12	4.29	20.00												16.7		Viton Stinger
HSVE-052	01/22/16	Zone 5	Rand	NA	NA	22.66	17.63	22.12		20.00												33.3		Viton Stinger
HSVE-052	01/26/16	Zone 5	Rand	ND	21.45	22.68	17.63	22.12	3.82													33.3		Viton Stinger
HSVE-052 HSVE-052	02/09/16	Zone 5	Rand	ND	21.68 21.66	22.67	17.63 17.63	22.12 22.12	4.05	20.00	22 400	20.402	17.9	2.60	2.007	16.0	GGE	6.67	0.09	106	E0.0	33.3 50		Viton Stinger
HSVE-052	02/23/16 03/01/16	Zone 5 Zone 5	Rand Rand	ND NA	21.00 NA	22.68 22.68	17.63	22.12	4.03	20.00 20.00	23,400	20,493	17.9	2.60	2,907	16.0	665	6.67	0.09	126	50.0	66.7		Viton Stinger Viton Stinger
HSVE-052	03/08/16	Zone 5	Rand	ND	21.66	22.37	17.63	22.12	4.03	20.00												66.7		Viton Stinger
HSVE-052	03/14/16	Zone 5	Rand	NA	NA	22.37	17.63	22.12		20.00												66.7		Viton Stinger
HSVE-052	03/22/16	Zone 5	Rand	ND	21.66	22.68	17.63	22.12	4.03	20.00	42,500	38,059	17.0	3.70	4,441	17.0	661	17.9	0.66	131	49.0	66.7		Viton Stinger
HSVE-052 HSVE-053	03/28/16 10/06/15	Zone 5 Zone 5	Rand Rand	NA ND	NA 20.55	22.68 21.64	17.63 16.44	22.12 20.93	4.11	20.00												83.3 100		Viton Stinger Viton Stinger
HSVE-053	10/00/15	Zone 5	Rand	ND	20.25	21.62	16.44	20.93	3.81	19.30	6,350	4,921	18.8	1.60	1,429	4.00	363	12.2	0.32	134	69.0	100		Viton Stinger
HSVE-053	10/27/15	Zone 5	Rand	ND	20.55	21.64	16.44	20.93	4.11		,											100		Viton Stinger
HSVE-053	11/10/15	Zone 5	Rand	ND	20.75	21.62	16.44	20.93	4.31													100		Viton Stinger
HSVE-053 HSVE-053	11/18/15 12/01/15	Zone 5 Zone 5	Rand Rand	ND ND	20.40 20.60	21.55 21.65	16.44 16.44	20.93 20.93	3.96 4.16	19.30	7,560	5,997	18.8	1.40	1,563	6.00	523	14.8	0.46	130	59.0	100 100		Viton Stinger Viton Stinger
HSVE-053	12/01/15	Zone 5	Rand	ND ND	20.00 Dry	21.65	16.44	20.93	4.49	19.30	6,320	2,489	16.5	2.30	3,831	7.00	215	14.3	0.41	127	47.0	100		Viton Stinger
HSVE-053	12/29/15	Zone 5	Rand	ND	20.72	21.65	16.44	20.93	4.28	19.30	.,.	,			-,							100		Viton Stinger
HSVE-053	12/29/15	Zone 5	Rand	NA	20.72	21.65	16.44	20.93	4.28	19.30												100		Viton Stinger
HSVE-053	01/05/16	Zone 5	Rand	ND ND	20.58	21.52	16.44 16.44	20.93	4.14 4.01	10.20	94.0	60.0	20.6	0.20	111	0.00	22.0	12.4	0.36	107	46.0	100		Viton Stinger Viton Stinger
HSVE-053 HSVE-053	01/13/16 01/26/16	Zone 5 Zone 5	Rand Rand	ND ND	20.45 20.54	21.64 21.50	16.44 16.44	20.93 20.93	4.01 4.10	19.30	84.0	69.9	20.6	0.20	14.1	0.00	23.0	13.4	0.36	127	46.0	100 100		Viton Stinger Viton Stinger
HSVE-053	02/09/16	Zone 5	Rand	ND	20.45	21.64	16.44	20.93	4.01													100		Viton Stinger
HSVE-053	02/23/16	Zone 5	Rand	ND	20.50	21.52	16.44	20.93	4.06	19.30	1,471	690	20.4	0.50	781	0.00	94.0	17.7	0.63	124	49.0	100		Viton Stinger
HSVE-053	03/07/16	Zone 5	Rand	ND	20.70	21.60	16.44	20.93	4.26	40.00	6.055	2.050	40.0	4.00	0.400	7.00	000	44.4	0.40	400	F0.0	100		Viton Stinger
HSVE-053 HSVE-053	03/22/16 03/28/16	Zone 5 Zone 5	Rand Rand	ND	20.60	21.60	16.44	20.93	4.16	19.30 20.90	6,055	3,952	19.0	1.30	2,103	7.00	282	14.4	0.43	128	58.0	100 100		Viton Stinger Viton Stinger
HSVE-054	10/06/15	Zone 5	Main Sand	ND	Dry	22.98	13.56	23.08	9.52	20.00												100		None
HSVE-054	10/14/15	Zone 5	Main Sand	ND	18.95	22.95	13.56	23.08	5.39		190	167	20.5	0.30	22.9	0.00	42.0	37.1	2.92	131	65.0	100		None
HSVE-054	10/27/15	Zone 5	Main Sand	ND	15.42	23.00	13.56	23.08	1.86													100		None
HSVE-054 HSVE-054	11/10/15 11/18/15	Zone 5	Main Sand Main Sand	ND ND	Dry 17.95	23.00 23.07	13.56 13.56	23.08 23.08	9.52 4.39		1,265	1,152	19.8	0.90	113	0.00	208	38.4	3.08	132	57.0	100 100		None
HSVE-054	12/01/15	Zone 5 Zone 5	Main Sand Main Sand	ND ND	17.95	23.07	13.56	23.08	4.39 -0.16		1,200	1,102	19.0	0.90	113	0.00	∠∪0	30.4	3.00	132	37.0	100		None None
HSVE-054	12/03/15	Zone 5	Main Sand	NA	NA	23.05	13.56	23.08	2													0		None
HSVE-054	12/09/15	Zone 5	Main Sand	ND	Dry	22.82	13.56	23.08	9.52		277	277	20.0	0.60	0.00	0.00	47.0					0		None
HSVE-054	01/05/16	Zone 5	Main Sand	ND	Dry	23.26	13.56	23.08	9.52		440	4.40	10.0	1.10	0.45	0.00	24.0	24.4	0.00	400	44.0	0		None
HSVE-054	01/13/16 01/26/16	Zone 5 Zone 5	Main Sand Main Sand	ND ND	19.60 22.26	22.88 23.00	13.56 13.56	23.08 23.08	6.04 8.70		148	140	19.6	1.10	8.45	0.00	31.0	21.4	0.92	130	41.0	100 100		None None

201605_SVEOMMdata_APP-B 17 of 35

						Fluid Le	vel and Stir	nger Data				Soil	Vapor Fie	ld Screenin	g Results				Flow Rate	Estimation Dat	a	SV	E Control	Valve Data
				Depth to Product	Depth to Groundwat er	Total Depth	Top of Screen	Bottom of Screen	Open Screen	Stinger Depth	Total Volatile Petroleum Hydrocarbons	Petroleum Hydrocabons	Oxygen	Carbon Dioxide	Methane	LEL	PID Reading	Flow Rate	Differential Pressure	SVE Wellhead Vacuum	Venturi Surface Temperature	Header Valve Percent Open	Straw Stinger Valve Percent Open	Stinger Type
Location	Date	Zone	Stratum	ft-btoc	ft-btoc	ft-btoc	ft-btoc	ft-btoc	ft	ft-btoc	ppmv	ppmv	%	%	ppmv	%	ppmv	scfm	in-H ₂ O	in-H ₂ O	°F	%	%	0 7.
HSVE-054	02/09/16	Zone 5	Main Sand	ND	Dry	23.25	13.56	23.08	9.52													100		None
HSVE-054 HSVE-054	02/23/16 03/01/16	Zone 5 Zone 5	Main Sand Main Sand	ND NA	Dry NA	23.26 23.26	13.56 13.56	23.08 23.08	9.52		138	125	19.7	1.10	12.9	0.00	31.0	12.0	0.21	24.0	43.0	16.7 66.7		None None
HSVE-054	03/01/10	Zone 5	Main Sand	ND	17.94	23.00	13.56	23.08	4.38													66.7		None
HSVE-054	03/14/16	Zone 5	Main Sand	NA	NA	23.00	13.56	23.08														66.7		None
HSVE-054 HSVE-055	03/23/16 10/05/15	Zone 5 Zone 6	Main Sand Rand	ND ND	19.30 13.34	22.35 22.76	13.56 17.41	23.08 23.96	5.74 -4.07		1,790	1,458	19.2	1.50	332	0.00	213	14.5	0.43	127	56.0	83.3 0		None None
HSVE-055	10/03/15	Zone 6	Rand	ND ND	14.37	22.75	17.41	23.96	-3.04													0		None
HSVE-055	10/26/15	Zone 6	Rand	ND	16.42	22.76	17.41	23.96	-0.99													0		None
HSVE-055 HSVE-055	11/10/15 11/17/15	Zone 6 Zone 6	Rand Rand	ND ND	16.70 15.70	22.65 22.75	17.41 17.41	23.96 23.96	-0.71 -1.71													0		None None
HSVE-055	12/01/15	Zone 6	Rand	ND ND	10.96	22.73	17.41	23.96	-1.71 -6.45													0		None
HSVE-055	12/08/15	Zone 6	Rand	ND	10.15	22.70	17.41	23.96	-7.26													0		None
HSVE-055	01/04/16	Zone 6	Rand	ND ND	5.49 5.72	22.74	17.41	23.96	-11.92													0 0		None
HSVE-055 HSVE-055	01/12/16 01/25/16	Zone 6 Zone 6	Rand Rand	ND ND	5.72 6.35	22.70 22.62	17.41 17.41	23.96 23.96	-11.69 -11.06													0		None None
HSVE-055	02/09/16	Zone 6	Rand	ND	8.08	22.75	17.41	23.96	-9.33													0		None
HSVE-055	02/22/16	Zone 6	Rand	ND	10.12	22.74	17.41	23.96	-7.29													0		None
HSVE-055 HSVE-055	03/07/16 03/22/16	Zone 6 Zone 6	Rand Rand	ND ND	11.10 12.02	22.70 22.45	17.41 17.41	23.96 23.96	-6.31 -5.39													0	0	None None
HSVE-056	10/05/15	Zone 6	Rand	ND	12.74	23.90	16.57	23.12	-3.83													0	0	Straw Stinger
HSVE-056	10/13/15	Zone 6	Rand	ND	13.40	23.90	16.57	23.12	-3.17													0	0	Straw Stinger
HSVE-056 HSVE-056	10/26/15 11/10/15	Zone 6 Zone 6	Rand Rand	ND ND	16.00 16.05	23.95 23.85	16.57 16.57	23.12 23.12	-0.57 -0.52													0	0	Straw Stinger Straw Stinger
HSVE-056	11/17/15	Zone 6	Rand	ND	14.10	23.92	16.57	23.12	-2.47													0	0	Straw Stinger
HSVE-056	12/01/15	Zone 6	Rand	ND	10.85	23.90	16.57	23.12	-5.72													0	0	Straw Stinger
HSVE-056 HSVE-056	12/08/15 01/04/16	Zone 6 Zone 6	Rand Rand	ND ND	10.69 6.10	23.88 23.95	16.57 16.57	23.12 23.12	-5.88 -10.47													0	0	Straw Stinger Straw Stinger
HSVE-056	01/04/16	Zone 6	Rand	ND	6.45	23.90	16.57	23.12	-10.12													0	0	Straw Stinger
HSVE-056	01/25/16	Zone 6	Rand	ND	5.90	23.95	16.57	23.12	-10.67													0		Straw Stinger
HSVE-056 HSVE-056	02/09/16 02/22/16	Zone 6 Zone 6	Rand Rand	ND ND	7.50 9.60	23.92 23.90	16.57 16.57	23.12 23.12	-9.07 -6.97													0		Straw Stinger Straw Stinger
HSVE-056	03/07/16	Zone 6	Rand	ND ND	10.94	23.96	16.57	23.12	-5.63													0		Straw Stinger
HSVE-056	03/22/16	Zone 6	Rand	ND	11.37	23.80	16.57	23.12	-5.20													0	0	Straw Stinger
HSVE-057	10/05/15	Zone 6	Rand	ND	13.32	27.18	20.46	27.07 27.07	-7.14 6.24													0	0 0	Straw Stinger
HSVE-057 HSVE-057	10/13/15 10/26/15	Zone 6 Zone 6	Rand Rand	ND ND	14.12 16.08	27.29 27.18	20.46 20.46	27.07	-6.34 -4.38													0	0	Straw Stinger Straw Stinger
HSVE-057	11/10/15	Zone 6	Rand	ND	16.00	27.12	20.46	27.07	-4.46													0	0	Straw Stinger
HSVE-057	11/17/15	Zone 6	Rand	ND ND	15.82	27.20	20.46	27.07	-4.64 0.27													0	0	Straw Stinger
HSVE-057 HSVE-057	12/01/15 12/08/15	Zone 6 Zone 6	Rand Rand	ND ND	11.19 10.50	27.18 27.10	20.46 20.46	27.07 27.07	-9.27 -9.96													0	0	Straw Stinger Straw Stinger
HSVE-057	01/04/16	Zone 6	Rand	ND	6.20	27.18	20.46	27.07	-14.26													0	Õ	Straw Stinger
HSVE-057	01/12/16	Zone 6	Rand	ND	6.58	27.20	20.46	27.07	-13.88													0	0	Straw Stinger
HSVE-057 HSVE-057	01/25/16 02/09/16	Zone 6 Zone 6	Rand Rand	ND ND	5.75 7.41	27.16 27.15	20.46 20.46	27.07 27.07	-14.71 -13.05													0		Straw Stinger Straw Stinger
HSVE-057	02/23/16	Zone 6	Rand	ND	9.70	27.18	20.46	27.07	-10.76													0	0	Straw Stinger
HSVE-057	03/01/16	Zone 6	Rand	NA	NA	27.18	20.46	27.07														0	100	Straw Stinger
HSVE-057 HSVE-057	03/03/16 03/04/16	Zone 6 Zone 6	Rand Rand	NA	NA	27.18	20.46	27.07														0	100 100	Straw Stinger Straw Stinger
HSVE-057	03/07/16	Zone 6	Rand	ND	24.70	27.20	20.46	27.07	4.24		11.0	0.00	20.8	0.00	11.0	0.00	2.00					0	100	Straw Stinger
HSVE-057	03/08/16	Zone 6	Rand	ND	24.70	27.20	20.46	27.07	4.24		71.0	1.43	20.8	0.00	69.6	0.00	2.00					0	100	Straw Stinger
HSVE-057 HSVE-057	03/09/16 03/10/16	Zone 6 Zone 6	Rand Rand	ND	24.70	27.20	20.46	27.07	4.24		36.0 34.0	0.00 1.65	20.8 20.8	0.10 0.10	36.0 32.4	0.00	1.00 1.00					0	100 100	Straw Stinger Straw Stinger
HSVE-057	03/10/16	Zone 6	Rand	ND	11.00	27.10	20.46	27.07	-9.46		54.0	1.00	20.0	0.10	JZ. 4	0.00	1.00					0	0	Straw Stinger
HSVE-058	10/05/15	Zone 6	N. Olive	ND	12.06	14.55	9.59	15.12	2.47													0		Viton Stinger
HSVE-058 HSVE-058	10/13/15 10/19/15	Zone 6 Zone 6	N. Olive N. Olive	ND NA	12.80 NA	14.60 14.60	9.59 9.59	15.12 15.12	3.21	10.10 10.10	24,300	0.00	19.7	1.10	24,300	16.0	36.0					0 50		Viton Stinger Viton Stinger
HSVE-058	10/19/15	Zone 6	N. Olive	ND ND	11.91	14.60	9.59	15.12	2.32	10.10												50 50		Viton Stinger

201605_SVEOMMdata_APP-B 18 of 35

						Fluid Le	vel and Stir	iger Data				Soil	Vapor Fie	ld Screenin	g Results				Flow Rate	Estimation Date	ta	SV	E Control	Valve Data
				Depth to	Depth to Groundwat er	Total Depth	Top of Screen	Bottom of Screen	Open Screen	Stinger Depth	Total Volatile Petroleum Hydrocarbons	Petroleum Hydrocabons	Oxygen	Carbon Dioxide	Methane	LEL	PID Reading	Flow Rate	Differential Pressure	SVE Wellhead Vacuum	Venturi Surface Temperature	Header Valve Percent Open	Straw Stinger Valve Percent Open	Stinger Type
Location	Date	Zone	Stratum	ft-btoc	ft-btoc	ft-btoc	ft-btoc	ft-btoc	ft	ft-btoc	ppmv	ppmv	%	%	ppmv	%	ppmv	scfm	in-H₂O	in-H ₂ O	°F	%	%	Cungor Typo
HSVE-058	11/03/15	Zone 6	N. Olive	NA	NA	14.62	9.59	15.12		10.10	1											83.3		Viton Stinger
HSVE-058	11/10/15	Zone 6	N. Olive	ND	11.15	14.47	9.59	15.12	1.56													83.3		Viton Stinger
HSVE-058 HSVE-058	11/11/15 11/17/15	Zone 6 Zone 6	N. Olive N. Olive	NA ND	NA 10.14	14.47 14.50	9.59 9.59	15.12 15.12	0.55	10.10 10.10	56,200	19,000	14.7	5.10	37,200	38.0	55.6	12.0	0.29	121	58.0	100 100		Viton Stinger Viton Stinger
HSVE-058	11/17/15	Zone 6	N. Olive	ND	10.14	14.00	9.59	15.12	1.33	10.10	50,200	19,000	14.7	5.10	37,200	36.0	55.0	12.0	0.29	121	36.0	100		Viton Stinger
HSVE-058	12/01/15	Zone 6	N. Olive	ND	10.98	14.46	9.59	15.12	1.39													100		Viton Stinger
HSVE-058 HSVE-058	12/08/15 12/10/15	Zone 6 Zone 6	N. Olive N. Olive	ND NA	9.40 NA	14.45 14.45	9.59 9.59	15.12 15.12	-0.19	10.10 10.10												0 100		Viton Stinger Viton Stinger
HSVE-058	01/04/16	Zone 6	N. Olive	ND ND	10.10	15.30	9.59	15.12	0.51	10.10												100		Viton Stinger
HSVE-058	01/12/16	Zone 6	N. Olive	ND	10.75	15.30	9.59	15.12	1.16	10.10	3.00	3.00	20.8	0.00	0.00	0.00	1.00	16.9	0.57	128	38.0	100		Viton Stinger
HSVE-058	01/25/16	Zone 6	N. Olive	ND	9.90	15.30	9.59	15.12	0.31													100		Viton Stinger
HSVE-058 HSVE-058	02/09/16 02/23/16	Zone 6 Zone 6	N. Olive N. Olive	ND ND	6.46 10.00	14.82 15.30	9.59 9.59	15.12 15.12	-3.13 0.41	10.10	670	0.00	20.8	0.30	670	0.00	5.00	9.12	0.13	47.0	45.0	100 50		Viton Stinger Viton Stinger
HSVE-058	03/07/16	Zone 6	N. Olive	ND	9.82	14.80	9.59	15.12	0.23	. 30]	00	_0.0		-, •	00	00					50		Viton Stinger
HSVE-058	03/22/16	Zone 6	N. Olive	ND	11.05	14.80	9.59	15.12	1.46	10.10	370	9.71	20.8	0.00	360	0.00	3.00	5.78	0.05	28.0	49.0	33.3		Viton Stinger
HSVE-058 HSVE-059	03/28/16 10/05/15	Zone 6 Zone 6	N. Olive Rand	NA ND	NA 12.30	14.80 25.12	9.59 17.54	15.12 25.11	-5.24	10.10												50 0	0	Viton Stinger Straw Stinger
HSVE-059	10/13/15	Zone 6	Rand	ND	12.91	25.18	17.54	25.11	-4.63													0	Ö	Straw Stinger
HSVE-059	10/26/15	Zone 6	Rand	ND	14.50	25.20	17.54	25.11	-3.04													0	0	Straw Stinger
HSVE-059 HSVE-059	11/10/15 11/17/15	Zone 6 Zone 6	Rand Rand	ND ND	13.82 14.90	25.10 25.20	17.54 17.54	25.11 25.11	-3.72 -2.64													0	0	Straw Stinger Straw Stinger
HSVE-059	12/01/15	Zone 6	Rand	ND	10.90	25.20	17.54	25.11	-6.64													0	0	Straw Stinger
HSVE-059	12/08/15	Zone 6	Rand	ND	9.65	25.18	17.54	25.11	-7.89													0	0	Straw Stinger
HSVE-059 HSVE-059	01/04/16 01/12/16	Zone 6 Zone 6	Rand Rand	ND ND	6.85 7.10	25.30 25.25	17.54 17.54	25.11 25.11	-10.69 -10.44													0	0	Straw Stinger Straw Stinger
HSVE-059	01/12/10	Zone 6	Rand	ND	4.50	25.30	17.54	25.11	-13.04													0	U	Straw Stinger
HSVE-059	02/09/16	Zone 6	Rand	ND	6.16	25.30	17.54	25.11	-11.38													0		Straw Stinger
HSVE-059	02/23/16	Zone 6	Rand	ND NA	8.45	25.30	17.54	25.11 25.11	-9.09													0	0	Straw Stinger
HSVE-059 HSVE-059	03/01/16 03/03/16	Zone 6 Zone 6	Rand Rand	NA	NA	25.30	17.54	23.11														0	100 100	Straw Stinger Straw Stinger
HSVE-059	03/04/16	Zone 6	Rand	NA	NA	25.30	17.54	25.11														0	100	Straw Stinger
HSVE-059	03/07/16	Zone 6	Rand	ND	22.28	25.10	17.54	25.11	4.74		1,367	103	20.6	0.30	1,264	0.00	3.00					0	100	Straw Stinger
HSVE-059 HSVE-059	03/08/16 03/09/16	Zone 6 Zone 6	Rand Rand	ND ND	22.28 22.30	25.10 25.10	17.54 17.54	25.11 25.11	4.74 4.76		4,035 180	194 21.8	20.4 20.8	0.50 0.30	3,841 158	3.00 0.00	6.00 4.00					0	100 100	Straw Stinger Straw Stinger
HSVE-059	03/10/16	Zone 6	Rand	110	22.00	20.10	17.01	20.11	1.70		170	12.7	20.5	0.40	157	0.00	2.00					0	100	Straw Stinger
HSVE-059	03/22/16	Zone 6	Rand	ND	9.31	25.00	17.54	25.11	-8.23													0	0	Straw Stinger
HSVE-060 HSVE-060	10/05/15 10/13/15	Zone 6 Zone 6	Rand Rand	ND ND	12.77 13.55	24.68 24.60	17.83 17.83	24.31 24.31	-5.06 -4.28													0	0	Straw Stinger Straw Stinger
HSVE-060	10/15/15	Zone 6	Rand	ND	14.55	24.68	17.83	24.31	-3.28													0	0	Straw Stinger
HSVE-060	11/10/15	Zone 6	Rand	ND	14.40	24.68	17.83	24.31	-3.43													0	0	Straw Stinger
HSVE-060 HSVE-060	11/17/15 12/01/15	Zone 6 Zone 6	Rand Rand	ND ND	14.67 24.70	24.65 24.70	17.83 17.83	24.31 24.31	-3.16 6.48													0	0	Straw Stinger Straw Stinger
HSVE-060	12/01/15	Zone 6	Rand	ND	10.20	24.70	17.83	24.31	-7.63													0	0	Straw Stinger
HSVE-060	01/04/16	Zone 6	Rand	ND	3.10	24.70	17.83	24.31	-14.73													0	0	Straw Stinger
HSVE-060 HSVE-060	01/12/16 01/25/16	Zone 6	Rand Rand	ND ND	3.22 4.42	24.70 24.70	17.83 17.83	24.31 24.31	-14.61 -13.41													0 0	0	Straw Stinger Straw Stinger
HSVE-060	01/25/16	Zone 6 Zone 6	Rand	ND ND	4.42 6.05	24.70 24.68	17.83	24.31	-13.41 -11.78													0		Straw Stinger
HSVE-060	02/23/16	Zone 6	Rand	ND	9.45	24.70	17.83	24.31	-8.38													0	0	Straw Stinger
HSVE-060	03/01/16	Zone 6	Rand	NA	NA	24.70	17.83	24.31														0	100	Straw Stinger
HSVE-060 HSVE-060	03/03/16 03/04/16	Zone 6 Zone 6	Rand Rand	NA	NA	24.70	17.83	24.31														0 16.7	100 100	Straw Stinger Straw Stinger
HSVE-060	03/07/16	Zone 6	Rand	ND	21.26	24.70	17.83	24.31	3.43		4.00	4.00	20.8	0.00	0.00	0.00	2.00					16.7	100	Straw Stinger
HSVE-060	03/08/16	Zone 6	Rand	ND	21.26	24.70	17.83	24.31	3.43		2.00	2.00	20.7	0.00	0.00	0.00	1.00					16.7	100	Straw Stinger
HSVE-060 HSVE-060	03/09/16 03/10/16	Zone 6 Zone 6	Rand Rand	ND	21.30	24.70	17.83	24.31	3.47		160 0.00	0.00 0.00	20.8 20.8	0.10 0.00	160 0.00	0.00 0.00	2.00 0.00					16.7 16.7	100 100	Straw Stinger Straw Stinger
HSVE-060	03/10/10	Zone 6	Rand	ND	9.86	24.65	17.83	24.31	-7.97		0.00	0.00	20.0	0.00	0.00	0.00	0.00					0	0	Straw Stinger
HSVE-061	10/05/15	Zone 6	N. Olive	ND	12.41	16.74	11.75	16.24	0.66													0	0	Straw Stinger
HSVE-061	10/13/15	Zone 6	N. Olive	ND	13.09	16.72	11.75	16.24	1.34		65,000	41,377	18.6	1.90	23,623	43.0	3.00					0	0	Straw Stinger

201605_SVEOMMdata_APP-B

						Fluid Le	vel and Stin	nger Data				Soil	Vapor Fie	ld Screenin	g Results				Flow Rate	Estimation Da	nta	SV	E Control	Valve Data
Location	Date	Zone	Stratum	Depth to Product ft-btoc	Depth to Groundwa er ft-btoc	t Total Depth ft-btoc	Top of Screen ft-btoc	Bottom of Screen ft-btoc	Open Screen ft	Stinger Depth ft-btoc	Total Volatile Petroleum Hydrocarbons ppmv	Petroleum Hydrocabons ppmv	Oxygen %	Carbon Dioxide %	Methane ppmv	LEL %	PID Reading ppmv	g Flow Rate scfm	Differential Pressure in-H ₂ O	SVE Wellhead Vacuum in-H ₂ O	Venturi Surface Temperature °F	Header Valve Percent Open %	Straw Stinger Valve Percent Open %	Stinger Type
HSVE-061	10/26/15	Zone 6	N. Olive	ND	14.40	16.74	11.75	16.24	2.65													0	0	Straw Stinger
HSVE-061 HSVE-061 HSVE-061 HSVE-061 HSVE-061	11/03/15 11/10/15 11/17/15 11/23/15 12/01/15 12/08/15	Zone 6	N. Olive	NA ND ND ND ND	NA 13.76 13.88 14.06 13.78 13.59	16.74 16.71 16.70 16.60 15.45 15.30	11.75 11.75 11.75 11.75 11.75 11.75	16.24 16.24 16.24 16.24 16.24 16.24	2.01 2.13 2.31 2.03 1.84		1,120 35.0	1,100 35.0	10.7	0.10	20.0	0.00	24.0 9.00	0.00	0.00	119 118	52.0 49.0	0 0 0 0 0	100 100 100 100 100 100	Straw Stinger Straw Stinger Straw Stinger Straw Stinger Straw Stinger Straw Stinger
HSVE-061 HSVE-061 HSVE-061 HSVE-061 HSVE-061 HSVE-061	12/14/15 01/04/16 01/12/16 01/25/16 02/09/16 02/23/16 03/07/16	Zone 6	N. Olive	NA ND ND ND ND ND	NA 2.28 2.46 3.95 5.11 8.00 9.60	15.30 15.24 15.25 15.25 15.25 15.24 15.10	11.75 11.75 11.75 11.75 11.75 11.75 11.75	16.24 16.24 16.24 16.24 16.24 16.24 16.24	-9.47 -9.29 -7.80 -6.64 -3.75 -2.15													0 0 0 0 0	0 0 0	Straw Stinger Straw Stinger Straw Stinger Straw Stinger Straw Stinger Straw Stinger Straw Stinger
HSVE-061 HSVE-062 HSVE-062 HSVE-062 HSVE-062	03/22/16 10/05/15 10/13/15 10/26/15 11/10/15 11/17/15	Zone 6	N. Olive	ND ND ND ND ND ND	9.50 6.95 7.00 6.84 6.75 3.33	15.07 9.65 9.65 9.70 9.65 9.70	11.75 6.12 6.12 6.12 6.12 6.12	16.24 9.65 9.65 9.65 9.65 9.65	-2.15 -2.25 0.83 0.88 0.72 0.63 -2.79	6.90 6.90	23,800	0.00	18.5	2.10	23,800	16.0	12.0	94.8 8.65	19.0 0.15	131 120	64.0 56.0	0 50 50 50 50 50	0	Straw Stinger Viton Stinger Viton Stinger Viton Stinger Viton Stinger Viton Stinger
HSVE-062 HSVE-062 HSVE-062 HSVE-062 HSVE-062	11/19/15 11/20/15 11/24/15 12/01/15 12/08/15 12/28/15	Zone 6	N. Olive	NA NA ND ND ND NA	NA NA 8.30 5.55 6.75 NA	9.70 9.70 9.70 10.00 10.00 10.00	6.12 6.12 6.12 6.12 6.12 6.12	9.65 9.65 9.65 9.65 9.65 9.65	2.18 -0.57 0.63	6.90 6.90 6.90 6.90	65.0	62.2	20.8	0.00	2.82	0.00	15.0	5.34 5.65	0.05 0.05	80.0 45.0	54.0 48.0	50 33.3 33.3 33.3 16.7		Viton Stinger Viton Stinger Viton Stinger Viton Stinger Viton Stinger Viton Stinger
HSVE-062 HSVE-062 HSVE-062 HSVE-062	01/04/16 01/12/16 01/25/16 02/09/16 02/23/16	Zone 6 Zone 6 Zone 6 Zone 6 Zone 6	N. Olive N. Olive N. Olive N. Olive N. Olive	ND ND ND ND ND	4.06 3.62 5.10 6.22 7.80	10.08 10.00 10.08 9.82 10.08	6.12 6.12 6.12 6.12 6.12	9.65 9.65 9.65 9.65 9.65	-2.06 -2.50 -1.02 0.10 1.68	6.90 6.90	200	0.00	20.8	0.00	200	0.00	3.00	0.00	0.00	17.0	42.0	0 0 0 0 16.7		Viton Stinger Viton Stinger Viton Stinger Viton Stinger Viton Stinger
HSVE-062 HSVE-062 HSVE-062 HSVE-063	03/07/16 03/14/16 03/22/16 03/28/16 10/05/15	Zone 6 Zone 6 Zone 6 Zone 6 Zone 6	N. Olive N. Olive N. Olive N. Olive Rand	ND NA ND NA ND	9.48 NA 8.83 NA 12.90	10.00 10.00 10.00 10.00 21.60	6.12 6.12 6.12 6.12 14.55	9.65 9.65 9.65 9.65 21.07	3.36 2.71 -1.65	6.90 6.90 6.90	2,087	124	20.6	0.10	1,963	2.00	5.00	0.00	0.00	29.0	50.0	16.7 33.3 16.7 33.3 0	0	Viton Stinger Viton Stinger Viton Stinger Viton Stinger Straw Stinger
HSVE-063 HSVE-063 HSVE-063 HSVE-063 HSVE-063 HSVE-063	10/13/15 10/26/15 11/10/15 11/17/15 12/01/15 12/08/15 01/04/16	Zone 6	Rand Rand Rand Rand Rand Rand Rand	ND ND ND ND ND ND	13.53 14.50 14.71 14.35 10.90 10.73 1.75	21.58 21.55 21.65 21.55 21.70 21.67 21.55	14.55 14.55 14.55 14.55 14.55 14.55 14.55	21.07 21.07 21.07 21.07 21.07 21.07 21.07	-1.02 -0.05 0.16 -0.20 -3.65 -3.82 -12.80													0 0 0 0 0	0 0 0 0 0	Straw Stinger Straw Stinger Straw Stinger Straw Stinger Straw Stinger Straw Stinger Straw Stinger
HSVE-063 HSVE-063 HSVE-063 HSVE-063 HSVE-063	01/12/16 01/25/16 02/09/16 02/23/16 03/07/16 03/22/16	Zone 6	Rand Rand Rand Rand Rand Rand	ND ND ND ND ND	2.40 4.63 5.90 8.74 9.14 9.90	26.55 21.55 21.55 21.55 21.65 21.64	14.55 14.55 14.55 14.55 14.55 14.55	21.07 21.07 21.07 21.07 21.07 21.07	-12.15 -9.92 -8.65 -5.81 -5.41 -4.65													0 0 0 0 0	0 0 0 0 0	Straw Stinger Straw Stinger Straw Stinger Straw Stinger Straw Stinger Straw Stinger
HSVE-064 HSVE-064 HSVE-064 HSVE-064 HSVE-064	10/05/15 10/13/15 10/19/15 10/26/15 11/10/15 11/17/15	Zone 6	N. Olive	ND ND NA ND ND	Dry Dry NA Dry Dry Dry	10.95 19.93 19.93 10.88 10.93 10.87	8.41 8.41 8.41 8.41 8.41	10.91 10.91 10.91 10.91 10.91 10.91	2.50 2.50 2.50 2.50 2.50		25.0 35.0	19.2 35.0	20.3	0.60	5.80	0.00	5.00 9.00	7.82	0.09	8.00	66.0	16.7 16.7 0 0 0		None None None None None
HSVE-064 HSVE-064 HSVE-064	11/30/15 12/01/15 12/03/15	Zone 6 Zone 6 Zone 6 Zone 6	N. Olive N. Olive N. Olive	NA NA ND NA	NA Dry NA	10.87 10.87 11.00 11.00	8.41 8.41 8.41	10.91 10.91 10.91	2.50		33.0	33.0	10.0	0.00	0.00	0.00	9.00					50 50 100		None None None None

201605_SVEOMMdata_APP-B 20 of 35

				L_		Fluid Le	vel and Stir	iger Data				Soil	Vapor Fie	ld Screenin	g Results			L_	Flow Rate	Estimation Da	ta	S۱	'E Control '	Valve Data
																							Straw	
					Depth to						Total Volatile									SVE	Venturi	Header Valve	Stinger Valve	
				Depth to	Groundwat		Top of	Bottom of	Open	Stinger	Petroleum	Petroleum		Carbon					Differential	Wellhead	Surface	Percent	Percent	
				Product	er	Total Depth	Screen	Screen	Screen	Depth	Hydrocarbons	Hydrocabons	Oxygen	Dioxide	Methane	LEL	PID Reading	Flow Rate	Pressure	Vacuum	Temperature	Open	Open	Stinger Type
Location	Date	Zone	Stratum	ft-btoc	ft-btoc	ft-btoc	ft-btoc	ft-btoc	ft	ft-btoc	ppmv	ppmv	%	%	ppmv	%	ppmv	scfm	in-H ₂ O	in-H ₂ O	°F	%	%	
HSVE-064	12/08/15	Zone 6	N. Olive	ND	10.06	11.00	8.41	10.91	1.65		20.0	20.0	20.7	0.30	0.00	0.00	6.00	32.5	2.06	115	52.0	100		None
HSVE-064	12/15/15	Zone 6	N. Olive	NA	NA 0.50	11.00	8.41	10.91	0.45													33.3		None
HSVE-064 HSVE-064	12/22/15 12/28/15	Zone 6 Zone 6	N. Olive N. Olive	ND NA	8.56 NA	11.00 11.00	8.41 8.41	10.91 10.91	0.15													33.3 0		None None
HSVE-064	01/05/16	Zone 6	N. Olive	ND	2.30	10.80	8.41	10.91	-6.11													0		None
HSVE-064	01/12/16	Zone 6	N. Olive	ND	2.65	10.88	8.41	10.91	-5.76													0		None
HSVE-064	01/25/16	Zone 6	N. Olive	ND	5.10	10.80	8.41	10.91	-3.31													0		None
HSVE-064 HSVE-064	02/09/16 02/23/16	Zone 6 Zone 6	N. Olive N. Olive	ND ND	6.70 10.20	10.82 10.80	8.41 8.41	10.91 10.91	-1.71 1.79		9.00	9.00	20.2	0.40	0.00	0.00	3.00					0		None None
HSVE-064	03/07/16	Zone 6	N. Olive	ND	9.55	10.86	8.41	10.91	1.14		9.00	9.00	20.2	0.40	0.00	0.00	3.00					0		None
HSVE-064	03/22/16	Zone 6	N. Olive	ND	10.32	10.80	8.41	10.91	1.91		47.0	44.1	20.1	0.30	2.94	0.00	8.00					0		None
HSVE-065	10/05/15	Zone 6	Rand	ND	13.40	21.10	14.48	21.02	-1.08													0	0	Straw Stinger
HSVE-065	10/13/15 10/26/15	Zone 6	Rand	ND	13.98	21.10	14.48	21.02	-0.50 0.87													0	0	Straw Stinger
HSVE-065 HSVE-065	10/26/15	Zone 6 Zone 6	Rand Rand	ND ND	15.35 15.18	21.15 22.07	14.48 14.48	21.02 21.02	0.87													0	0	Straw Stinger Straw Stinger
HSVE-065	11/17/15	Zone 6	Rand	ND	14.28	21.10	14.48	21.02	-0.20													0	0	Straw Stinger
HSVE-065	12/01/15	Zone 6	Rand	ND	11.30	21.12	14.48	21.02	-3.18													0	0	Straw Stinger
HSVE-065	12/08/15	Zone 6	Rand	ND	11.16	21.10	14.48	21.02	-3.32													0	0	Straw Stinger
HSVE-065 HSVE-065	01/05/16 01/12/16	Zone 6 Zone 6	Rand Rand	ND ND	2.00 2.30	21.00 21.00	14.48 14.48	21.02 21.02	-12.48 -12.18													0	0	Straw Stinger Straw Stinger
HSVE-065	01/12/16	Zone 6	Rand	ND	5.48	21.00	14.48	21.02	-9.00													0	0	Straw Stinger
HSVE-065	02/09/16	Zone 6	Rand	ND	7.60	21.08	14.48	21.02	-6.88													0	0	Straw Stinger
HSVE-065	02/23/16	Zone 6	Rand	ND	9.25	21.00	14.48	21.02	-5.23													0	0	Straw Stinger
HSVE-065 HSVE-065	03/07/16 03/22/16	Zone 6 Zone 6	Rand Rand	ND ND	9.60 10.35	21.00 21.00	14.48 14.48	21.02 21.02	-4.88 -4.13													0	0	Straw Stinger Straw Stinger
HSVE-066	10/05/15	Zone 6	Rand	ND	13.85	21.73	17.54	21.02	-3.69													0	0	Straw Stinger
HSVE-066	10/13/15	Zone 6	Rand	ND	14.40	21.72	17.54	21.06	-3.14													0	0	Straw Stinger
HSVE-066	10/27/15	Zone 6	Rand	ND	15.50	21.68	17.54	21.06	-2.04													0	0	Straw Stinger
HSVE-066 HSVE-066	11/10/15 11/17/15	Zone 6 Zone 6	Rand Rand	ND ND	15.68 15.20	21.72 21.72	17.54 17.54	21.06 21.06	-1.86 -2.34													0	0	Straw Stinger Straw Stinger
HSVE-066	12/01/15	Zone 6	Rand	ND	11.82	21.72	17.54	21.06	-2.3 4 -5.72													0	0	Straw Stinger
HSVE-066	12/08/15	Zone 6	Rand	ND	11.70	21.72	17.54	21.06	-5.84													0	0	Straw Stinger
HSVE-066	01/05/16	Zone 6	Rand	ND	2.03	21.65	17.54	21.06	-15.51													0	0	Straw Stinger
HSVE-066	01/12/16 01/25/16	Zone 6 Zone 6	Rand	ND ND	2.33	26.62	17.54	21.06	-15.21													0	0	Straw Stinger
HSVE-066 HSVE-066	01/25/16	Zone 6	Rand Rand	ND ND	5.90 7.90	21.65 21.65	17.54 17.54	21.06 21.06	-11.64 -9.64													0	0	Straw Stinger Straw Stinger
HSVE-066	02/23/16	Zone 6	Rand	ND	8.90	21.65	17.54	21.06	-8.64													0	Ö	Straw Stinger
HSVE-066	03/07/16	Zone 6	Rand	ND	9.75	21.75	17.54	21.06	-7.79													0	0	Straw Stinger
HSVE-066	03/22/16	Zone 6	Rand	ND	10.60	21.62	17.54	21.06	-6.94													0	0	Straw Stinger
HSVE-067 HSVE-067	10/01/15 10/05/15	Zone 6 Zone 6	N. Olive N. Olive	NA ND	NA 10.92	11.82 11.85	8.48 8.48	12.00 12.00	2.44													0	100	Straw Stinger Straw Stinger
HSVE-067	10/13/15	Zone 6	N. Olive	ND	Dry	11.83	8.48	12.00	3.52		7.00	7.00	19.9	0.20	0.00	0.00	2.00					0	0	Straw Stinger
HSVE-067	10/27/15	Zone 6	N. Olive	ND	11.70	11.90	8.48	12.00	3.22													0	0	Straw Stinger
HSVE-067	11/10/15	Zone 6	N. Olive	ND	10.82	11.85	8.48	12.00	2.34		20.0	20.0	20.4	0.50	0.00	0.00	7.00					0	0	Straw Stinger
HSVE-067 HSVE-067	11/17/15 12/01/15	Zone 6 Zone 6	N. Olive N. Olive	ND ND	9.73 10.25	11.78 11.80	8.48 8.48	12.00 12.00	1.25 1.77		30.0	30.0	20.1	0.50	0.00	0.00	7.00					0	0	Straw Stinger Straw Stinger
HSVE-067	12/01/15	Zone 6	N. Olive	ND	10.23	11.80	8.48	12.00	2.22		29.0	29.0	20.6	0.30	0.00	0.00	8.00					0	0	Straw Stinger
HSVE-067	01/05/16	Zone 6	N. Olive	ND	2.00	11.75	8.48	12.00	-6.48													0	0	Straw Stinger
HSVE-067	01/12/16	Zone 6	N. Olive	ND	3.65	11.75	8.48	12.00	-4.83													0	0	Straw Stinger
HSVE-067 HSVE-067	01/25/16 02/09/16	Zone 6 Zone 6	N. Olive N. Olive	ND ND	5.65 7.10	11.75 11.75	8.48 8.48	12.00 12.00	-2.83 -1.38													0		Straw Stinger Straw Stinger
HSVE-067	02/09/10	Zone 6	N. Olive	ND	9.25	11.75	8.48	12.00	0.77		5.00	5.00	20.4	0.50	0.00	0.00	3.00					0	0	Straw Stinger
HSVE-067	03/07/16	Zone 6	N. Olive	ND	9.36	11.87	8.48	12.00	0.88													0	0	Straw Stinger
HSVE-067	03/22/16	Zone 6	N. Olive	ND	10.20	11.82	8.48	12.00	1.72		30.0	30.0	20.3	0.50	0.00	0.00	7.00					0	0	Straw Stinger
HSVE-068 HSVE-068	10/05/15 10/13/15	Zone 6	Rand Pand	ND ND	13.67	21.50	17.47 17.47	20.98	-3.80 -3.31													0	0	Straw Stinger Straw Stinger
HSVE-068	10/13/15	Zone 6 Zone 6	Rand Rand	ND ND	14.16 15.10	21.50 21.46	17.47 17.47	20.98 20.98	-3.31 -2.37													0	0	Straw Stinger
HSVE-068	11/10/15	Zone 6	Rand	ND	15.45	21.45	17.47	20.98	-2.02													Ö	0	Straw Stinger

201605_SVEOMMdata_APP-B 21 of 35

						Fluid Le	vel and Stin	iger Data				Soi	I Vapor Fie	eld Screenin	g Results				Flow Rate	Estimation Data	8	S	/E Control	Valve Data
				Depth to	Depth to Groundwat		Top of	Bottom of	Open	Stinger	Total Volatile Petroleum	Petroleum	·	Carbon					Differential	SVE Wellhead	Venturi Surface	Header Valve Percent	Valve	
Location	Date	Zone	Stratum	Product ft-btoc	er ft-btoc	Total Depth ft-btoc	Screen ft-btoc	Screen ft-btoc	Screen	Depth ft-btoc	Hydrocarbons	Hydrocabons	Oxygen %		Methane ppmv	LEL %	PID Reading	g Flow Rate scfm		Vacuum in-H ₂ O	Temperature °F	Open %	Open %	Stinger Type
HSVE-068	11/17/15	Zone 6	Rand	ND	16.68	19.50	17.47	20.98	-0.79	II-bloc	ppmv	ppiliv	70	70	ррпи	70	рршч	30111	111 1120	1111120	<u>'</u>	0	0	Straw Stinger
HSVE-068	12/01/15	Zone 6	Rand	ND	10.98	21.50	17.47	20.98	-6.49													0	Ö	Straw Stinger
HSVE-068	12/08/15	Zone 6	Rand	ND	11.60	21.50	17.47	20.98	-5.87													0	0	Straw Stinger
HSVE-068	01/05/16	Zone 6	Rand	ND	1.60	21.40	17.47	20.98	-15.87													0	0	Straw Stinger
HSVE-068 HSVE-068	01/12/16 01/25/16	Zone 6 Zone 6	Rand Rand	ND ND	3.26 6.20	21.37 21.40	17.47 17.47	20.98 20.98	-14.21 -11.27													0	0	Straw Stinger Straw Stinger
HSVE-068	02/09/16	Zone 6	Rand	ND	7.70	21.40	17.47	20.98	-11.27 -9.77													0	0	Straw Stinger
HSVE-068	02/23/16	Zone 6	Rand	ND	9.35	21.40	17.47	20.98	-8.12													0	0	Straw Stinger
HSVE-068	03/07/16	Zone 6	Rand	ND	9.50	21.48	17.47	20.98	-7.97													0	0	Straw Stinger
HSVE-068	03/22/16	Zone 6	Rand	ND	10.30	21.42	17.47	20.98	-7.17													0	0	Straw Stinger
HSVE-069	10/05/15	Zone 6	Rand	ND	17.90	22.35	18.59	22.10	-0.69													0	0	Straw Stinger
HSVE-069 HSVE-069	10/13/15 10/27/15	Zone 6 Zone 6	Rand Rand	ND ND	17.98 18.90	22.24 22.28	18.59 18.59	22.10 22.10	-0.61 0.31													0	0	Straw Stinger Straw Stinger
HSVE-069	11/10/15	Zone 6	Rand	ND	19.35	22.30	18.59	22.10	0.76													0	0	Straw Stinger
HSVE-069	11/17/15	Zone 6	Rand	ND	17.99	22.25	18.59	22.10	-0.60													0	0	Straw Stinger
HSVE-069	12/01/15	Zone 6	Rand	ND	15.70	22.35	18.59	22.10	-2.89													0	0	Straw Stinger
HSVE-069	12/08/15	Zone 6	Rand	ND	15.86	22.40	18.59	22.10	-2.73													0	0	Straw Stinger
HSVE-069 HSVE-069	01/05/16 01/12/16	Zone 6 Zone 6	Rand Rand	ND ND	4.80 9.06	22.40 22.32	18.59 18.59	22.10 22.10	-13.79 -9.53													0		Straw Stinger Straw Stinger
HSVE-069	01/12/16	Zone 6	Rand	ND ND	11.58	22.40	18.59	22.10	-9.55 -7.01													0		Straw Stinger
HSVE-069	02/09/16	Zone 6	Rand	ND	13.10	22.18	18.59	22.10	-5.49													0		Straw Stinger
HSVE-069	02/23/16	Zone 6	Rand	ND	14.38	22.40	18.59	22.10	-4.21													0	0	Straw Stinger
HSVE-069	03/07/16	Zone 6	Rand	ND	14.45	22.27	18.59	22.10	-4.14													0	0	Straw Stinger
HSVE-069 HSVE-070	03/22/16 10/05/15	Zone 6	Rand	ND	15.04	22.20	18.59	22.10	-3.55													16.7	0	Straw Stinger
HSVE-070	10/03/15	Zone 6 Zone 6	N. Olive N. Olive	ND ND	9.48 9.38	13.10 12.93	8.60 8.60	13.08 13.08	0.88 0.78	9.10	2,600	571	19.7	1.00	2,029	1.00	47.0	0.00	0.00	107	70.0	16.7 16.7		Viton Stinger Viton Stinger
HSVE-070	10/19/15	Zone 6	N. Olive	NA	NA	12.93	8.60	13.08	0.70	9.10	2,000	07.1	10.1	1.00	2,020	1.00		0.00	0.00	107	70.0	0		Viton Stinger
HSVE-070	10/27/15	Zone 6	N. Olive	ND	11.72	12.88	8.60	13.08	3.12													0		Viton Stinger
HSVE-070	11/03/15	Zone 6	N. Olive	NA	NA	12.88	8.60	13.08		9.10												16.7		Viton Stinger
HSVE-070	11/10/15	Zone 6	N. Olive	ND NA	7.95	12.95	8.60	13.08	-0.65	0.40												16.7 0		Viton Stinger
HSVE-070 HSVE-070	11/11/15 11/17/15	Zone 6 Zone 6	N. Olive N. Olive	NA ND	NA 11.65	12.95 12.98	8.60 8.60	13.08 13.08	3.05	9.10 9.10	4,060	1,200	11.7	5.00	2,860	3.00	6.50					0		Viton Stinger Viton Stinger
HSVE-070	11/30/15	Zone 6	N. Olive	NA	NA	12.98	8.60	13.08	0.00	9.10	4,000	1,200	11.7	0.00	2,000	0.00	0.00					16.7		Viton Stinger
HSVE-070	12/01/15	Zone 6	N. Olive	ND	8.95	13.00	8.60	13.08	0.35													16.7		Viton Stinger
HSVE-070	12/08/15	Zone 6	N. Olive	ND	8.94	12.90	8.60	13.08	0.34	9.10	315	51.6	20.3	0.40	263	0.00	8.00	8.94	0.13	55.0	54.0	33.3		Viton Stinger
HSVE-070	12/28/15	Zone 6	N. Olive	NA	NA	12.90	8.60	13.08		9.10												0		Viton Stinger
HSVE-070 HSVE-070	01/01/16 01/05/16	Zone 6 Zone 6	N. Olive N. Olive	ND	9.70	13.50	8.60	13.08	1.10	9.10												0		Viton Stinger Viton Stinger
HSVE-070	01/03/10	Zone 6	N. Olive	ND	10.33	13.00	8.60	13.08	1.73		12,400	0.00	16.4	3.50	12,400	15.0	35.0					0		Viton Stinger
HSVE-070	01/15/16	Zone 6	N. Olive	NA	NA	13.00	8.60	13.08	•	9.10	12,100	0.00		0.00	,		00.0					16.7		Viton Stinger
HSVE-070	01/19/16	Zone 6	N. Olive	ND	9.08	13.50	8.60	13.08	0.48													16.7		Viton Stinger
HSVE-070	01/21/16	Zone 6	N. Olive	NA	NA	13.50	8.60	13.08		9.10												0		Viton Stinger
	01/25/16	Zone 6	N. Olive	ND	Dry	12.87	8.60	13.08	4.48													0		Viton Stinger
HSVE-070 HSVE-070	02/09/16 02/12/16	Zone 6 Zone 6	N. Olive N. Olive	ND NA	Dry NA	13.45 13.45	8.60 8.60	13.08 13.08	4.48	9.10												0 16.7		Viton Stinger Viton Stinger
HSVE-070	02/23/16	Zone 6	N. Olive	ND	9.95	13.50	8.60	13.08	1.35	9.10	3,925	739	19.3	0.80	3,186	3.00	25.0	5.62	0.05	51.0	46.0	16.7		Viton Stinger
HSVE-070	03/07/16	Zone 6	N. Olive	ND	8.95	12.73	8.60	13.08	0.35						, -							16.7		Viton Stinger
HSVE-070	03/22/16	Zone 6	N. Olive	ND	8.93	12.81	8.60	13.08	0.33	9.10	25,200	5,494	18.5	1.40	19,706	30.0	75.0	0.00	0.00	72.0	52.0	16.7		Viton Stinger
HSVE-070	03/28/16	Zone 6	N. Olive	NA	NA 17.50	12.81	8.60	13.08	0.00	10.20												33.3		Viton Stinger
HSVE-071 HSVE-071	10/05/15 10/13/15	Zone 6 Zone 6	Rand Rand	ND ND	17.50 17.94	25.48 25.53	17.58 17.58	25.13 25.13	-0.08 0.36	18.50	6,720	1,358	17.8	2.50	5,362	4.00	128	0.00	0.00	89.0	68.0	16.7 16.7		Viton Stinger Viton Stinger
HSVE-071 HSVE-071	10/13/15	Zone 6	Rand	NA NA	17.94 NA	25.53 25.53	17.58	25.13 25.13	0.30	18.50	0,720	1,330	17.0	2.00	3,302	4.00	120	0.00	0.00	09.0	00.0	0		Viton Stinger Viton Stinger
HSVE-071	10/27/15	Zone 6	Rand	ND	22.10	25.55	17.58	25.13	4.52	. 5.00												0		Viton Stinger
HSVE-071	11/03/15	Zone 6	Rand	NA	NA	25.55	17.58	25.13		18.50												16.7		Viton Stinger
HSVE-071	11/10/15	Zone 6	Rand	ND	19.47	25.50	17.58	25.13	1.89													16.7		Viton Stinger
	11/17/15	Zone 6	Rand	ND	18.30	25.45	17.58	25.13	0.72	18.50	19,800	6,839	17.1	2.80	12,961	13.0	168	0.00	0.00	116	58.0	33.3		Viton Stinger
	11/23/15 11/30/15	Zone 6 Zone 6	Rand Rand	ND NA	20.63 NA	25.50 25.50	17.58 17.58	25.13 25.13	3.05	18.50												33.3 50		Viton Stinger Viton Stinger

201605_SVEOMMdata_APP-B 22 of 35

						Fluid Le	vel and Stir	nger Data				Soil	Vapor Fiel	ld Screening	g Results				Flow Rate	Estimation Dat	ta	SV	E Control	Valve Data
Location	Date	Zone	Stratum	Depth to Product ft-btoc	Depth to Groundwar er ft-btoc	t Total Depth ft-btoc	Top of Screen ft-btoc	Bottom of Screen ft-btoc	Open Screen ft	Stinger Depth ft-btoc	Total Volatile Petroleum Hydrocarbons ppmv	Petroleum Hydrocabons ppmv	Oxygen %	Carbon Dioxide %	Methane ppmv	LEL %	PID Reading	J Flow Rate scfm	Differential Pressure in-H ₂ O	SVE Wellhead Vacuum in-H ₂ O	Venturi Surface Temperature °F	Header Valve Percent Open %	Straw Stinger Valve Percent Open %	Stinger Type
HSVE-071	12/01/15	Zone 6	Rand	ND	18.40	25.50	17.58	25.13	0.82								- ''					50		Viton Stinger
HSVE-071	12/08/15	Zone 6	Rand	ND	19.20	22.50	17.58	25.13	1.62	18.50	12,300	6,159	18.2	2.00	6,141	13.0	218	7.42	0.11	122	51.0	50		Viton Stinger
HSVE-071	12/28/15	Zone 6	Rand	NA	NA	22.50	17.58	25.13		18.50												0		Viton Stinger
HSVE-071 HSVE-071	01/05/16 01/12/16	Zone 6	Rand	ND	11.46	25.50	17.58 17.58	25.13 25.13	-6.12	18.50												0		Viton Stinger
HSVE-071	01/12/16	Zone 6 Zone 6	Rand Rand	ND ND	13.25 16.15	21.55 25.50	17.58	25.13	-4.33 -1.43	10.50												0		Viton Stinger Viton Stinger
HSVE-071	02/09/16	Zone 6	Rand	ND	18.45	22.60	17.58	25.13	0.87													0		Viton Stinger
HSVE-071	02/23/16	Zone 6	Rand	ND	19.60	25.50	17.58	25.13	2.02	18.50	35.0	10.7	20.7	0.20	24.3	0.00	3.00					0		Viton Stinger
HSVE-071	03/07/16	Zone 6	Rand	ND	19.70	25.55	17.58	25.13	2.12													0		Viton Stinger
HSVE-071	03/22/16	Zone 6	Rand	ND	20.10	25.37	17.58	25.13	2.52	18.50	8,220	3,450	2.70	6.10	4,770	14.0	7.00					0		Viton Stinger
HSVE-071 HSVE-072	03/28/16 10/01/15	Zone 6 Zone 6	Rand Rand	NA NA	NA NA	25.37 22.57	17.58 17.70	25.13 22.19		18.50 18.40												16.7 0		Viton Stinger Viton Stinger
HSVE-072	10/01/15	Zone 6	Rand	ND	20.96	22.58	17.70	22.19	3.26	10.40												0		Viton Stinger
HSVE-072	10/13/15	Zone 6	Rand	ND	21.30	22.58	17.70	22.19	3.60	18.40	21.0	16.7	20.5	0.20	4.35	0.00	4.00					0		Viton Stinger
HSVE-072	10/27/15	Zone 6	Rand	ND	21.62	22.58	17.70	22.19	3.92													0		Viton Stinger
HSVE-072	11/10/15	Zone 6	Rand	ND	21.76	22.58	17.70	22.19	4.06													0		Viton Stinger
HSVE-072 HSVE-072	11/17/15	Zone 6	Rand	ND	21.14	22.57 22.57	17.70	22.19 22.19	3.44	18.40	143	113	20.3	0.30	30.0	0.00	23.0					0		Viton Stinger Viton Stinger
HSVE-072	11/19/15 11/30/15	Zone 6 Zone 6	Rand Rand	NA NA	NA NA	22.57	17.70 17.70	22.19		18.40 18.40												16.7		Viton Stinger
HSVE-072	12/01/15	Zone 6	Rand	ND	16.70	22.58	17.70	22.19	-1.00	10.10												16.7		Viton Stinger
HSVE-072	12/03/15	Zone 6	Rand	NA	NA	22.58	17.70	22.19		18.40												0		Viton Stinger
HSVE-072	12/08/15	Zone 6	Rand	ND	20.47	22.55	17.70	22.19	2.77	18.40	105	61.3	18.6	1.10	43.7	0.00	14.0					0		Viton Stinger
HSVE-072	12/29/15	Zone 6	Rand	NA	7.38	22.58	17.70	22.19	-10.32	18.40												0		Viton Stinger
HSVE-072 HSVE-072	01/05/16 01/12/16	Zone 6 Zone 6	Rand Rand	ND ND	11.74 14.00	22.60 22.58	17.70 17.70	22.19 22.19	-5.96 -3.70	18.40												0		Viton Stinger Viton Stinger
HSVE-072	01/12/16	Zone 6	Rand	ND	17.02	22.60	17.70	22.19	-0.68	10.40												0		Viton Stinger
HSVE-072	02/09/16	Zone 6	Rand	ND	18.17	22.60	17.70	22.19	0.47													0		Viton Stinger
HSVE-072	02/23/16	Zone 6	Rand	ND	19.97	22.60	17.70	22.19	2.27	18.40	11.0	0.00	19.7	0.60	11.0	0.00	5.00					0		Viton Stinger
HSVE-072	03/07/16	Zone 6	Rand	ND	20.10	22.62	17.70	22.19	2.40	40.40	40.0	40.0	00.0	0.00	0.00	0.00	5.00					0		Viton Stinger
HSVE-072 HSVE-073	03/22/16 10/05/15	Zone 6 Zone 6	Rand Rand	ND ND	20.38 13.32	22.51 21.35	17.70 17.55	22.19 21.07	2.68 -4.23	18.40	18.0	18.0	20.8	0.00	0.00	0.00	5.00					0	0	Viton Stinger Straw Stinger
HSVE-073	10/03/15	Zone 6	Rand	ND	14.12	21.40	17.55	21.07	-4.23 -3.43													0	0	Straw Stinger
HSVE-073	10/27/15	Zone 6	Rand	ND	14.78	21.40	17.55	21.07	-2.77													0	0	Straw Stinger
HSVE-073	11/10/15	Zone 6	Rand	ND	15.15	21.35	17.55	21.07	-2.40													0	0	Straw Stinger
HSVE-073	11/17/15	Zone 6	Rand	ND	14.88	21.35	17.55	21.07	-2.67													0	0	Straw Stinger
HSVE-073	12/01/15	Zone 6	Rand	ND	10.64	21.36	17.55	21.07	-6.91													0	0	Straw Stinger
HSVE-073 HSVE-073	12/08/15 01/05/16	Zone 6 Zone 6	Rand Rand	ND ND	11.40 2.02	21.38 21.43	17.55 17.55	21.07 21.07	-6.15 -15.53													0	0	Straw Stinger Straw Stinger
HSVE-073		Zone 6	Rand	ND	3.45	21.40	17.55	21.07	-14.10													0	0	Straw Stinger
HSVE-073	01/25/16	Zone 6	Rand	ND	6.30	21.42	17.55	21.07	-11.25													0	0	Straw Stinger
HSVE-073	02/09/16	Zone 6	Rand	ND	7.95	21.40	17.55	21.07	-9.60													0	0	Straw Stinger
HSVE-073	02/23/16	Zone 6	Rand	ND	9.20	21.43	17.55	21.07	-8.35													0	0	Straw Stinger
HSVE-073 HSVE-073	03/07/16 03/22/16	Zone 6 Zone 6	Rand Rand	ND ND	9.30 10.08	21.35 21.34	17.55 17.55	21.07 21.07	-8.25 -7.47													0	0	Straw Stinger Straw Stinger
HSVE-073	10/01/15	Zone 6	N. Olive	NA NA	10.08 NA	21.3 4 12.70	9.49	13.00	-1.41	10.20												0	U	Viton Stinger
HSVE-074	10/05/15	Zone 6	N. Olive	ND	Dry	12.70	9.49	13.00	3.51													0		Viton Stinger
HSVE-074	10/13/15	Zone 6	N. Olive	ND	Dry	12.70	9.49	13.00	3.51	10.20	8.00	8.00	16.8	1.00	0.00	0.00	3.00					0		Viton Stinger
HSVE-074	10/27/15	Zone 6	N. Olive	ND	Dry	12.67	9.49	13.00	3.51													0		Viton Stinger
HSVE-074	11/10/15	Zone 6	N. Olive	ND	Dry	12.66	9.49	13.00	3.51	10.20	520	530	12.0	1.00	0.00	0.00	22.0					0		Viton Stinger
HSVE-074 HSVE-074	11/18/15 11/20/15	Zone 6 Zone 6	N. Olive N. Olive	ND NA	Dry NA	12.70 12.70	9.49 9.49	13.00 13.00	3.51	10.20 10.20	530	550	13.8	1.00	0.00	0.00	22.0					16.7		Viton Stinger Viton Stinger
HSVE-074	11/20/15	Zone 6	N. Olive	NA	NA	12.70	9.49	13.00		10.20												33.3		Viton Stinger
HSVE-074	12/01/15	Zone 6	N. Olive	ND	10.30	12.72	9.49	13.00	0.81													33.3		Viton Stinger
HSVE-074	12/08/15	Zone 6	N. Olive	ND	10.42	12.58	9.49	13.00	0.93	10.20	37.0	37.0	20.6	0.50	0.00	0.00	10.0	23.8	0.98	75.0	55.0	33.3		Viton Stinger
HSVE-074	12/29/15	Zone 6	N. Olive	NA	NA 2.25	12.58	9.49	13.00	7 4 4	10.20												0		Viton Stinger
HSVE-074 HSVE-074	01/05/16 01/12/16	Zone 6 Zone 6	N. Olive N. Olive	ND ND	2.35 3.21	13.50 13.50	9.49 9.49	13.00 13.00	-7.14 -6.28	10.20												0		Viton Stinger Viton Stinger
HSVE-074	01/12/16	Zone 6	N. Olive	ND	6.86	21.42	9.49	13.00	-0.26 -2.63	10.20												0		Viton Stinger

201605_SVEOMMdata_APP-B 23 of 35

						Fluid Le	vel and Stir	nger Data				Soil	Vapor Fie	ld Screenin	g Results				Flow Rate	Estimation Dat	а	S۱	/E Control \	/alve Data
Location	Date	Zone	Stratum	Depth to Product ft-btoc	Depth to Groundwar er ft-btoc		Top of Screen ft-btoc	Bottom of Screen ft-btoc	Open Screen ft	Stinger Depth ft-btoc	Total Volatile Petroleum Hydrocarbons ppmv	Petroleum Hydrocabons ppmv	Oxygen %	Carbon Dioxide %	Methane ppmv	LEL %	PID Reading	Flow Rate	Differential Pressure in-H ₂ O	SVE Wellhead Vacuum in-H ₂ O	Venturi Surface Temperature °F	Header Valve Percent Open %	Valve	Stinger Type
HSVE-074	02/09/16	Zone 6	N. Olive	ND	7.95	13.50	9.49	13.00	-1.54		11	- ''					- ''					0		Viton Stinger
HSVE-074	02/23/16	Zone 6	N. Olive	ND	9.76	13.50	9.49	13.00	0.27	10.20	3.00	3.00	17.8	0.50	0.00	0.00	2.00					0		Viton Stinger
HSVE-074	03/07/16	Zone 6	N. Olive	ND	9.86	12.70	9.49	13.00	0.37	40.00	0.00	0.00	47.5	0.50	0.00	0.00	4.00					0		Viton Stinger
HSVE-074 HSVE-075	03/22/16 10/05/15	Zone 6 Zone 6	N. Olive Rand	ND ND	10.56 14.45	12.70 23.50	9.49 19.54	13.00 23.06	1.07 -5.09	10.20	9.00	9.00	17.5	0.50	0.00	0.00	4.00					0		Viton Stinger None
HSVE-075	10/13/15	Zone 6	Rand	ND	14.63	23.48	19.54	23.06	-4.91													0		None
HSVE-075	10/27/15	Zone 6	Rand	ND	15.45	23.52	19.54	23.06	-4.09													0		None
HSVE-075	11/10/15	Zone 6	Rand	ND	15.65	23.46	19.54	23.06	-3.89													0		None
HSVE-075 HSVE-075	11/18/15 12/01/15	Zone 6 Zone 6	Rand Rand	ND ND	15.10 11.58	23.52 23.50	19.54 19.54	23.06 23.06	-4.44 -7.96													0		None None
HSVE-075	12/08/15	Zone 6	Rand	ND	11.54	23.50	19.54	23.06	-8.00													0		None
HSVE-075	01/05/16	Zone 6	Rand	ND	3.61	23.56	19.54	23.06	-15.93													0		None
HSVE-075	01/12/16	Zone 6	Rand	ND	4.23	23.56	19.54	23.06	-15.31													0		None
HSVE-075 HSVE-075	01/25/16 02/09/16	Zone 6 Zone 6	Rand Rand	ND ND	7.82 9.06	23.56 23.56	19.54 19.54	23.06 23.06	-11.72 -10.48													0		None None
HSVE-075	02/23/16	Zone 6	Rand	ND	10.43	23.56	19.54	23.06	-10. 4 0 -9.11													0		None
HSVE-075	03/07/16	Zone 6	Rand	ND	10.65	23.55	19.54	23.06	-8.89													0		None
HSVE-075	03/22/16	Zone 6	Rand	ND	11.30	23.40	19.54	23.06	-8.24													0		None
HSVE-076 HSVE-076	10/05/15 10/13/15	Zone 6 Zone 6	Rand Rand	ND ND	17.55 17.80	22.45 22.55	18.66 18.66	22.17 22.17	-1.11 -0.86													0		Viton Stinger Viton Stinger
HSVE-076	10/13/15	Zone 6	Rand	ND	18.50	22.54	18.66	22.17	-0.16													0		Viton Stinger
HSVE-076	11/10/15	Zone 6	Rand	ND	18.78	22.46	18.66	22.17	0.12													0		Viton Stinger
HSVE-076	11/18/15	Zone 6	Rand	ND	18.00	22.45	18.66	22.17	-0.66													0		Viton Stinger
HSVE-076 HSVE-076	12/01/15 12/08/15	Zone 6	Rand	ND	15.90	22.48	18.66	22.17	-2.76 -2.96													0		Viton Stinger
HSVE-076	01/05/16	Zone 6 Zone 6	Rand Rand	ND ND	15.70 6.80	22.54 22.65	18.66 18.66	22.17 22.17	-2.96 -11.86													0		Viton Stinger Viton Stinger
HSVE-076	01/12/16	Zone 6	Rand	ND	11.37	22.60	18.66	22.17	-7.29													0		Viton Stinger
HSVE-076	01/26/16	Zone 6	Rand	ND	13.92	22.57	18.66	22.17	-4.74													0		Viton Stinger
HSVE-076	02/09/16	Zone 6	Rand	ND	13.46	22.60	18.66	22.17	-5.20													0		Viton Stinger
HSVE-076 HSVE-076	02/23/16 03/08/16	Zone 6 Zone 6	Rand Rand	ND ND	15.05 19.40	22.60 22.60	18.66 18.66	22.17 22.17	-3.61 0.74													0		Viton Stinger Viton Stinger
HSVE-076	03/22/16	Zone 6	Rand	ND	19.27	22.48	18.66	22.17	0.61		38,300	16,976	19.6	0.90	21,324	37.0	205	16.9	0.57	118	55.0	50		Viton Stinger
HSVE-077	10/05/15	Zone 6	N. Olive	ND	10.72	13.20	8.65	13.13	2.07		,											100		Viton Stinger
HSVE-077	10/13/15	Zone 6	N. Olive	ND	10.93	13.07	8.65	13.13	2.28	9.40	86,000	42,500	15.6	3.80	43,500	57.0	219	8.14	0.14	129	67.0	100		Viton Stinger
HSVE-077 HSVE-077	10/27/15 11/10/15	Zone 6 Zone 6	N. Olive N. Olive	ND ND	11.00 11.05	13.18 13.12	8.65 8.65	13.13 13.13	2.35 2.40													100 100		Viton Stinger Viton Stinger
HSVE-077	12/02/15	Zone 6	N. Olive	ND	10.12	12.94	8.65	13.13	1.47													100		Viton Stinger
HSVE-077	01/14/16	Zone 6	N. Olive	ND	9.78	12.85	8.65	13.13	1.13	9.40	97,800	60,617	17.0	2.90	37,183	54.0	347	6.86	0.09	114	43.0	100		Viton Stinger
HSVE-077	01/26/16	Zone 6	N. Olive	ND	10.18	12.98	8.65	13.13	1.53													100		Viton Stinger
HSVE-077 HSVE-077	02/09/16 02/23/16	Zone 6 Zone 6	N. Olive N. Olive	ND ND	10.04 10.65	13.35 13.14	8.65 8.65	13.13 13.13	1.39 2.00	9.40	110,000	55,500	14.4	3.60	54,500	75.0	194	10.3	0.21	121	46.0	100 100		Viton Stinger Viton Stinger
HSVE-077	03/22/16	Zone 6	N. Olive	ND	9.68	13.14	8.65	13.13	1.03	9.40	114,000	58,550	15.4	4.00	54,500 55,450	OVR	194	10.3	0.21	121	50.0	100		Viton Stinger
HSVE-078	10/05/15	Zone 5	Rand	ND	20.22	20.38	17.55	21.08	2.67		1 1,000	,000			,	2		1 2.0		.=.	20.0	0		Viton Stinger
HSVE-078	10/13/15	Zone 5	Rand	ND	Dry	20.50	17.55	21.08	3.53	18.30	520,000	300,000	2.20	14.0	220,000	OVR	273					0		Viton Stinger
HSVE-078	10/22/15	Zone 5	Rand	NID.	20.00	24.00	17 55	24.00	2.45	20.30												0		Viton Stinger
HSVE-078 HSVE-078	10/27/15 11/03/15	Zone 5 Zone 5	Rand Rand	ND NA	20.00 NA	21.00 21.00	17.55 17.55	21.08 21.08	2.45	20.30												0 50		Viton Stinger Viton Stinger
HSVE-078	11/10/15	Zone 5	Rand	ND	13.50	20.70	17.55	21.08	-4.05	20.00												50		Viton Stinger
HSVE-078	11/11/15	Zone 5	Rand	NA	NA	20.70	17.55	21.08		20.30												0		Viton Stinger
HSVE-078	11/18/15	Zone 5	Rand	ND	Dry	20.60	17.55	21.08	3.53	20.30	1,000,000	742,000	3.10	13.8	258,000	OVR	345					0		Viton Stinger
HSVE-078 HSVE-078	11/20/15 12/01/15	Zone 5 Zone 5	Rand Rand	NA ND	NA 20.66	20.60 20.68	17.55 17.55	21.08 21.08	3.11	19.10												16.7 16.7		Viton Stinger Viton Stinger
HSVE-078	12/01/15	Zone 5 Zone 5	Rand	NA NA	20.66 NA	20.68	17.55	21.08	J. I I	19.10												33.3		Viton Stinger
HSVE-078	12/08/15	Zone 5	Rand	ND	14.40	20.72	17.55	21.08	-3.15	19.10								0.00	0.00	123	48.0	50		Viton Stinger
HSVE-078	12/14/15	Zone 5	Rand	NA	NA	20.72	17.55	21.08		19.10												0		Viton Stinger
HSVE-078	01/05/16	Zone 5	Rand	ND	18.40	20.66	17.55	21.08	0.85	10.10	222 000	121 000	1 <i>E</i> 1	E 10	112 000	OV/B	150					0		Viton Stinger
HSVE-078 HSVE-078	01/12/16 01/15/16	Zone 5 Zone 5	Rand Rand	ND NA	19.62 NA	20.70 20.70	17.55 17.55	21.08 21.08	2.07	19.10 19.10	233,000	121,000	15.1	5.10	112,000	OVR	158					0 16.7		Viton Stinger Viton Stinger

201605_SVEOMMdata_APP-B 24 of 35

						Fluid Le	vel and Stin	ger Data			<u> </u>	Soil	Vapor Fiel	ld Screenin	g Results				Flow Rate	Estimation Da	ata	SV	E Control	Valve Data
Location	Date	Zone	Stratum	Depth to Product ft-btoc	Depth to Groundwat er ft-btoc	t Total Depth ft-btoc	Top of Screen ft-btoc	Bottom of Screen ft-btoc	Open Screen ft	Stinger Depth ft-btoc	Total Volatile Petroleum Hydrocarbons ppmv	Petroleum Hydrocabons ppmv	Oxygen %	Carbon Dioxide %	Methane ppmv	LEL %	PID Readino ppmv	g Flow Rate scfm	Differential Pressure in-H ₂ O	SVE Wellhead Vacuum in-H ₂ O	Venturi Surface Temperature °F	Header Valve Percent Open %	Valve	Stinger Type
HSVE-078	01/19/16	Zone 5	Rand	ND	18.50	20.65	17.55	21.08	0.95													16.7		Viton Stinger
HSVE-078	01/25/16	Zone 5	Rand	ND	18.54	20.66	17.55	21.08	0.99													16.7		Viton Stinger
HSVE-078 HSVE-078	02/09/16 02/23/16	Zone 5 Zone 5	Rand Rand	ND ND	15.30 13.45	20.68 20.66	17.55 17.55	21.08 21.08	-2.25 -4.10	19.10								8.72	0.15	122	45.0	16.7 50		Viton Stinger Viton Stinger
HSVE-078	03/01/16	Zone 5	Rand	NA	NA	20.66	17.55	21.08	-4.10	19.10								0.72	0.10	122	43.0	33.3		Viton Stinger
HSVE-078	03/07/16	Zone 5	Rand	ND	12.20	20.55	17.55	21.08	-5.35													33.3		Viton Stinger
HSVE-078	03/22/16	Zone 5	Rand	ND	14.08	20.46	17.55	21.08	-3.47	19.10								0.00	0.00	122	53.0	33.3		Viton Stinger
HSVE-078	03/28/16	Zone 5	Rand	NA	NA 11.04	20.46	17.55	21.08	5 20	19.10												0 16.7		Viton Stinger
HSVE-079 HSVE-079	10/06/15 10/14/15	Zone 5 Zone 5	Rand Rand	ND ND	11.94 10.82	20.27 20.10	17.23 17.23	20.75 20.75	-5.29 -6.41									0.00	0.00	137	67.0	16.7 33.3		None None
HSVE-079	10/15/15	Zone 5	Rand	NA	NA	20.10	17.23	20.75	0.11									0.00	0.00	107	07.0	0		None
HSVE-079	10/27/15	Zone 5	Rand	ND	20.02	21.05	17.23	20.75	2.79													0		None
HSVE-079	11/03/15	Zone 5	Rand	NA	NA	21.05	17.23	20.75														16.7		None
HSVE-079	11/10/15	Zone 5	Rand	ND	12.10	20.14	17.23	20.75	-5.13													16.7		None
HSVE-079 HSVE-079	11/11/15 11/18/15	Zone 5 Zone 5	Rand Rand	NA ND	NA 18.74	20.14 20.33	17.23 17.23	20.75 20.75	1.51		380,000	200,000	4.00	12.7	180,000	OVR	300					0		None None
HSVE-079	12/01/15	Zone 5	Rand	ND	18.30	20.40	17.23	20.75	1.07		000,000	200,000	4.00	12.1	100,000	OVIC	000					0		None
HSVE-079	12/09/15	Zone 5	Rand	ND	19.95	20.20	17.23	20.75	2.72		37,200	34,313	20.2	0.20	2,887	20.0	800					0		None
HSVE-079	12/15/15	Zone 5	Rand	NA	NA	20.20	17.23	20.75														16.7		None
HSVE-079	12/22/15	Zone 5	Rand	ND NA	10.70	20.37	17.23	20.75	-6.53													16.7		None
HSVE-079 HSVE-079	12/24/15 01/05/16	Zone 5 Zone 5	Rand Rand	NA 15.40	NA 15.50	20.37 20.70	17.23 17.23	20.75 20.75	-1.83													0		None None
HSVE-079	01/13/16	Zone 5	Rand	16.55	16.67	20.25	17.23	20.75	-0.68													0		None
HSVE-079	01/26/16	Zone 5	Rand	ND	19.52	20.70	17.23	20.75	2.29													0		None
HSVE-079	02/09/16	Zone 5	Rand	ND	20.07	20.72	17.23	20.75	2.84													0		None
HSVE-079	02/12/16	Zone 5	Rand	NA	NA 44.40	20.72	17.23	20.75	0.07									0.00	0.00	400	40.0	16.7		None
HSVE-079 HSVE-079	02/23/16 03/01/16	Zone 5 Zone 5	Rand Rand	ND NA	11.16 NA	20.70 20.70	17.23 17.23	20.75 20.75	-6.07									0.00	0.00	120	46.0	16.7		None None
HSVE-079	03/07/16	Zone 5	Rand	ND	20.05	20.20	17.23	20.75	2.82													0		None
HSVE-079	03/22/16	Zone 5	Rand	20.04	20.06	20.70	17.23	20.75	2.81		905,000	581,000	4.10	13.4	324,000	OVR	180					0		None
HSVE-079	03/28/16	Zone 5	Rand	NA	NA	20.70	17.23	20.75														16.7		None
HSVE-080	10/06/15	Zone 5	N. Olive	ND	9.38	13.75	8.67	13.16	0.71													16.7		None
HSVE-080 HSVE-080	11/10/15 01/05/16	Zone 5 Zone 5	N. Olive N. Olive	ND ND	9.00 7.33	13.74 13.61	8.67 8.67	13.16 13.16	0.33 -1.34													16.7 16.7		None None
HSVE-080	01/13/16	Zone 5	N. Olive	ND	7.45	13.72	8.67	13.16	-1.22		2,140	668	20.4	0.40	1,472	4.00	85.0	6.92	0.09	114	34.0	50		None
HSVE-080	01/26/16	Zone 5	N. Olive	ND	7.84	13.60	8.67	13.16	-0.83		, -				,							50		None
HSVE-080	02/09/16	Zone 5	N. Olive	ND	8.00	13.60	8.67	13.16	-0.67													50		None
HSVE-080	02/23/16	Zone 5	N. Olive	ND	8.10	13.61	8.67	13.16	-0.57									0.00	0.00	124	49.0	50		None
HSVE-080 HSVE-080	03/01/16 03/07/16	Zone 5 Zone 5	N. Olive N. Olive	NA ND	NA 13.46	13.61 13.69	8.67 8.67	13.16 13.16	4.49													0		None None
HSVE-080	03/07/10	Zone 5	N. Olive	ND	Dry	13.68	8.67	13.16	4.49		13,750	13,300	4.50	10.7	450	14.0	183					0		None
HSVE-080	03/28/16	Zone 5	N. Olive	NA	NA	13.68	8.67	13.16				,										16.7		None
HSVE-081	10/06/15	Zone 5	Rand	ND	21.40	21.70	18.42	21.94	2.98		400			46 -	4=0	a						0		None
HSVE-081	10/14/15	Zone 5	Rand	ND NA	21.47	21.70	18.42	21.94	3.05		433,000	280,000	4.20	13.2	153,000	OVR	278					0		None
HSVE-081 HSVE-081	10/19/15 10/27/15	Zone 5 Zone 5	Rand Rand	NA ND	NA Dry	21.70 21.85	18.42 18.42	21.94 21.94	3.52													50 50		None None
HSVE-081	11/03/15	Zone 5	Rand	NA	NA	21.85	18.42	21.94	0.02													100		None
HSVE-081	11/10/15	Zone 5	Rand	ND	13.30	21.85	18.42	21.94	-5.12													100		None
HSVE-081	11/11/15	Zone 5	Rand	NA	NA	21.85	18.42	21.94	0.50		700 000	545.000	0.00	46 =	045.000	6: /=						0		None
HSVE-081	11/18/15	Zone 5	Rand Pand	ND NA	Dry	21.75	18.42	21.94	3.52		730,000	515,000	0.80	16.7	215,000	OVR	422					0 16.7		None
HSVE-081 HSVE-081	11/20/15 12/01/15	Zone 5 Zone 5	Rand Rand	NA ND	NA 16.60	21.75 21.80	18.42 18.42	21.94 21.94	-1.82													16.7 16.7		None None
HSVE-081	12/03/15	Zone 5	Rand	NA	NA	21.80	18.42	21.94	1.02													0		None
HSVE-081	12/09/15	Zone 5	Rand	ND	21.22	21.90	18.42	21.94	2.80		504,000	326,000	2.60	15.0	178,000	OVR	290					0		None
HSVE-081	12/15/15	Zone 5	Rand	NA	NA	21.90	18.42	21.94														16.7		None
HSVE-081	12/22/15	Zone 5	Rand	ND NA	17.40	21.84	18.42	21.94	-1.02													16.7		None
HSVE-081 HSVE-081	12/29/15 01/05/16	Zone 5 Zone 5	Rand Rand	NA 13.98	NA 16.15	21.84 22.52	18.42 18.42	21.94 21.94	-4.44													0		None None

201605_SVEOMMdata_APP-B 25 of 35

						Fluid Le	vel and Stir	nger Data				Soil	Vapor Fiel	ld Screenin	g Results				Flow Rate	Estimation Da	ıta	SV	E Control	Valve Data
Location	Date	Zone	Stratum	Depth to Product ft-btoc	Depth to Groundwat er ft-btoc		Top of Screen ft-btoc	Bottom of Screen ft-btoc	Open Screen ft	Stinger Depth ft-btoc	Total Volatile Petroleum Hydrocarbons ppmv	Petroleum Hydrocabons ppmv	Oxygen %	Carbon Dioxide %	Methane ppmv	LEL %	PID Reading	Flow Rate	Differential Pressure in-H ₂ O	SVE Wellhead Vacuum in-H ₂ O	Venturi Surface Temperature °F	Header Valve Percent Open %	Straw Stinger Valve Percent Open %	Stinger Type
HSVE-081	01/13/16	Zone 5	Rand	ND	19.20	21.85	18.42	21.94	0.78	11 5100	59,000	27,400	12.4	4.80	31,600	85.0	190	301111			•	0	70	None
HSVE-081 HSVE-081 HSVE-081 HSVE-081	01/19/16 01/21/16 01/26/16 02/09/16 02/23/16	Zone 5 Zone 5 Zone 5 Zone 5	Rand Rand Rand Rand	ND NA ND ND	14.60 NA 19.55 21.06	22.51 22.51 22.52 22.50 22.52	18.42 18.42 18.42 18.42	21.94 21.94 21.94 21.94	-3.82 1.13 2.64		39,000	27,400	12.4	4.00	31,000	65.0	190	26.7	1.28	04.0	45.0	0 0 0 0		None None None None
HSVE-081 HSVE-081 HSVE-081 HSVE-081	03/01/16 03/07/16 03/22/16 03/28/16	Zone 5 Zone 5 Zone 5 Zone 5 Zone 5	Rand Rand Rand Rand Rand	ND NA ND ND NA	15.50 NA 21.32 21.40 NA	22.52 21.80 21.83 21.83	18.42 18.42 18.42 18.42 18.42	21.94 21.94 21.94 21.94 21.94	-2.92 2.90 2.98		1,000,000	483,000	1.20	17.7	517,000	OVR	166	20.7	1.20	94.0	45.0	16.7 0 0 0 16.7	400	None None None None
HSVE-082 HSVE-082 HSVE-082 HSVE-082	10/01/15 10/06/15 10/14/15 10/19/15 10/20/15	Zone 5 Zone 5 Zone 5 Zone 5 Zone 5	N. Olive N. Olive N. Olive N. Olive N. Olive	NA ND ND NA	NA 12.96 12.95 NA	13.29 13.30 13.30 13.30	9.62 9.62 9.62 9.62	13.13 13.13 13.13 13.13	3.34 3.33	11.75	700	321	20.2	0.50	379	0.00	67.0			138		0 0 0	100 100 100 100	Straw Stinger Straw Stinger Straw Stinger Straw Stinger Straw Stinger
HSVE-082 HSVE-082 HSVE-082 HSVE-082	10/27/15 11/10/15 11/18/15 12/01/15 12/09/15 12/29/15	Zone 5 Zone 5 Zone 5 Zone 5 Zone 5 Zone 5	N. Olive N. Olive N. Olive N. Olive N. Olive	ND ND ND ND	13.10 13.02 12.98 12.98 13.05	13.40 13.40 13.40 13.40 13.40	9.62 9.62 9.62 9.62 9.62	13.13 13.13 13.13 13.13 13.13	3.48 3.40 3.36 3.36 3.43 1.88		1,660 800	878 392	18.8 18.9	1.00 0.80	782 408	0.00	182 81.0			136	46.0	0 0 0 0	100 100 100 100 100 100	Straw Stinger Straw Stinger Straw Stinger Straw Stinger Straw Stinger
HSVE-082 HSVE-082 HSVE-082 HSVE-082	12/30/15 01/05/16 01/13/16 01/26/16	Zone 5 Zone 5 Zone 5 Zone 5 Zone 5 Zone 5	N. Olive N. Olive N. Olive N. Olive N. Olive	NA ND ND ND	11.50 10.65 10.64 10.70	13.30 13.38 13.33 13.38	9.62 9.62 9.62 9.62	13.13 13.13 13.13 13.13	1.03 1.02 1.08	10.00	1,660	649	20.2	0.60	1,011	0.00	133			131	40.0	0 0 0	100 100 100 100	Straw Stinger Straw Stinger Straw Stinger Straw Stinger Straw Stinger
HSVE-082 HSVE-082 HSVE-082	02/09/16 02/23/16 03/07/16	Zone 5 Zone 5 Zone 5	N. Olive N. Olive N. Olive	ND ND ND	10.69 10.80 10.85	13.40 13.38 13.25	9.62 9.62 9.62	13.13 13.13 13.13	1.07 1.18 1.23		62.0	62.0	20.8	0.00	0.00	0.00	17.0			132	51.0	0 0 0	100 100 100	Straw Stinger Straw Stinger Straw Stinger
HSVE-082 HSVE-083 HSVE-083	03/22/16 10/06/15 10/14/15	Zone 5 Zone 5 Zone 5	N. Olive Rand Rand	ND ND ND	10.70 14.00 19.50	13.24 22.50 22.28	9.62 19.17 19.17	13.13 22.67 22.67	1.08 -5.17 0.33	20.50	4,478 25,100	887 12,886	20.4 19.9	0.40	3,591 12,214	5.00 17.0	123 488	27.9	1.71	136 138	60.0 69.0	0 33.3 33.3	100	Straw Stinger Viton Stinger Viton Stinger
HSVE-083 HSVE-083	10/27/15 11/10/15	Zone 5 Zone 5	Rand Rand	ND ND	15.38 14.40	22.23 22.25	19.17 19.17	22.67 22.67	-3.79 -4.77													33.3 33.3		Viton Stinger Viton Stinger
HSVE-083 HSVE-083 HSVE-083	11/18/15 12/01/15 12/09/15	Zone 5 Zone 5 Zone 5	Rand Rand Rand	ND ND ND	18.60 22.30 19.55	22.11 22.35 22.10	19.17 19.17 19.17	22.67 22.67 22.67	-0.57 3.13 0.38	20.50	1,650 910	1,395 735	20.8	0.10	255 175	0.00	300 190	35.1 33.1	2.68 2.29	142 136	59.0 48.0	50 50 50		Viton Stinger Viton Stinger Viton Stinger
HSVE-083 HSVE-083 HSVE-083	01/05/16 01/13/16 01/26/16	Zone 5 Zone 5 Zone 5	Rand Rand Rand	ND 14.60 ND	7.19 14.80 14.99	22.46 21.93 22.46	19.17 19.17 19.17	22.67 22.67 22.67	-11.98 -4.57 -4.18	20.50								32.9	2.18	133	34.0	50 50 50		Viton Stinger Viton Stinger Viton Stinger
HSVE-083 HSVE-083 HSVE-083	02/09/16 02/23/16 03/01/16	Zone 5 Zone 5 Zone 5	Rand Rand Rand	ND ND NA	15.60 18.20 NA	22.40 22.46 22.46	19.17 19.17 19.17	22.67 22.67 22.67	-3.57 -0.97	20.50 20.50								31.0	1.98	132	50.0	50 33.3 33.3		Viton Stinger Viton Stinger Viton Stinger
HSVE-083 HSVE-084 HSVE-084	03/07/16 03/22/16 10/01/15 10/02/15	Zone 5 Zone 5 Zone 5 Zone 5	Rand Rand Rand Rand	ND ND ND NA	13.94 13.40 12.00 NA	22.00 21.96 23.30 23.30	19.17 19.17 19.77 19.77	22.67 22.67 23.29 23.29	-5.23 -5.77 -7.77	20.50								30.4 0.00	1.69 0.00	92.0 125	57.0 77.0	33.3 33.3 33.3 0		Viton Stinger Viton Stinger None None
HSVE-084 HSVE-084 HSVE-084 HSVE-084 HSVE-084 HSVE-084	10/06/15 10/14/15 10/27/15 11/03/15 11/10/15 11/18/15 12/01/15	Zone 5	Rand Rand Rand Rand Rand Rand Rand	ND ND ND NA ND ND	19.12 21.63 21.37 NA 21.05 13.80 21.94	23.13 23.17 23.20 23.20 23.18 22.13 23.26	19.77 19.77 19.77 19.77 19.77 19.77	23.29 23.29 23.29 23.29 23.29 23.29 23.29	-0.65 1.86 1.60 1.28 -5.97 2.17		54,600	19,300	11.2	8.80	35,300	36.0	122					0 0 0 16.7 16.7 0		None None None None None None
HSVE-084 HSVE-084 HSVE-084 HSVE-084	12/03/15 12/09/15 12/14/15 12/22/15 12/29/15	Zone 5 Zone 5 Zone 5 Zone 5 Zone 5 Zone 5	Rand Rand Rand Rand Rand	NA ND NA ND NA	NA 22.00 NA 19.75 NA	23.26 23.15 23.15 23.18 23.18	19.77 19.77 19.77 19.77 19.77	23.29 23.29 23.29 23.29 23.29	2.23		58,200	31,862	16.2	6.10	26,338	32.0	555	0.00	0.00	26.0	47.0	16.7 16.7 16.7 16.7 0		None None None None None

201605_SVEOMMdata_APP-B 26 of 35

						Fluid Le	vel and Stir	iger Data			<u> </u>	Soil	Vapor Fiel	ld Screenin	g Results				Flow Rate	Estimation Da	ata	SV	E Control \	/alve Data
Location	Date	Zone	Stratum	Depth to Product ft-btoc	Depth to Groundwat er ft-btoc	t Total Depth ft-btoc	Top of Screen ft-btoc	Bottom of Screen ft-btoc	Open Screen ft	Stinger Depth ft-btoc	Total Volatile Petroleum Hydrocarbons ppmv	Petroleum Hydrocabons ppmv	Oxygen %	Carbon Dioxide %	Methane ppmv	LEL %	PID Reading ppmv	Flow Rate	Differential Pressure in-H ₂ O	SVE Wellhead Vacuum in-H ₂ O	Venturi Surface Temperature °F	Header Valve Percent Open %	Valve	Stinger Type
HSVE-084	01/05/16	Zone 5	Rand	ND	20.11	23.70	19.77	23.29	0.34								• •					0		None
HSVE-084	01/13/16	Zone 5	Rand	19.40	19.45	23.18	19.77	23.29	-0.37													0		None
HSVE-084	01/26/16	Zone 5	Rand	20.45	21.00	23.26	19.77	23.29	0.68													0		None
HSVE-084	02/08/16	Zone 5	Rand	ND	14.92	23.22 23.70	19.77	23.29	-4.85		634,000	206 000	2.50	15 5	339 000	OVB	922	0.00	0.00	20.0	40.0	16.7		None
HSVE-084 HSVE-084	02/23/16 03/08/16	Zone 5 Zone 5	Rand Rand	ND ND	22.15 17.30	23.70	19.77 19.77	23.29 23.29	2.38 -2.47		634,000	296,000	3.50	15.5	338,000	OVR	822	0.00	0.00	29.0	49.0	16.7 16.7		None None
HSVE-084	03/22/16	Zone 5	Rand	ND	21.40	23.20	19.77	23.29	1.63		7,647	2,615	20.3	0.50	5,032	8.00	302	0.00	0.00	116	57.0	16.7		None
HSVE-085	10/01/15	Zone 5	Rand	NA	NA	22.52	18.38	22.38		19.40												0		Viton Stinger
HSVE-085	10/06/15	Zone 5	Rand	ND	22.29	22.48	18.38	22.38	3.91													0		Viton Stinger
HSVE-085	10/14/15	Zone 5	Rand	ND	22.30	22.52	18.38	22.38	3.92	19.40	20,000	5,000	16.2	3.70	15,000	13.0	212					0		Viton Stinger
HSVE-085 HSVE-085	10/19/15 10/27/15	Zone 5 Zone 5	Rand Rand	NA ND	NA 19.92	22.52 22.60	18.38 18.38	22.38 22.38	1.54	19.40												50 50		Viton Stinger Viton Stinger
HSVE-085	11/10/15	Zone 5	Rand	ND	20.17	22.49	18.38	22.38	1.79													50		Viton Stinger
HSVE-085	11/18/15	Zone 5	Rand	ND	20.00	22.50	18.38	22.38	1.62	19.40	11,800	8,673	17.6	3.00	3,127	11.0	643	5.71	0.07	137	60.0	50		Viton Stinger
HSVE-085	11/23/15	Zone 5	Rand	ND	20.26	22.50	18.38	22.38	1.88													50		Viton Stinger
HSVE-085	12/02/15	Zone 5	Rand	ND	20.66	22.50	18.38	22.38	2.28	40.40												50		Viton Stinger
HSVE-085 HSVE-085	12/03/15 12/09/15	Zone 5 Zone 5	Rand Rand	NA ND	NA 20.55	22.50 22.46	18.38 18.38	22.38 22.38	2.17	19.40 19.40	7,150	6,087	18.5	1.60	1,063	5.00	420	6.95	0.10	131	53.0	66.7 50		Viton Stinger Viton Stinger
HSVE-085	12/14/15	Zone 5	Rand	NA NA	20.33 NA	22.46	18.38	22.38	2.17	19.40	7,130	0,007	10.5	1.00	1,003	3.00	420	0.93	0.10	131	33.0	100		Viton Stinger
HSVE-085	12/22/15	Zone 5	Rand	ND	20.62	22.50	18.38	22.38	2.24													100		Viton Stinger
HSVE-085	12/29/15	Zone 5	Rand	NA	19.42	22.45	18.38	22.38	1.04	19.40												100		Viton Stinger
HSVE-085	12/30/15	Zone 5	Rand		40.00	00.45	40.00			19.20												100		Viton Stinger
HSVE-085	01/05/16 01/13/16	Zone 5	Rand	ND	19.28	22.45	18.38 18.38	22.38 22.38	0.90	10.20	690	515	10.1	1 20	165	0.00	106	E 40	0.06	133	46.0	100		Viton Stinger
HSVE-085 HSVE-085	01/13/16	Zone 5 Zone 5	Rand Rand	ND ND	19.35 19.40	22.44 22.45	18.38	22.38	0.97 1.02	19.20	680	515	19.1	1.20	165	0.00	126	5.40	0.06	133	40.0	100 100		Viton Stinger Viton Stinger
HSVE-085	02/08/16	Zone 5	Rand	ND	18.90	22.45	18.38	22.38	0.52													100		Viton Stinger
HSVE-085	02/25/16	Zone 5	Rand	ND	19.34	22.44	18.38	22.38	0.96	19.20	9,020	3,961	18.3	1.80	5,059	6.00	310	6.92	0.10	137	46.0	100		Viton Stinger
HSVE-085	03/08/16	Zone 5	Rand	ND	19.20	22.45	18.38	22.38	0.82													100		Viton Stinger
HSVE-085 HSVE-085	03/22/16 03/28/16	Zone 5 Zone 5	Rand Rand	ND	19.00	22.44	18.38	22.38	0.62	19.20 20.00	12,600	8,694	17.2	2.70	3,906	9.00	497	4.88	0.05	133	56.0	100 100		Viton Stinger
HSVE-086	10/06/15	Zone 5	N. Olive	ND	10.20	13.32	8.47	12.95	1.73	20.00												100		Viton Stinger Viton Stinger
HSVE-086	10/14/15	Zone 5	N. Olive	ND	10.59	13.29	8.47	12.95	2.12	9.70	130	92.9	20.5	0.10	37.1	0.00	25.0	32.2	2.18	129	64.0	100		Viton Stinger
HSVE-086	10/27/15	Zone 5	N. Olive	ND	10.33	13.42	8.47	12.95	1.86													100		Viton Stinger
HSVE-086	11/10/15	Zone 5	N. Olive	ND	10.05	13.30	8.47	12.95	1.58													100		Viton Stinger
HSVE-086	11/18/15	Zone 5	N. Olive	ND	12.40	13.25	8.47	12.95	3.93	9.70	312	304	20.7	0.10	8.45	0.00	76.0	25.9	1.42	135	56.0	100		Viton Stinger
HSVE-086 HSVE-086	12/02/15 12/09/15	Zone 5 Zone 5	N. Olive N. Olive	ND ND	12.66 10.58	12.68 13.00	8.47 8.47	12.95 12.95	4.19 2.11	9.70	160	160	20.8	0.60	0.00	0.00	35.0	31.0	1.93	125	50.0	100 100		Viton Stinger Viton Stinger
HSVE-086	12/29/15	Zone 5	N. Olive	NA	10.40	13.24	8.47	12.95	1.93	9.70	100	100	20.0	0.00	0.00	0.00	00.0	01.0	1.50	120	00.0	100		Viton Stinger
HSVE-086	12/30/15	Zone 5	N. Olive							9.40												100		Viton Stinger
HSVE-086	01/05/16	Zone 5	N. Olive	ND	10.65	13.18	8.47	12.95	2.18													100		Viton Stinger
HSVE-086	01/13/16	Zone 5	N. Olive	ND	10.60	13.32	8.47	12.95	2.13	9.40	30.0	30.0	20.8	0.00	0.00	0.00	10.0	29.3	1.72	128	42.0	100		Viton Stinger
HSVE-086 HSVE-086	01/26/16 02/08/16	Zone 5 Zone 5	N. Olive N. Olive	ND ND	10.78 Dry	13.30 12.75	8.47 8.47	12.95 12.95	2.31 4.48													100 100		Viton Stinger Viton Stinger
HSVE-086	02/05/16	Zone 5	N. Olive	ND	10.62	12.73	8.47	12.95	2.15	9.40	194	167	20.7	0.20	26.8	0.00	37.0	23.3	1.11	134	41.0	100		Viton Stinger
HSVE-086	03/08/16	Zone 5	N. Olive	ND	10.48	12.90	8.47	12.95	2.01	2					_3.0		2					100		Viton Stinger
HSVE-086	03/22/16	Zone 5	N. Olive	ND	10.60	13.20	8.47	12.95	2.13	9.40	293	252	20.8	0.20	41.2	0.00	54.0	29.3	1.76	130	51.0	100		Viton Stinger
HSVE-087	10/06/15	Zone 4	Rand	ND	19.78	23.09	18.72	23.21	1.06	40.00	4.400	0.400	40.0	0.00	044	0.00		40.5	0.50	400	25.2	100		Viton Stinger
HSVE-087 HSVE-087	10/14/15 10/27/15	Zone 4 Zone 4	Rand Rand	ND	20.00	23.00 23.08	18.72 18.72	23.21	1.28 1.37	18.90	4,100	3,486	19.8	0.80	614	3.00	415	16.5	0.58	132	65.0	50 50		Viton Stinger Viton Stinger
HSVE-087 HSVE-087	11/10/15	Zone 4 Zone 4	Rand Rand	ND ND	20.09 19.25	23.08	18.72	23.21 23.21	0.53													50 50		Viton Stinger Viton Stinger
HSVE-087	11/18/15	Zone 4	Rand	ND	19.95	23.50	18.72	23.21	1.23	18.90	6,290	5,382	19.4	1.10	908	4.00	537	7.53	0.12	133	61.0	50		Viton Stinger
HSVE-087	11/23/15	Zone 4	Rand	ND	20.07	23.04	18.72	23.21	1.35			•										50		Viton Stinger
HSVE-087	12/01/15	Zone 4	Rand	ND	19.84	23.06	18.72	23.21	1.12													50		Viton Stinger
HSVE-087	12/09/15	Zone 4	Rand	ND	19.84	22.85	18.72	23.21	1.12	18.90	4,400	4,008	19.8	0.90	392	4.00	410	7.79	0.12	116	56.0	50		Viton Stinger
HSVE-087 HSVE-087	12/14/15 12/22/15	Zone 4 Zone 4	Rand Rand	NA ND	NA 19.85	22.85 23.06	18.72 18.72	23.21 23.21	1 12	18.90												100 100		Viton Stinger Viton Stinger
HSVE-087 HSVE-087	12/22/15	Zone 4 Zone 4	Rand	NA NA	20.00	23.06	18.72	23.21	1.13 1.28	18.90												100		Viton Stinger Viton Stinger
HSVE-087	01/05/16	Zone 4	Rand	ND	19.38	23.00	18.72	23.21	0.66	. 5.00												100		Viton Stinger

201605_SVEOMMdata_APP-B 27 of 35

						Fluid Le	vel and Stin	ger Data				Soil	Vapor Fiel	ld Screenin	g Results				Flow Rate	Estimation Da	ta	S\	/E Control	Valve Data
				Depth to	Depth to Groundwat er	Total Depth	Top of Screen	Bottom of Screen	Open Screen	Stinger Depth	Total Volatile Petroleum Hydrocarbons	Petroleum Hydrocabons	Oxygen	Carbon Dioxide	Methane	LEL	PID Reading	Flow Rate	Differential Pressure	SVE Wellhead Vacuum	Venturi Surface Temperature	Header Valve Percent Open	Straw Stinger Valve Percent Open	Stinger Type
Location	Date	Zone	Stratum	ft-btoc	ft-btoc	ft-btoc	ft-btoc	ft-btoc	ft	ft-btoc	ppmv	ppmv	%	%	ppmv	%	ppmv	scfm	in-H ₂ O	in-H ₂ O	°F	%	%	3 71
HSVE-087	01/13/16	Zone 4	Rand	ND	19.70	22.96	18.72	23.21	0.98	18.90	40.0	37.2	20.8	0.00	2.82	0.00	11.0	10.2	0.20	122	34.0	100		Viton Stinger
HSVE-087	01/26/16	Zone 4	Rand	ND	19.82	22.94	18.72	23.21	1.10													100		Viton Stinger
HSVE-087	02/08/16	Zone 4	Rand	ND	19.85	23.00	18.72	23.21	1.13													100		Viton Stinger
HSVE-087	02/25/16	Zone 4	Rand	ND	19.90	22.45	18.72	23.21	1.18	18.90	1,720	1,050	20.1	0.70	670	1.00	143	10.8	0.24	131	47.0	100		Viton Stinger
HSVE-087 HSVE-087	03/08/16 03/22/16	Zone 4 Zone 4	Rand Rand	ND ND	19.90 19.95	22.45 22.30	18.72 18.72	23.21 23.21	1.18 1.23	18.90	2,787	2,088	20.1	0.80	699	0.00	220	7.58	0.12	132	56.0	100 100		Viton Stinger Viton Stinger
HSVE-087	03/28/16	Zone 4	Rand	IND	10.00	22.00	10.72	20.21	1.20	20.00	2,707	2,000	20.1	0.00	000	0.00	220	7.00	0.12	102	00.0	100		Viton Stinger
HSVE-088	10/01/15	Zone 4	Rand	NA	NA	23.25	20.25	22.74		21.00												0		Viton Stinger
HSVE-088	10/06/15	Zone 4	Rand	ND	23.90	23.28	20.25	22.74	2.49													0		Viton Stinger
HSVE-088	10/14/15	Zone 4	Rand	ND	23.05	23.30	20.25	22.74	2.49	21.00	50.0	40.0	20.7	0.00	10.0	0.00	12.0					0		Viton Stinger
HSVE-088 HSVE-088	10/27/15 11/10/15	Zone 4	Rand	ND	22.90 22.78	23.28 23.27	20.25	22.74 22.74	2.49 2.49													0		Viton Stinger
HSVE-088	11/10/15	Zone 4 Zone 4	Rand Rand	ND ND	22.76	23.28	20.25 20.25	22.74	2.49	21.00	55.0	55.0	20.8	0.00	0.00	0.00	18.0					0		Viton Stinger Viton Stinger
HSVE-088	11/30/15	Zone 4	Rand	NA	NA	23.28	20.25	22.74	2.40	21.00	00.0	00.0	20.0	0.00	0.00	0.00	10.0					16.7		Viton Stinger
HSVE-088	12/02/15	Zone 4	Rand	ND	15.40	23.30	20.25	22.74	-4.85													16.7		Viton Stinger
HSVE-088	12/03/15	Zone 4	Rand	NA	NA	23.30	20.25	22.74		21.00												0		Viton Stinger
HSVE-088	12/09/15	Zone 4	Rand	ND	22.75	23.25	20.25	22.74	2.49	21.00	40.0	40.0	20.8	0.00	0.00	0.00	11.0					0		Viton Stinger
HSVE-088 HSVE-088	01/05/16 01/13/16	Zone 4 Zone 4	Rand Rand	ND ND	16.15 17.80	23.27 23.32	20.25 20.25	22.74 22.74	-4.10 -2.45	21.00												0		Viton Stinger Viton Stinger
HSVE-088	01/13/16	Zone 4	Rand	ND	20.07	23.40	20.25	22.74	-2.43 -0.18	21.00												0		Viton Stinger
HSVE-088	02/09/16	Zone 4	Rand	ND	Dry	21.50	20.25	22.74	2.49													0		Viton Stinger
HSVE-088	02/12/16	Zone 4	Rand	NA	NÁ	21.50	20.25	22.74		21.00												16.7		Viton Stinger
HSVE-088	02/25/16	Zone 4	Rand	ND	20.75	23.28	20.25	22.74	0.50	21.00	1,943	291	20.6	0.20	1,652	1.00	33.0	0.00	0.00	17.0	43.0	16.7		Viton Stinger
HSVE-088	03/08/16	Zone 4	Rand	ND	21.12	23.28	20.25	22.74	0.87	04.00	4.000	222	00.0	0.40	4.000	0.00	50.0	F 70	0.05	00.0	50.0	16.7		Viton Stinger
HSVE-088 HSVE-088	03/23/16 03/28/16	Zone 4 Zone 4	Rand Rand	ND NA	Dry NA	23.20 23.20	20.25 20.25	22.74 22.74	2.49	21.00 21.00	1,966	363	20.6	0.40	1,603	0.00	52.0	5.78	0.05	20.0	59.0	16.7 33.3		Viton Stinger
HSVE-089	10/06/15	Zone 4	N. Olive	ND ND	14.62	15.00	8.36	14.91	6.26	21.00												100		Viton Stinger Viton Stinger
HSVE-089	10/14/15	Zone 4	N. Olive	ND	14.65	15.00	8.36	14.91	6.29	13.00	20.0	14.3	20.8	0.10	5.71	0.00	5.00	40.0	3.41	131	69.0	100		Viton Stinger
HSVE-089	10/19/15	Zone 4	N. Olive	NA	NA	15.00	8.36	14.91		13.00												0		Viton Stinger
HSVE-089	10/27/15	Zone 4	N. Olive	ND	Dry	15.00	8.36	14.91	6.55													0		Viton Stinger
HSVE-089	11/10/15	Zone 4	N. Olive	ND	Dry	14.71	8.36	14.91	6.55	40.00	4- 0	4= 0	4-0									0		Viton Stinger
HSVE-089 HSVE-089	11/18/15 11/30/15	Zone 4	N. Olive	ND	Dry NA	14.70 14.70	8.36 8.36	14.91 14.91	6.55	13.00	45.0	45.0	17.2	0.80	0.00	0.00	17.0					50		Viton Stinger Viton Stinger
HSVE-089	12/02/15	Zone 4 Zone 4	N. Olive N. Olive	NA ND	Dry	15.10	8.36	14.91	6.55	13.00												50 50		Viton Stinger
HSVE-089	12/03/15	Zone 4	N. Olive	NA	NA	15.10	8.36	14.91	0.00	13.00												100		Viton Stinger
HSVE-089	12/09/15	Zone 4	N. Olive	ND	10.62	15.22	8.36	14.91	2.26	13.00	201	119	20.7	0.40	81.7	0.00	18.0	26.5	1.44	129	53.0	100		Viton Stinger
HSVE-089	12/28/15	Zone 4	N. Olive	NA	NA	15.22	8.36	14.91		13.00												0		Viton Stinger
HSVE-089	01/05/16	Zone 4	N. Olive	ND	14.42	15.33	8.36	14.91	6.06	40.00	05.0	00.0	40.0	0.00	0.00	0.00	0.00					0		Viton Stinger
HSVE-089	01/13/16	Zone 4	N. Olive	ND ND	14.85	15.42 15.38	8.36	14.91	6.49 6.55	13.00	25.0	22.2	19.3	0.80	2.82	0.00	8.00					0		Viton Stinger Viton Stinger
HSVE-089 HSVE-089	01/26/16 02/09/16	Zone 4 Zone 4	N. Olive N. Olive	ND ND	14.98 15.00	15.38 15.38	8.36 8.36	14.91 14.91	6.55 6.55													0		Viton Stinger
HSVE-089	02/12/16	Zone 4	N. Olive	NA	NA	15.38	8.36	14.91	0.00	13.00												16.7		Viton Stinger
HSVE-089	02/25/16	Zone 4	N. Olive	ND	13.10	15.40	8.36	14.91	4.74	13.00	2,442	921	19.7	0.80	1,521	1.00	57.0	11.0	0.18	32.0	43.0	16.7		Viton Stinger
HSVE-089	03/01/16	Zone 4	N. Olive	NA	NA	15.40	8.36	14.91		13.00												50		Viton Stinger
HSVE-089	03/08/16	Zone 4	N. Olive	ND	10.53	15.37	8.36	14.91	2.17	12.00	1.450	470	20.0	0.00	604	0.00	40.0	0.24	0.40	100	E0.0	50 50		Viton Stinger
HSVE-089 HSVE-090	03/23/16 10/01/15	Zone 4 Zone 4	N. Olive Main Silt	ND NA	9.90 NA	15.35 24.50	8.36 21.36	14.91 24.88	1.54	13.00 21.90	1,156	472	20.0	0.80	684	0.00	40.0	9.31	0.18	129	58.0	50 16.7		Viton Stinger Viton Stinger
HSVE-090	10/01/15	Zone 4	Main Silt	ND ND	15.52	24.58	21.36	24.88	-5.84	21.30												16.7		Viton Stinger
HSVE-090	10/14/15	Zone 4	Main Silt	ND	16.80	24.50	21.36	24.88	-4.56	21.90								15.5	0.51	131	66.0	33.3		Viton Stinger
HSVE-090	10/19/15	Zone 4	Main Silt	NA	NA	24.50	21.36	24.88		21.90												0		Viton Stinger
HSVE-090	10/27/15	Zone 4	Main Silt	ND	24.10	24.60	21.36	24.88	2.74													0		Viton Stinger
HSVE-090	11/10/15	Zone 4	Main Silt	ND	24.37	24.48	21.36	24.88	3.01	04.00	00.000	44.000	0 =0	0.10	05.000	500	404					0		Viton Stinger
HSVE-090	11/19/15	Zone 4	Main Silt	ND NA	Dry	24.46	21.36	24.88	3.52	21.90	39,600	14,600	6.70	8.10	25,000	58.0	164					16.7		Viton Stinger
HSVE-090 HSVE-090	11/20/15 11/30/15	Zone 4 Zone 4	Main Silt Main Silt	NA NA	NA NA	24.46 24.46	21.36 21.36	24.88 24.88		21.90 21.90												16.7 33.3		Viton Stinger Viton Stinger
HSVE-090	12/02/15	Zone 4	Main Silt	ND ND	15.80	24.50	21.36	24.88	-5.56	21.30												33.3		Viton Stinger
HSVE-090	12/03/15	Zone 4	Main Silt	NA	NA	24.50	21.36	24.88		21.90												0		Viton Stinger
HSVE-090	12/09/15	Zone 4	Main Silt	ND	23.90	24.50	21.36	24.88	2.54	21.90	14,400	0.00	16.2	3.50	14,400	45.0	622					0		Viton Stinger

201605_SVEOMMdata_APP-B 28 of 35

						Fluid Le	vel and Stin	ger Data			1	Soil	Vapor Fiel	ld Screenin	g Results			I	Flow Rate	Estimation Da	ata	SV	E Control \	/alve Data
Location	Date	Zone	Stratum	Depth to Product ft-btoc	Depth to Groundwat er ft-btoc		Top of Screen ft-btoc	Bottom of Screen ft-btoc	Open Screen ft	Stinger Depth ft-btoc	Total Volatile Petroleum Hydrocarbons ppmv	Petroleum Hydrocabons ppmv	·	Carbon Dioxide %	Methane ppmv	LEL %	PID Reading	g Flow Rate scfm	Differential Pressure in-H ₂ O	SVE Wellhead Vacuum in-H ₂ O	Venturi Surface Temperature °F	Header Valve Percent Open %	Straw Stinger Valve Percent Open %	Stinger Type
HSVE-090	12/22/15	Zone 4	Main Silt	ND	17.00	24.48	21.36	24.88	-4.36		pp	PPIIII	,,,	,,,	PPIIII	7.0	PPIII		20	2	·	0	,,,	Viton Stinger
HSVE-090	12/24/15	Zone 4	Main Silt	NA	NA	24.48	21.36	24.88		21.90												0		Viton Stinger
HSVE-090	01/05/16	Zone 4	Main Silt	ND	16.42	24.39	21.36	24.88	-4.94													0		Viton Stinger
HSVE-090	01/13/16	Zone 4	Main Silt	ND	18.02	24.48	21.36	24.88	-3.34	21.90												0		Viton Stinger
HSVE-090 HSVE-090	01/26/16 02/09/16	Zone 4 Zone 4	Main Silt Main Silt	ND ND	20.45 21.65	24.60 24.60	21.36 21.36	24.88 24.88	-0.91 0.29													0		Viton Stinger Viton Stinger
HSVE-090	02/09/10	Zone 4	Main Silt	ND ND	21.00	24.00	21.36	24.88	-0.36	21.90												0		Viton Stinger
HSVE-090	03/08/16	Zone 4	Main Silt	ND	22.98	24.46	21.36	24.88	1.62	21.00												0		Viton Stinger
HSVE-090	03/23/16	Zone 4	Main Silt	ND	23.15	24.40	21.36	24.88	1.79	21.90	75,450	9,650	13.4	6.70	65,800	85.0	65.0					0		Viton Stinger
HSVE-090	03/28/16	Zone 4	Main Silt	NA	NA	24.40	21.36	24.88		21.90												16.7		Viton Stinger
HSVE-091	10/01/15	Zone 4	Main Silt	NA	NA	25.18	21.54	25.05	0.44	22.50												16.7		Viton Stinger
HSVE-091 HSVE-091	10/06/15 10/14/15	Zone 4 Zone 4	Main Silt Main Silt	ND ND	21.40 20.16	25.15 25.14	21.54 21.54	25.05 25.05	-0.14 -1.38	22.50								0.00	0.00	107	67	16.7 16.7		Viton Stinger Viton Stinger
HSVE-091	10/14/15	Zone 4	Main Silt	NA NA	NA	25.14	21.54	25.05	1.00	22.50								0.00	0.00	101	O1	0		Viton Stinger
HSVE-091	10/27/15	Zone 4	Main Silt	ND	24.45	25.09	21.54	25.05	2.91													0		Viton Stinger
HSVE-091	11/10/15	Zone 4	Main Silt	ND	24.52	25.15	21.54	25.05	2.98													0		Viton Stinger
HSVE-091	11/19/15	Zone 4	Main Silt	ND	24.55	25.15	21.54	25.05	3.01	22.50	275,000	193,000	3.50	13.6	82,000	OVR	400					0		Viton Stinger
HSVE-091 HSVE-091	11/20/15 11/30/15	Zone 4	Main Silt	NA NA	NA NA	25.15 25.15	21.54 21.54	25.05 25.05		22.50 22.50												16.7 33.3		Viton Stinger
HSVE-091	12/02/15	Zone 4 Zone 4	Main Silt Main Silt	NA ND	22.10	25.10	21.54	25.05	0.56	22.50												33.3		Viton Stinger Viton Stinger
HSVE-091	12/09/15	Zone 4	Main Silt	ND	22.45	25.10	21.54	25.05	0.91	22.50	72,200	63,700	9.40	9.50	8,500	74.0	424	4.92	0.05	130	54.0	50		Viton Stinger
HSVE-091	12/14/15	Zone 4	Main Silt	NA	NA	25.10	21.54	25.05		22.50	,											100		Viton Stinger
HSVE-091	12/22/15	Zone 4	Main Silt	ND	22.13	25.17	21.54	25.05	0.59													100		Viton Stinger
HSVE-091	12/28/15	Zone 4	Main Silt	NA	NA	25.17	21.54	25.05	5.00	22.50												0		Viton Stinger
HSVE-091 HSVE-091	01/05/16 01/13/16	Zone 4 Zone 4	Main Silt Main Silt	ND ND	16.21 17.29	25.10 25.21	21.54 21.54	25.05 25.05	-5.33 -4.25	22.50												0		Viton Stinger Viton Stinger
HSVE-091	01/13/16	Zone 4	Main Silt	ND ND	19.06	25.21	21.54	25.05	-4.25 -2.48	22.50												0		Viton Stinger
HSVE-091	02/09/16	Zone 4	Main Silt	ND	19.62	25.35	21.54	25.05	-1.92													0		Viton Stinger
HSVE-091	02/25/16	Zone 4	Main Silt	ND	21.20	25.15	21.54	25.05	-0.34	22.50												0		Viton Stinger
HSVE-091	03/08/16	Zone 4	Main Silt	ND	21.56	25.14	21.54	25.05	0.02													0		Viton Stinger
HSVE-091	03/23/16	Zone 4	Main Silt	ND	21.31	25.08	21.54	25.05	-0.23	22.50												0		Viton Stinger
HSVE-092 HSVE-092	10/06/15 10/14/15	Zone 4 Zone 4	N. Olive N. Olive	ND ND	12.70 12.90	13.70 13.60	9.28 9.28	13.77 13.77	3.42 3.62	11.00	275	50.7	20.7	0.30	224	0.00	8.00	43.3	4.00	134	63.0	100 100		Viton Stinger Viton Stinger
HSVE-092	10/14/15	Zone 4	N. Olive	ND ND	13.30	13.58	9.28	13.77	4.02	11.00	275	50.7	20.7	0.30	224	0.00	8.00	43.3	4.00	134	03.0	100		Viton Stinger
HSVE-092	11/10/15	Zone 4	N. Olive	ND	11.65	13.63	9.28	13.77	2.37													100		Viton Stinger
HSVE-092	11/19/15	Zone 4	N. Olive	ND	11.14	13.40	9.28	13.77	1.86	11.00	1,760	538	20.1	0.40	1,222	0.00	57.0	22.8	1.12	140	55.0	100		Viton Stinger
HSVE-092	11/23/15	Zone 4	N. Olive	ND	11.10	13.72	9.28	13.77	1.82													100		Viton Stinger
HSVE-092	11/24/15	Zone 4	N. Olive	ND	0.00	42.22	0.00	40.77	0.50	11.50												100		Viton Stinger
HSVE-092 HSVE-092	12/02/15 12/09/15	Zone 4 Zone 4	N. Olive N. Olive	ND ND	9.80 Dry	13.32 13.32	9.28 9.28	13.77 13.77	0.52 4.49	11.50	377	370	19.8	0.60	7.04	0.00	77.0					100		Viton Stinger Viton Stinger
HSVE-092	12/09/15	Zone 4	N. Olive	NA NA	NA	13.32	9.28	13.77	T.TU	11.50	577	070	10.0	0.00	7.07	0.00	11.0					16.7		Viton Stinger
HSVE-092	12/22/15	Zone 4	N. Olive	ND	Dry	13.37	9.28	13.77	4.49													16.7		Viton Stinger
HSVE-092	12/30/15	Zone 4	N. Olive	NA	12.75	13.40	9.28	13.77	3.47	11.50												50		Viton Stinger
HSVE-092	01/05/16	Zone 4	N. Olive	ND	Dry	13.57	9.28	13.77	4.49	44 = 0	70.0	4	00 =	0.40	00.0	0.00	44.0		0.1-	44.0	0= 0	50		Viton Stinger
HSVE-092 HSVE-092	01/13/16 01/26/16	Zone 4	N. Olive	ND ND	12.26	13.44 13.55	9.28	13.77 13.77	2.98 4.49	11.50	70.0	41.8	20.7	0.10	28.2	0.00	11.0	9.95	0.15	41.0	37.0	50 50		Viton Stinger Viton Stinger
HSVE-092 HSVE-092	01/26/16	Zone 4 Zone 4	N. Olive N. Olive	ND ND	Dry Dry	13.55	9.28 9.28	13.77	4.49 4.49													50 50		Viton Stinger
HSVE-092	02/12/16	Zone 4	N. Olive	NA	NA	13.65	9.28	13.77	1.40	11.50												66.7		Viton Stinger
HSVE-092	02/25/16	Zone 4	N. Olive	ND	11.35	13.60	9.28	13.77	2.07	11.50	1,512	158	20.4	0.30	1,354	1.00	21.0	60.9	7.65	135	43.0	66.7		Viton Stinger
HSVE-092	03/08/16	Zone 4	N. Olive	ND	9.90	13.40	9.28	13.77	0.62													66.7		Viton Stinger
HSVE-092	03/23/16	Zone 4	N. Olive	ND	11.00	13.55	9.28	13.77	1.72	11.50	158	58.0	20.8	0.00	100	0.00	13.0					0		Viton Stinger
HSVE-093	10/06/15	Zone 4	Main Silt	ND ND	23.45	26.38	22.54	26.05	0.91	22.40	14 200	0.00	10.0	0.60	14 200	40.0	440					0		Viton Stinger
HSVE-093 HSVE-093	10/14/15 10/27/15	Zone 4 Zone 4	Main Silt Main Silt	ND ND	23.75 24.30	26.43 26.48	22.54 22.54	26.05 26.05	1.21 1.76	23.10	14,300	0.00	19.9	0.60	14,300	10.0	113					n		Viton Stinger Viton Stinger
HSVE-093	11/03/15	Zone 4	Main Silt	NA NA	24.50 NA	26.48	22.54	26.05	1.70	23.10												16.7		Viton Stinger
HSVE-093	11/10/15	Zone 4	Main Silt	ND	23.16	26.35	22.54	26.05	0.62													16.7		Viton Stinger
HSVE-093	11/19/15	Zone 4	Main Silt	ND	24.00	26.34	22.54	26.05	1.46	23.10	64,600	6,544	17.1	2.40	58,056	69.0	164	6.82	0.08	75.0	52.0	16.7		Viton Stinger
HSVE-093	11/23/15	Zone 4	Main Silt	ND	23.00	26.44	22.54	26.05	0.46													16.7		Viton Stinger

201605_SVEOMMdata_APP-B 29 of 35

						Fluid Le	vel and Stin	iger Data				Soil	Vapor Fie	ld Screening	g Results				Flow Rate	Estimation Da	ta	SV	/E Control \	/alve Data
																							Straw	
					Depth to						Total Volatile									SVE	Venturi	Header Valve	Stinger Valve	
				Depth to	Groundwat		Top of	Bottom of	Open	Stinger	Petroleum	Petroleum		Carbon					Differential	Wellhead	Surface	Percent	Percent	
				Product	er	Total Depth	Screen	Screen	Screen	Depth	Hydrocarbons	Hydrocabons	Oxygen	Dioxide	Methane	LEL	PID Reading	Flow Rate	Pressure	Vacuum	Temperature	Open	Open	Stinger Type
Location	Date	Zone	Stratum	ft-btoc	ft-btoc	ft-btoc	ft-btoc	ft-btoc	ft	ft-btoc	ppmv	ppmv	%	%	ppmv	%	ppmv	scfm	in-H ₂ O	in-H ₂ O	°F	%	%	
HSVE-093	11/24/15	Zone 4	Main Silt	NA	NA	26.44	22.54	26.05		23.10												0		Viton Stinger
HSVE-093 HSVE-093	12/02/15 12/03/15	Zone 4	Main Silt	ND NA	24.70	26.45 26.45	22.54 22.54	26.05 26.05	2.16	22.40												0 16.7		Viton Stinger
HSVE-093	12/03/15	Zone 4 Zone 4	Main Silt Main Silt	NA ND	NA 22.88	26.33	22.54	26.05	0.34	23.10 23.10	790	310	20.8	0.30	480	0.00	57.0	7.86	0.10	55.0	51.0	16.7 50		Viton Stinger Viton Stinger
HSVE-093	12/14/15	Zone 4	Main Silt	NA	NA	26.33	22.54	26.05		23.10							• • • • • • • • • • • • • • • • • • • •					16.7		Viton Stinger
HSVE-093	12/22/15	Zone 4	Main Silt	ND	22.84	26.18	22.54	26.05	0.30													16.7		Viton Stinger
HSVE-093 HSVE-093	12/28/15 01/05/16	Zone 4 Zone 4	Main Silt Main Silt	NA ND	NA 16.62	26.18 26.12	22.54 22.54	26.05 26.05	-5.92	23.10												0		Viton Stinger Viton Stinger
HSVE-093	01/03/16	Zone 4	Main Silt	ND	17.70	26.15	22.54	26.05	-3.92 -4.84	23.10												0		Viton Stinger
HSVE-093	01/26/16	Zone 4	Main Silt	ND	19.10	26.10	22.54	26.05	-3.44													0		Viton Stinger
HSVE-093	02/09/16	Zone 4	Main Silt	ND	20.45	26.35	22.54	26.05	-2.09	22.42												0		Viton Stinger
HSVE-093 HSVE-093	02/25/16 03/08/16	Zone 4 Zone 4	Main Silt Main Silt	ND ND	21.65 22.08	26.10 26.17	22.54 22.54	26.05 26.05	-0.89 -0.46	23.10												0		Viton Stinger Viton Stinger
HSVE-093	03/23/16	Zone 4	Main Silt	ND	22.50	26.10	22.54	26.05	-0.04	23.10												0		Viton Stinger
HSVE-094	10/06/15	Zone 4	Main Silt	ND	Dry	26.22	22.23	26.22	3.99													0		Viton Stinger
HSVE-094	10/14/15	Zone 4	Main Silt	ND	Dry	26.20	22.23	26.22	3.99	22.90	14,100	814	19.0	1.80	13,286	9.00	42.0					0		Viton Stinger
HSVE-094 HSVE-094	10/15/15 10/19/15	Zone 4 Zone 4	Main Silt Main Silt	NA NA	NA NA	26.20 26.20	22.23 22.23	26.22 26.22		22.90 22.90												16.7 50		Viton Stinger Viton Stinger
HSVE-094	10/27/15	Zone 4	Main Silt	ND	16.60	26.23	22.23	26.22	-5.63	22.00												50		Viton Stinger
HSVE-094	11/03/15	Zone 4	Main Silt	NA	NA	26.23	22.23	26.22		22.90												0		Viton Stinger
HSVE-094 HSVE-094	11/10/15 11/19/15	Zone 4 Zone 4	Main Silt Main Silt	ND ND	24.84 25.04	26.18 26.25	22.23 22.23	26.22 26.22	2.61 2.81	22.90	16,500	1,639	18.8	1.40	14,861	19.0	128					0		Viton Stinger Viton Stinger
HSVE-094	11/19/15	Zone 4	Main Silt	NA NA	23.04 NA	26.25	22.23	26.22	2.01	22.90	10,300	1,039	10.0	1.40	14,001	19.0	120					16.7		Viton Stinger
HSVE-094	12/02/15	Zone 4	Main Silt	ND	18.72	26.14	22.23	26.22	-3.51													16.7		Viton Stinger
HSVE-094	12/03/15	Zone 4	Main Silt	NA	NA	26.14	22.23	26.22	0.47	22.90	447	400	00.5	0.00	04.4	0.00	00					0		Viton Stinger
HSVE-094 HSVE-094	12/09/15 12/30/15	Zone 4 Zone 4	Main Silt Main Silt	ND NA	24.70 24.70	26.15 26.20	22.23 22.23	26.22 26.22	2.47 2.47	22.90 22.90	147	126	20.5	0.00	21.1	0.00	32					0		Viton Stinger Viton Stinger
HSVE-094	01/05/16	Zone 4	Main Silt	ND	16.95	26.15	22.23	26.22	-5.28	22.00												0		Viton Stinger
HSVE-094	01/13/16	Zone 4	Main Silt	ND	18.20	26.15	22.23	26.22	-4.03	22.90												0		Viton Stinger
HSVE-094	01/26/16 02/09/16	Zone 4	Main Silt	ND	20.00	26.10	22.23	26.22	-2.23 -0.53													0		Viton Stinger
HSVE-094 HSVE-094	02/09/16	Zone 4 Zone 4	Main Silt Main Silt	ND ND	21.70 21.90	26.10 26.12	22.23 22.23	26.22 26.22	-0.33	22.90												0		Viton Stinger Viton Stinger
HSVE-094	03/08/16	Zone 4	Main Silt	ND	23.45	26.10	22.23	26.22	1.22													0		Viton Stinger
HSVE-094	03/23/16	Zone 4	Main Silt	ND	23.95	26.05	22.23	26.22	1.72	22.90	5,368	452	20.5	0.60	4,916	5.00	50.0					0		Viton Stinger
HSVE-094 HSVE-095	03/28/16 10/06/15	Zone 4 Zone 4	Main Silt Main Silt	NA ND	NA 21.70	26.05 25.95	22.23 17.73	26.22 25.82	3.97	22.90												16.7 100		Viton Stinger Viton Stinger
HSVE-095	10/00/15	Zone 4	Main Silt	ND	21.70	25.94	17.73	25.82	3.97	18.50	715	565	17.2	2.90	150	0.00	120	16.4	0.55	121	64.0	100		Viton Stinger
HSVE-095	10/27/15	Zone 4	Main Silt	ND	21.69	25.95	17.73	25.82	3.96													100		Viton Stinger
HSVE-095	11/10/15	Zone 4	Main Silt	ND	23.93	26.02	17.73	25.82	6.20	40.50	4 400	4.000	45.0	4.00	04.0	0.00	00.0	40.4	0.70	400	55.0	100		Viton Stinger
HSVE-095 HSVE-095	11/19/15 12/02/15	Zone 4 Zone 4	Main Silt Main Silt	ND ND	24.02 23.95	25.95 25.85	17.73 17.73	25.82 25.82	6.29 6.22	18.50	1,400	1,336	15.0	4.30	64.0	0.00	32.0	19.1	0.76	133	55.0	100 100		Viton Stinger Viton Stinger
HSVE-095	12/02/15	Zone 4	Main Silt	ND	21.66	25.90	17.73	25.82	3.93	18.50	60.0	60.0	17.4	1.90	0.00	0.00	17.0	22.6	0.99	115	50.0	100		Viton Stinger
HSVE-095	12/29/15	Zone 4	Main Silt	NA	NA	25.90	17.73	25.82		18.50												0		Viton Stinger
HSVE-095	01/05/16	Zone 4	Main Silt	ND	19.15	25.82	17.73	25.82	1.42													0		Viton Stinger
HSVE-095 HSVE-095	01/05/16 01/13/16	Zone 4 Zone 4	Main Silt Main Silt	ND ND	19.15 19.98	25.82 25.58	17.73 17.73	25.82 25.82	1.42 2.25	18.50	18.0	11.0	20.6	0.20	7.04	0.00	5.00					0		Viton Stinger Viton Stinger
HSVE-095	01/26/16	Zone 4	Main Silt	ND	22.48	25.90	17.73	25.82	4.75	.0.00			20.0	0.20		0.00	0.00					0		Viton Stinger
HSVE-095	02/10/16	Zone 4	Main Silt	ND	23.94	25.94	17.73	25.82	6.21	46 ==												0		Viton Stinger
HSVE-095 HSVE-095	02/12/16 02/25/16	Zone 4 Zone 4	Main Silt Main Silt	NA ND	NA 21.72	25.94 25.80	17.73 17.73	25.82 25.82	3.99	18.50 18.50	25.0	12.3	20.6	0.30	12.7	0.00	3.00	10.3	0.19	92.0	46.0	16.7 16.7		Viton Stinger Viton Stinger
HSVE-095	02/25/16	Zone 4 Zone 4	Main Silt	NA NA	21.72 NA	25.80 25.80	17.73	25.82 25.82	3.88	18.50	20.0	12.3	20.0	0.30	12.1	0.00	3.00	10.3	0.19	3∠. U	40.0	66.7		Viton Stinger
HSVE-095	03/08/16	Zone 4	Main Silt	ND	21.95	26.00	17.73	25.82	4.22	****												66.7		Viton Stinger
HSVE-095	03/14/16	Zone 4	Main Silt	NA	NA	26.00	17.73	25.82	4 0-	18.50	000	000	40 =	4.00	00.0	0.00		4= 0	0.70	400	E	83.3		Viton Stinger
HSVE-095 HSVE-096	03/24/16 10/01/15	Zone 4 Zone 4	Main Silt Rand	ND NA	22.60 NA	25.85 25.48	17.73 17.83	25.82 24.83	4.87	18.50 19.90	320	232	19.7	1.00	88.2	0.00	554	17.0	0.58	123	51.0	100 50		Viton Stinger Viton Stinger
HSVE-096	10/01/15	Zone 4 Zone 4	Rand	ND	20.45	25.54	17.83	24.83	2.62	13.30												50		Viton Stinger
HSVE-096	10/14/15	Zone 4	Rand	ND	20.55	25.41	17.83	24.83	2.72	19.90	325	302	20.2	0.80	22.9	0.00	47.0	21.0	0.89	119	64.0	50		Viton Stinger
HSVE-096	10/15/15	Zone 4	Rand	NA	NA	25.41	17.83	24.83		19.90												66.7		Viton Stinger

201605_SVEOMMdata_APP-B 30 of 35

						Fluid Le	vel and Stir	nger Data				Soil	l Vapor Fie	ld Screenin	g Results				Flow Rate	Estimation Dat	а	SV	E Control \	/alve Data
				Depth to Product	er	Total Depth	Top of Screen	Bottom of Screen	Open Screen	Stinger Depth	Total Volatile Petroleum Hydrocarbons	Petroleum Hydrocabons	Oxygen	Carbon Dioxide	Methane	LEL	PID Readinç	_		SVE Wellhead Vacuum	Venturi Surface Temperature	Header Valve Percent Open	Straw Stinger Valve Percent Open	Stinger Type
Location	Date	Zone	Stratum	ft-btoc	ft-btoc	ft-btoc	ft-btoc	ft-btoc	ft	ft-btoc	ppmv	ppmv	%	%	ppmv	%	ppmv	scfm	in-H ₂ O	in-H ₂ O	°F	%	%	
HSVE-096	10/27/15	Zone 4	Rand	ND	21.56	25.55	17.83	24.83	3.73													66.7		Viton Stinger
HSVE-096 HSVE-096	11/10/15 11/11/15	Zone 4 Zone 4	Rand Rand	ND NA	21.40 NA	25.30 25.30	17.83 17.83	24.83 24.83	3.57	19.90												66.7 83.3		Viton Stinger Viton Stinger
HSVE-096	11/11/15	Zone 4 Zone 4	Rand	ND ND	23.65	25.36	17.83	24.83	5.82	19.90	70.0	70.0	20.8	0.00	0.00	0.00	21.0	37.6	2.87	124	56.0	83.3		Viton Stinger
HSVE-096	11/30/15	Zone 4	Rand	NA	NA	25.36	17.83	24.83	0.02	19.90	70.0	70.0	20.0	0.00	0.00	0.00	21.0	07.0	2.01	.2.	00.0	100		Viton Stinger
HSVE-096	12/02/15	Zone 4	Rand	ND	23.18	25.30	17.83	24.83	5.35													100		Viton Stinger
HSVE-096	12/09/15	Zone 4	Rand	ND	23.26	25.30	17.83	24.83	5.43	19.90	1,238	1,217	19.6	0.90	21.1	0.00	165	35.2	2.52	124	57.0	100		Viton Stinger
HSVE-096	12/29/15	Zone 4	Rand	NA	NA	25.30	17.83	24.83	0.04	19.90												0		Viton Stinger
HSVE-096 HSVE-096	01/05/16 01/13/16	Zone 4 Zone 4	Rand Rand	ND ND	20.47 20.22	25.20 25.22	17.83 17.83	24.83 24.83	2.64 2.39	19.90	2,600	2,080	11.5	3.30	520	4.00	19.4					0		Viton Stinger Viton Stinger
HSVE-096	01/15/16	Zone 4	Rand	NA	NA	25.22	17.83	24.83	2.59	19.90	2,000	2,000	11.5	3.30	320	4.00	13.4					16.7		Viton Stinger
HSVE-096	01/19/16	Zone 4	Rand	ND	17.24	25.25	17.83	24.83	-0.59	10.00												16.7		Viton Stinger
HSVE-096	01/21/16	Zone 4	Rand	NA	NA	25.25	17.83	24.83		19.90												0		Viton Stinger
HSVE-096	01/26/16	Zone 4	Rand	ND	21.43	25.20	17.83	24.83	3.60													0		Viton Stinger
HSVE-096	02/10/16	Zone 4	Rand	ND	23.52	25.18	17.83	24.83	5.69	40.00												0		Viton Stinger
HSVE-096 HSVE-096	02/12/16 02/25/16	Zone 4 Zone 4	Rand Rand	NA ND	NA 24.45	25.18 25.72	17.83 17.83	24.83 24.83	6.62	19.90 19.90	342	286	18.2	1.80	56.3	0.00	48.0	28.3	1.15	20.0	40.0	16.7 16.7		Viton Stinger Viton Stinger
HSVE-096	03/01/16	Zone 4 Zone 4	Rand	NA NA	24.45 NA	25.72	17.83	24.83	0.02	19.90	342	200	10.2	1.00	50.5	0.00	46.0	20.3	1.15	20.0	40.0	50		Viton Stinger
HSVE-096	03/08/16	Zone 4	Rand	ND	19.86	25.16	17.83	24.83	2.03	10.00												50		Viton Stinger
HSVE-096	03/23/16	Zone 4	Rand	ND	23.85	25.17	17.83	24.83	6.02	19.90	1,172	1,123	17.2	2.70	48.5	0.00	165	8.88	0.14	81.0	59.0	16.7		Viton Stinger
HSVE-096	03/28/16	Zone 4	Rand	NA	NA	25.17	17.83	24.83		19.90												50		Viton Stinger
HSVE-097	10/01/15	Zone 4	Rand	NA	NA	23.05	13.32	22.85	4.00													100		None
HSVE-097 HSVE-097	10/06/15 10/14/15	Zone 4 Zone 4	Rand Rand	ND ND	17.70 16.97	23.12 23.10	13.32 13.32	22.85 22.85	4.38 3.65		1,170	970	16.5	4.20	200	0.00	193	24.8	1.30	131	65.0	100 100		None None
HSVE-097	10/14/15	Zone 4	Rand	ND	22.35	23.10	13.32	22.85	9.03		1,170	970	10.5	4.20	200	0.00	193	24.0	1.50	151	05.0	100		None
HSVE-097	11/10/15	Zone 4	Rand	ND	Dry	23.03	13.32	22.85	9.53													100		None
HSVE-097	11/19/15	Zone 4	Rand	ND	Dry	23.00	13.32	22.85	9.53		290	280	20.6	0.40	9.72	0.00	71.0	40.5	3.35	126	56.0	100		None
HSVE-097	12/02/15	Zone 4	Rand	ND	Dry	23.10	13.32	22.85	9.53													100		None
HSVE-097	12/09/15	Zone 4	Rand	ND	20.20	23.00	13.32	22.85	6.88		1,469	1,455	16.7	3.30	14.1	0.00	235	26.7	1.45	124	58.0	100		None
HSVE-097 HSVE-097	01/05/16 01/13/16	Zone 4 Zone 4	Rand Rand	ND ND	20.85 12.80	23.00 25.80	13.32 13.32	22.85 22.85	7.53 -0.52									0.00	0.00	128	40.0	100 100		None None
HSVE-097	01/26/16	Zone 4	Rand	ND	10.94	23.05	13.32	22.85	-2.38									0.00	0.00	120	40.0	100		None
HSVE-097	02/10/16	Zone 4	Rand	ND	11.90	23.10	13.32	22.85	-1.42													100		None
HSVE-097	02/25/16	Zone 4	Rand	ND	22.00	23.07	13.32	22.85	8.68		69.0	56.3	19.1	1.60	12.7	0.00	15.0	22.6	1.04	128	50.0	100		None
HSVE-097	03/08/16	Zone 4	Rand	ND	13.20	23.10	13.32	22.85	-0.12		200	000	40.0	4.50	20.7	0.00	00.0	40.0	0.55	407	50.0	100		None
HSVE-097 HSVE-098	03/23/16 10/06/15	Zone 4 Zone 2	Rand A/B Clay	ND ND	21.60 10.25	23.00 11.35	13.32 6.60	22.85 10.98	8.28 3.65		322	282	19.2	1.50	39.7	0.00	60.0	16.3	0.55	127	59.0	100 100		None Viton Stinger
HSVE-098	10/00/13	Zone 2	A/B Clay	ND ND	11.13	11.35	6.60	10.98	4.38	9.60	6,800	5,235	19.7	1.00	1,565	4.00	432	30.2	1.87	122	66.0	100		Viton Stinger
HSVE-098	10/28/15	Zone 2	A/B Clay	ND	10.35	11.36	6.60	10.98	3.75	0.00	3,000	0,200			.,000		.02	00.2			00.0	100		Viton Stinger
HSVE-098	11/11/15	Zone 2	A/B Clay	ND	10.58	11.37	6.60	10.98	3.98													100		Viton Stinger
HSVE-098	11/19/15	Zone 2	A/B Clay	ND	10.65	11.35	6.60	10.98	4.05	9.60	6,480	4,845	19.7	0.90	1,635	5.00	390	20.9	0.89	125	57.0	100		Viton Stinger
HSVE-098	12/02/15	Zone 2	A/B Clay	ND	10.53	11.35	6.60	10.98	3.93	0.60	7.042	E 116	10.0	0.00	1 027	7.00	242	11 5	0.26	110	52 O	100		Viton Stinger
HSVE-098 HSVE-098	12/08/15 12/29/15	Zone 2 Zone 2	A/B Clay A/B Clay	ND NA	10.63 10.60	11.37 11.40	6.60 6.60	10.98 10.98	4.03 4.00	9.60 9.60	7,043	5,116	19.9	0.90	1,927	7.00	343	11.5	0.26	118	53.0	100 100		Viton Stinger Viton Stinger
HSVE-098	01/05/16	Zone 2	A/B Clay	ND	10.64	11.38	6.60	10.98	4.04	5.00												100		Viton Stinger
HSVE-098	01/14/16	Zone 2	A/B Clay	ND	10.62	11.36	6.60	10.98	4.02	9.60	1,867	1,788	20.2	0.70	78.9	0.00	215	5.16	0.05	108	43.0	100		Viton Stinger
HSVE-098	01/26/16	Zone 2	A/B Clay	ND	10.58	11.37	6.60	10.98	3.98													100		Viton Stinger
HSVE-098	02/10/16	Zone 2	A/B Clay	ND	10.65	11.37	6.60	10.98	4.05	0.00	0.000	0.000	00.4	0.70	050	0.00	007	04.0	0.00	400	44.0	100		Viton Stinger
HSVE-098 HSVE-098	02/25/16 03/10/16	Zone 2	A/B Clay	ND ND	10.65 10.63	11.37 11.36	6.60 6.60	10.98	4.05 4.03	9.60	3,920	2,962	20.1	0.70	958	2.00	297	21.2	0.88	120	44.0	100 100		Viton Stinger Viton Stinger
HSVE-098	03/10/16	Zone 2 Zone 2	A/B Clay A/B Clay	ND ND	10.63	11.35	6.60	10.98 10.98	4.03 4.07	9.60	3,580	2,506	20.2	0.60	1,074	4.00	260	20.7	0.87	124	57.0	100		Viton Stinger Viton Stinger
HSVE-099	10/01/15	Zone 6	Multiple Strata	NA	NA	15.62	9.08	15.37	1.01	10.20	5,000	2,000	_0.2	0.00	1,517	7.00	_00	20.7	0.01	127	57.0	100		Viton Stinger
HSVE-099	10/05/15	Zone 6	Multiple Strata	ND	10.00	15.63	9.08	15.37	0.92													100		Viton Stinger
HSVE-099	10/13/15	Zone 6	Multiple Strata	ND	10.00	15.60	9.08	15.37	0.92	10.20	70,800	22,249	18.9	1.60	48,551	47.0	114	34.7	2.54	127	69.0	100		Viton Stinger
HSVE-099	10/16/15	Zone 6	Multiple Strata			4=		.=		10.10												100		Viton Stinger
HSVE-099	10/26/15	Zone 6	Multiple Strata	ND	9.95	15.60	9.08	15.37 15.37	0.87													100		Viton Stinger
HSVE-099 HSVE-099	11/10/15 11/17/15	Zone 6	Multiple Strata Multiple Strata		9.95 9.95	15.58 15.60	9.08 9.08	15.37 15.37	0.87 0.87	10.10	57,400	17,686	19.5	1.10	39,714	38.0	94.0	45.8	4.09	113	54.0	100 100		Viton Stinger Viton Stinger
⊓3 V ⊏-U99	11/11/13	Zone 6	wuupe Strata	ND	9.95	13.00	9.08	15.57	0.87	10.10	57,400	080, 11	19.5	1.10	Jy,/ 14	38.0	94.0	40.8	4.09	113	54.0	100		vilori Siln

201605_SVEOMMdata_APP-B 31 of 35

						Fluid Le	vel and Stir	nger Data			<u> </u>	Soil	Vapor Fiel	ld Screenin	g Results				Flow Rate	Estimation Da	ata	S\	/E Control \	Valve Data
Location	Date	Zone	Stratum	Depth to Product ft-btoc	Depth to Groundwar er ft-btoc	t Total Depth ft-btoc	Top of Screen ft-btoc	Bottom of Screen ft-btoc	Open Screen	Stinger Depth ft-btoc	Total Volatile Petroleum Hydrocarbons	Petroleum Hydrocabons	Oxygen	Carbon Dioxide %	Methane ppmv	LEL %	PID Reading	Flow Rate	Differential Pressure in-H₂O	SVE Wellhead Vacuum in-H ₂ O	Venturi Surface Temperature °F	Header Valve Percent Open	Valve	Stinger Type
HSVE-099	11/23/15	Zone 6	Multiple Strata	ND	9.85	15.60	9.08	15.37	0.77	TI-DIOC	ppmv	ppmv	70	70	ррппу	70	ppiiiv	30111	111 1120	111120	<u>'</u>	100	70	Viton Stinger
HSVE-099	11/24/15	Zone 6	Multiple Strata	IND	0.00	10.00	0.00	10.07	0.77	10.10												100		Viton Stinger
HSVE-099	12/01/15	Zone 6	Multiple Strata	ND	9.78	15.55	9.08	15.37	0.70													100		Viton Stinger
HSVE-099	12/08/15	Zone 6	Multiple Strata	ND	9.80	15.52	9.08	15.37	0.72	10.10	29,000	7,451	19.9	0.80	21,549	32.0	96.0	32.3	2.02	114	48.0	100		Viton Stinger
HSVE-099	12/28/15	Zone 6	Multiple Strata	NA	NA	15.52	9.08	15.37		10.10												0		Viton Stinger
HSVE-099 HSVE-099	12/30/15 01/04/16	Zone 6 Zone 6	Multiple Strata Multiple Strata	NA ND	NA 11.16	15.52 15.52	9.08 9.08	15.37 15.37	2.08	10.10												100 100		Viton Stinger Viton Stinger
HSVE-099	01/12/16	Zone 6	Multiple Strata	ND	9.77	15.47	9.08	15.37	0.69	10.10	95.0	21.1	20.8	0.00	73.9	0.00	2.00	46.7	4.40	131	40.0	50		Viton Stinger
HSVE-099	01/19/16	Zone 6	Multiple Strata	ND	9.80	14.33	9.08	15.37	0.72													50		Viton Stinger
HSVE-099	01/25/16	Zone 6	Multiple Strata	ND	9.66	15.50	9.08	15.37	0.58													50		Viton Stinger
HSVE-099	02/02/16 02/08/16	Zone 6 Zone 6	Multiple Strata Multiple Strata	ND	11.50	15.50	9.08	15.37	2.42	11.10												50 50		Viton Stinger Viton Stinger
HSVE-099 HSVE-099	02/08/16	Zone 6	Multiple Strata	ND ND	10.69	15.50	9.08	15.37	1.61													50		Viton Stinger
HSVE-099	02/23/16	Zone 6	Multiple Strata	ND	10.58	15.52	9.08	15.37	1.50	11.10	13,200	2,400	20.5	0.40	10,800	9.00	86.0	48.1	4.30	104	46.0	50		Viton Stinger
HSVE-099	03/07/16	Zone 6	Multiple Strata	ND	10.65	15.33	9.08	15.37	1.57													50		Viton Stinger
HSVE-099	03/22/16	Zone 6	Multiple Strata	ND	10.60	15.30	9.08	15.37	1.52	11.10	111,200	48,994	19.2	1.00	62,206	79.0	113	29.8	1.74	115	52.0	50		Viton Stinger
HSVE-099	03/28/16	Zone 6	Multiple Strata	NA	NA	15.30	9.08	15.37	0.40	11.10												66.7		Viton Stinger
HSVE-100 HSVE-100	10/06/15 10/13/15	Zone 5 Zone 5	N. Olive N. Olive	ND ND	10.87 11.15	15.60 15.71	8.77 8.77	15.08 15.08	2.10 2.38	9.60	7,530	3,472	20.4	0.40	4,058	5.00	224	13.7	0.39	123	70.0	100 100		Viton Stinger Viton Stinger
HSVE-100	10/13/15	Zone 5	N. Olive	ND	10.90	15.65	8.77	15.08	2.13	3.00	7,550	5,472	20.4	0.40	4,000	3.00	224	10.7	0.55	125	70.0	100		Viton Stinger
HSVE-100	11/10/15	Zone 5	N. Olive	ND	9.73	15.65	8.77	15.08	0.96													100		Viton Stinger
HSVE-100	11/18/15	Zone 5	N. Olive	ND	7.40	10.60	8.77	15.08	-1.37	9.60								6.95	0.1	128	58	100		Viton Stinger
HSVE-100	11/20/15	Zone 5	N. Olive	NA	NA 10.00	10.60	8.77	15.08	4.00	9.60												0		Viton Stinger
HSVE-100 HSVE-100	12/01/15 12/08/15	Zone 5 Zone 5	N. Olive N. Olive	ND ND	10.60 10.78	15.63 15.55	8.77 8.77	15.08 15.08	1.83 2.01	9.60	11,800	4,532	20.3	0.50	7,268	14.0	221	10.5	0.22	121	52.0	100		Viton Stinger Viton Stinger
HSVE-100	12/00/15	Zone 5	N. Olive	NA NA	NA	15.55	8.77	15.08	2.01	9.60	11,000	4,332	20.5	0.50	7,200	14.0	221	10.5	0.22	121	32.0	0		Viton Stinger
HSVE-100	01/05/16	Zone 5	N. Olive	ND	14.37	15.30	8.77	15.08	5.60													0		Viton Stinger
HSVE-100	01/12/16	Zone 5	N. Olive	ND	14.56	15.65	8.77	15.08	5.79	9.60	382	247	19.3	0.70	135	0.00	51.0					0		Viton Stinger
HSVE-100	01/15/16	Zone 5	N. Olive	NA	NA 44.00	15.65	8.77	15.08	0.40	9.60												16.7		Viton Stinger
HSVE-100 HSVE-100	01/19/16 01/22/16	Zone 5 Zone 5	N. Olive N. Olive	ND NA	11.20 NA	15.30 15.30	8.77 8.77	15.08 15.08	2.43	9.60												16.7 33.3		Viton Stinger Viton Stinger
HSVE-100	01/25/16	Zone 5	N. Olive	ND	10.35	15.30	8.77	15.08	1.58	9.00												33.3		Viton Stinger
HSVE-100	02/09/16	Zone 5	N. Olive	ND	10.27	15.30	8.77	15.08	1.50													33.3		Viton Stinger
HSVE-100	02/23/16	Zone 5	N. Olive	ND	Dry	15.30	8.77	15.08	6.31	9.60	27,800	12,943	19.1	0.80	14,857	19.0	245	10.6	0.22	120	45.0	100		Viton Stinger
HSVE-100	03/07/16	Zone 5	N. Olive	ND	10.54	15.56	8.77	15.08	1.77	0.00	7.054	0.077	00.4	0.40	4.074	7.00	400	40.0	0.04	404	54.0	100		Viton Stinger
HSVE-100 HSVE-101	03/22/16 10/02/15	Zone 5 Zone 5	N. Olive N. Olive	ND	10.49	15.32	8.77	15.08	1.72	9.60 10.30	7,351	2,677	20.1	0.40	4,674	7.00	162	10.2	0.21	124	51.0	100 100		Viton Stinger Viton Stinger
HSVE-101	10/02/15	Zone 5	N. Olive							10.30												100		Viton Stinger
HSVE-101	10/06/15	Zone 5	N. Olive	ND	10.72	15.57	9.11	14.92	1.61													100		Viton Stinger
HSVE-101	10/14/15	Zone 5	N. Olive	ND	10.70	15.21	9.11	14.92	1.59	10.30	245	158	20.7	0.20	87.1	0.00	30.0	13.2	0.37	135	61.0	100		Viton Stinger
HSVE-101	10/27/15	Zone 5	N. Olive	ND	11.10	15.46	9.11	14.92	1.99													100		Viton Stinger
HSVE-101 HSVE-101	11/10/15 11/18/15	Zone 5 Zone 5	N. Olive N. Olive	ND ND	10.78 10.50	15.45 15.20	9.11 9.11	14.92 14.92	1.67 1.39	10.30	920	557	20.2	0.30	363	0.00	106	9.69	0.20	136	58.0	100 100		Viton Stinger Viton Stinger
HSVE-101	11/16/15	Zone 5 Zone 5	N. Olive	טאו	10.50	13.20	ð. I I	14.32	1.38	19.80	920	551	20.2	0.30	503	0.00	100	9.09	0.20	130	30.0	100		Viton Stinger
HSVE-101	11/23/15	Zone 5	N. Olive	ND	10.22	15.34	9.11	14.92	1.11													100		Viton Stinger
HSVE-101	11/24/15	Zone 5	N. Olive							10.30												100		Viton Stinger
HSVE-101	12/01/15	Zone 5	N. Olive	ND	10.35	15.30	9.11	14.92	1.24	40.00	000	050	co =	0.00	40-	0.00	45.0		0.44	400	47.0	100		Viton Stinger
HSVE-101 HSVE-101	12/09/15 12/29/15	Zone 5 Zone 5	N. Olive N. Olive	ND NA	10.52 NA	15.35 15.35	9.11 9.11	14.92 14.92	1.41	10.30 10.30	380	253	20.7	0.20	127	0.00	45.0	14.7	0.44	129	47.0	100		Viton Stinger Viton Stinger
HSVE-101	01/05/16	Zone 5 Zone 5	N. Olive N. Olive	ND ND	Dry	15.35 15.40	9.11	14.92	5.81	10.30												0		Viton Stinger
HSVE-101	01/13/16	Zone 5	N. Olive	ND	14.47	15.68	9.11	14.92	5.36	10.30	290	98.5	19.5	0.40	191.6	0.00	22.0					ő		Viton Stinger
HSVE-101	01/15/16	Zone 5	N. Olive	NA	NA	15.68	9.11	14.92		10.30												16.7		Viton Stinger
HSVE-101	01/19/16	Zone 5	N. Olive	ND	13.72	15.64	9.11	14.92	4.61	,												16.7		Viton Stinger
HSVE-101	01/22/16	Zone 5	N. Olive	NA	NA 10.45	15.64	9.11	14.92	1 0 4	10.30												33.3		Viton Stinger
HSVE-101 HSVE-101	01/26/16 02/09/16	Zone 5 Zone 5	N. Olive N. Olive	ND ND	10.45 10.55	15.42 15.40	9.11 9.11	14.92 14.92	1.34 1.44													33.3 33.3		Viton Stinger Viton Stinger
HSVE-101	02/09/10	Zone 5	N. Olive	ND ND	10.55	15.40	9.11	14.92	1.44	10.30	851	440	20.6	0.20	411	0.00	65.0	12.8	0.33	127	49.0	50		Viton Stinger
HSVE-101	03/07/16	Zone 5	N. Olive	ND	11.35	15.47	9.11	14.92	2.24													50		Viton Stinger

201605_SVEOMMdata_APP-B 32 of 35

						Fluid Le	vel and Stir	iger Data				Soil	Vapor Fie	ld Screenin	g Results				Flow Rate	Estimation Dat	ta	S\	/E Control	Valve Data
													•		<u> </u>								Straw	
					Depth to						Total Volatile									SVE	Venturi	Header Valve	Stinger Valve	
				Depth to	Groundwat		Top of	Bottom of	Open	Stinger	Petroleum	Petroleum		Carbon					Differential	Wellhead	Surface	Percent		
				Product	er	Total Depth	Screen	Screen	Screen	Depth	Hydrocarbons	Hydrocabons	Oxygen	Dioxide	Methane	LEL	PID Reading	Flow Rate	Pressure	Vacuum	Temperature	Open	Open	Stinger Type
Location	Date	Zone	Stratum	ft-btoc	ft-btoc	ft-btoc	ft-btoc	ft-btoc	ft	ft-btoc	ppmv	ppmv	%	%	ppmv	%	ppmv	scfm	in-H ₂ O	in-H ₂ O	°F	%	%	
HSVE-101	03/22/16	Zone 5	N. Olive	ND	10.87	15.50	9.11	14.92	1.76	10.30	273	126	20.7	0.10	147	0.00	19.0	8.99	0.17	133	57.0	50		Viton Stinger
HSVE-102	10/05/15	Zone 1	N. Olive	ND	13.89	14.22	12.60	16.60	1.29	40.00	200	00.4	00.4	0.00	704	0.00	7.00	40.5	0.54	444	70.0	100		Viton Stinger
HSVE-102 HSVE-102	10/12/15 10/26/15	Zone 1 Zone 1	N. Olive N. Olive	ND ND	13.93 13.90	14.20 14.25	12.60 12.60	16.60 16.60	1.33 1.30	12.98	800	36.1	20.4	0.30	764	0.00	7.00	16.5	0.54	111	70.0	100 100		Viton Stinger Viton Stinger
HSVE-102	11/09/15	Zone 1	N. Olive	ND ND	9.90	14.25	12.60	16.60	-2.70													100		Viton Stinger
HSVE-102	11/16/15	Zone 1	N. Olive	ND	13.90	14.20	12.60	16.60	1.30	12.98	295	16.4	20.3	0.30	279	0.00	4.00	25.3	1.24	107	62.0	100		Viton Stinger
HSVE-102	11/23/15	Zone 1	N. Olive	ND	10.68	14.24	12.60	16.60	-1.92													100		Viton Stinger
HSVE-102	11/24/15	Zone 1	N. Olive	ND	13.35	14.40	12.60	16.60	0.75	12.98								43.9	3.64	103	55.0	100		Viton Stinger
HSVE-102 HSVE-102	11/30/15 12/07/15	Zone 1 Zone 1	N. Olive N. Olive	ND ND	13.28 13.30	14.10 14.20	12.60 12.60	16.60 16.60	0.68 0.70	12.98	1,597	130	20.4	0.40	1,467	2.00	32.0	38.4	2.70	94.0	53.0	100 100		Viton Stinger Viton Stinger
HSVE-102	12/28/15	Zone 1	N. Olive	NA	NA	14.20	12.60	16.60	0.70	12.98	1,007	100	20.1	0.10	1,101	2.00	02.0	00.1	2.70	01.0	00.0	0		Viton Stinger
HSVE-102	12/30/15	Zone 1	N. Olive	NA	13.85	14.28	12.60	16.60	1.25	12.98												0		Viton Stinger
HSVE-102	12/31/15	Zone 1	N. Olive	NA	13.88	14.25	12.60	16.60	1.28	12.98												0		Viton Stinger
HSVE-102 HSVE-102	01/04/16 01/12/16	Zone 1 Zone 1	N. Olive N. Olive	ND ND	14.10 13.60	14.25 14.15	12.60 12.60	16.60 16.60	1.50 1.00	12.98	407	8.45	20.3	0.30	399	0.00	6.00	34.5	2.28	114	43.0	0 100		Viton Stinger Viton Stinger
HSVE-102	01/12/10	Zone 1	N. Olive	ND ND	13.55	14.13	12.60	16.60	0.95	12.90	407	0.43	20.5	0.30	333	0.00	0.00	34.3	2.20	114	43.0	100		Viton Stinger
HSVE-102	01/25/16	Zone 1	N. Olive	ND	13.20	14.25	12.60	16.60	0.60													100		Viton Stinger
HSVE-102	02/09/16	Zone 1	N. Olive	ND	13.22	14.25	12.60	16.60	0.62													100		Viton Stinger
HSVE-102	02/22/16 03/08/16	Zone 1	N. Olive	ND	13.23	14.32	12.60	16.60	0.63	12.98	2,471	78.4	20.6	0.30	2,393	2.00	16.0			105		100		Viton Stinger
HSVE-102 HSVE-102	03/08/16	Zone 1 Zone 1	N. Olive N. Olive	ND ND	13.18 13.91	14.15 14.33	12.60 12.60	16.60 16.60	0.58 1.31	12.98	1,993	157	20.6	0.30	1,836	4.00	24.0	15.1	0.43	103	52.0	100 100		Viton Stinger Viton Stinger
HSVE-103	10/05/15	Zone 1	A/B Clay	ND	15.60	16.38	6.60	16.00	9.00	12.00	1,000	107	20.0	0.00	1,000	1.00	21.0	10.1	0.10	100	02.0	100		Viton Stinger
HSVE-103	10/12/15	Zone 1	A/B Clay	ND	15.55	16.35	6.60	16.00	8.95	13.50	275	128	20.6	0.20	147	0.00	18.0	38.7	2.99	112	68.0	100		Viton Stinger
HSVE-103	10/26/15	Zone 1	A/B Clay	ND	15.57	16.39	6.60	16.00	8.97													100		Viton Stinger
HSVE-103 HSVE-103	11/09/15 11/16/15	Zone 1 Zone 1	A/B Clay A/B Clay	ND ND	15.48 15.58	16.32 16.40	6.60 6.60	16.00 16.00	8.88 8.98	13.50	125	53.6	20.7	0.10	71.4	0.00	6.00	39.9	3.03	105	57.0	100 100		Viton Stinger Viton Stinger
HSVE-103	11/30/15	Zone 1	A/B Clay	ND ND	15.50	16.34	6.60	16.00	8.90	13.50	125	33.0	20.7	0.10	7 1.4	0.00	0.00	39.9	3.03	103	37.0	100		Viton Stinger
HSVE-103	12/07/15	Zone 1	A/B Clay	ND	15.58	16.30	6.60	16.00	8.98	13.50	2,282	782	20.2	0.30	1,500	2.00	98.0	23.2	1.00	99.0	52.0	100		Viton Stinger
HSVE-103	01/04/16	Zone 1	A/B Clay	ND	8.60	15.36	6.60	16.00	2.00													100		Viton Stinger
HSVE-103 HSVE-103	01/11/16 01/19/16	Zone 1 Zone 1	A/B Clay	ND ND	12.00 11.95	16.36 16.30	6.60 6.60	16.00 16.00	5.40 5.35	13.50	38.0	35.2	20.7	0.10	2.82	0.00	11.0	27.8	1.38	97.0	36.0	100 100		Viton Stinger Viton Stinger
HSVE-103	01/19/10	Zone 1	A/B Clay A/B Clay	ND ND	11.95	15.35	6.60	16.00	5.37													100		Viton Stinger
HSVE-103	02/08/16	Zone 1	A/B Clay	ND	10.50	16.30	6.60	16.00	3.90													100		Viton Stinger
HSVE-103	02/22/16	Zone 1	A/B Clay	ND	12.06	16.25	6.60	16.00	5.46	13.50	117	87.6	20.8	0.00	29.4	0.00	26.0	14.7	0.37	76.0	46.0	100		Viton Stinger
HSVE-103	03/08/16	Zone 1	A/B Clay	ND	12.02	16.33 15.35	6.60	16.00	5.42	12.50	247	343	20 E	0.10	4.20	0.00	94.0	17.1	0.51	94.0	47.0	100		Viton Stinger
HSVE-103 HSVE-105D	03/21/16 10/05/15	Zone 1 Zone 1	A/B Clay	ND ND	12.17 29.24	46.80	6.60 32.80	16.00 42.80	5.57 -3.56	13.50	347	343	20.5	0.10	4.29	0.00	84.0	17.1	0.51	84.0	47.0	100 0		Viton Stinger None
HSVE-105D	10/12/15	Zone 1		29.00	31.40	46.80	32.80	42.80	-3.80													0		None
HSVE-105D	10/26/15	Zone 1		31.12	33.85	46.75	32.80	42.80	-1.68													0		None
HSVE-105D	11/09/15	Zone 1		31.50	31.80	48.45	32.80	42.80	-1.30		5.00	F 00	20.0	0.00	0.00	0.00	4.00					0		None
HSVE-105D HSVE-105D	11/16/15 11/30/15	Zone 1 Zone 1		31.10 28.82	32.65 31.20	46.80 47.00	32.80 32.80	42.80 42.80	-1.70 -3.98		5.00	5.00	20.8	0.00	0.00	0.00	1.00					0		None None
HSVE-105D	12/07/15	Zone 1		27.00	30.88	48.00	32.80	42.80	-5.80		420	420	20.8	0.00	0.00	0.00	105					0		None
HSVE-105D	01/04/16	Zone 1		17.30	27.22	46.92	32.80	42.80	-15.50													0		None
HSVE-105D	01/11/16	Zone 1		20.38	28.50	46.90	32.80	42.80	-12.42													0		None
HSVE-105D HSVE-105D	02/08/16 02/22/16	Zone 1 Zone 1		ND ND	27.26 28.75	27.00 47.00	32.80 32.80	42.80 42.80	-5.54 -4.05													0		None None
HSVE-105D	03/08/16	Zone 1		28.66	32.30	47.00	32.80	42.80	-4.14													0		None
HSVE-105D	03/21/16	Zone 1		29.15	31.82	47.00	32.80	42.80	-3.65													0		None
HSVE-105S	10/01/15	Zone 1		NA	NA 10.00	22.58	12.60	17.60	F 00													0	100	Straw Stinger
HSVE-105S HSVE-105S	10/05/15 10/12/15	Zone 1 Zone 1		ND ND	18.08 2130.00	22.60 22.60	12.60 12.60	17.60 17.60	5.00 5.00		38.0	38.0	20.8	0.00	0.00	0.00	10.0					0	0	Straw Stinger Straw Stinger
HSVE-105S	10/12/13	Zone 1		NA NA	2130.00 NA	22.60	12.60	17.60	0.00		50.0	00.0	20.0	0.00	0.00	0.00	10.0					Ö	100	Straw Stinger
HSVE-105S	10/26/15	Zone 1			18.12	22.50	12.60	17.60														0	100	Straw Stinger
HSVE-105S	11/09/15	Zone 1		ND	18.15	22.54	12.60	17.60	5.00		45.0	40.4	00.0	0.00	0.00	0.00	0.00		0.44			0	100	Straw Stinger
HSVE-105S HSVE-105S	11/16/15 11/30/15	Zone 1 Zone 1		ND ND	21.15 18.12	22.60 22.50	12.60 12.60	17.60 17.60	5.00 5.00		15.0	12.1	20.8	0.00	2.86	0.00	2.00		2.14	115		0	100 100	Straw Stinger Straw Stinger
HSVE-105S	12/07/15	Zone 1		ND	21.12	26.60	12.60	17.60	5.00		510	510	20.8	0.00	0.00	0.00	117	57.1	1.19	109	58.0	0	100	Straw Stinger

201605_SVEOMMdata_APP-B 33 of 35

						Fluid Le	vel and Stir	nger Data				Soil	Vapor Fiel	d Screenin	g Results				Flow Rate	Estimation Da	ta	SV	E Control	Valve Data
				Depth to Product	Depth to Groundwat er	Total Depth	Top of Screen	Bottom of Screen	Open Screen	Stinger Depth	Total Volatile Petroleum Hydrocarbons	Petroleum Hydrocabons	Oxygen	Carbon Dioxide	Methane	LEL	PID Reading	Flow Rate	Differential Pressure	SVE Wellhead Vacuum	Venturi Surface Temperature	Header Valve Percent Open	Straw Stinger Valve Percent Open	Stinger Type
Location	Date	Zone	Stratum	ft-btoc	ft-btoc	ft-btoc	ft-btoc	ft-btoc	ft	ft-btoc	ppmv	ppmv	%	%	ppmv	%	ppmv	scfm	in-H ₂ O	in-H ₂ O	°F	%	%	
HSVE-105S	12/30/15	Zone 1		NA	18.12	22.62	12.60	17.60	5.00	·												0	100	Straw Stinger
HSVE-105S HSVE-105S	12/31/15 01/04/16	Zone 1 Zone 1		NA ND	18.13 18.14	22.62 22.52	12.60 12.60	17.60 17.60	5.00 5.00														100 100	Straw Stinger Straw Stinger
HSVE-105S	01/04/10	Zone 1		ND ND	15.80	22.40	12.60	17.60	3.20		55.0	38.1	20.7	0.10	16.9	0.00	13.0	32.1	0.38	121	41.0	0	100	Straw Stinger
HSVE-105S	01/25/16	Zone 1		ND	17.30	22.52	12.60	17.60	4.70					****								0	100	Straw Stinger
HSVE-105S	02/08/16	Zone 1		ND	17.84	22.52	12.60	17.60	5.00													0	100	Straw Stinger
HSVE-105S	02/22/16	Zone 1		ND	18.15	22.50	12.60	17.60	5.00		130	104	20.8	0.00	26.5	0.00	29.0	52.3	0.98	108	50.0	0	100	Straw Stinger
HSVE-105S HSVE-105S	03/08/16 03/21/16	Zone 1 Zone 1		ND ND	17.76 17.78	22.55 22.25	12.60 12.60	17.60 17.60	5.00 5.00		378	378	20.8	0.00	0.00	0.00	87.0	46.6	0.80	117	49.0	0	100 100	Straw Stinger Straw Stinger
HSVE-106D	10/05/15	Zone 1		ND	31.90	44.00	29.13	39.13	2.77		370	370	20.0	0.00	0.00	0.00	07.0	40.0	0.00	117	43.0	0	0	Straw Stinger
HSVE-106D	10/12/15	Zone 1		ND	32.00	44.00	29.13	39.13	2.87		20.0	20.0	20.8	0.00	0.00	0.00	5.00					0	0	Straw Stinger
HSVE-106D	10/15/15	Zone 1		NA	NA	44.00	29.13	39.13														50	0	Straw Stinger
HSVE-106D	10/16/15	Zone 1		NA	NA	44.00	29.13	39.13	2.22													0	100	Straw Stinger
HSVE-106D HSVE-106D	10/26/15 11/09/15	Zone 1 Zone 1		ND ND	32.45 32.28	44.00 44.00	29.13 29.13	39.13 39.13	3.32 3.15													0 0	100 100	Straw Stinger Straw Stinger
HSVE-106D	11/16/15	Zone 1		ND	32.20	44.00	29.13	39.13	2.97		35.0	29.3	20.8	0.00	5.71	0.00	5.00	18.8	0.13	113	56.0	0	100	Straw Stinger
HSVE-106D	11/23/15	Zone 1		ND	31.66	44.00	29.13	39.13	2.53													0	100	Straw Stinger
HSVE-106D	12/08/15	Zone 1		ND	29.60	44.00	29.13	39.13	0.47		55.0	55.0	20.8	0.00	0.00	0.00	16.0	56.2	1.17	116	52.0	0	100	Straw Stinger
HSVE-106D	01/04/16	Zone 1		ND	20.85	44.00	29.13	39.13	-8.28													0	100	Straw Stinger
HSVE-106D HSVE-106D	01/12/16 01/25/16	Zone 1 Zone 1		ND ND	23.08 28.20	44.00 44.00	29.13 29.13	39.13 39.13	-6.05 -0.93													0	0	Straw Stinger Straw Stinger
HSVE-106D	02/09/16	Zone 1		ND	20.20	44.00	29.13	39.13	-0.33													0	0	Straw Stinger
HSVE-106D	02/22/16	Zone 1		ND	29.00	44.00	29.13	39.13	-0.13													0	0	Straw Stinger
HSVE-106D	03/08/16	Zone 1		ND	31.62	44.00	29.13	39.13	2.49													0		Straw Stinger
HSVE-106D	03/22/16	Zone 1		ND	31.10	44.00	29.13	39.13	1.97		32.0	32.0	20.7	0.00	0.00	0.00	12.0					0	0	Straw Stinger
HSVE-106D HSVE-106S	03/28/16 10/01/15	Zone 1		NA NA	NA NA	44.00 18.70	29.13 9.16	39.13 14.16														0	100	Straw Stinger None
HSVE-106S	10/01/15	Zone 1 Zone 1		ND	13.82	18.66	9.16	14.16	4.66													0		None
HSVE-106S	10/12/15	Zone 1		ND	14.07	18.72	9.16	14.16	4.91													0		None
HSVE-106S	10/15/15	Zone 1		NA	NA	18.72	9.16	14.16														0		None
HSVE-106S	10/26/15	Zone 1		ND	15.05	18.67	9.16	14.16	5.00													0		None
HSVE-106S HSVE-106S	11/09/15 11/16/15	Zone 1		ND ND	15.47	18.63	9.16 9.16	14.16 14.16	5.00		25.0	25.0	20.8	0.00	0.00	0.00	5.00					0		None None
HSVE-106S	11/30/15	Zone 1 Zone 1		NA NA	14.25 NA	18.72 18.72	9.16	14.16	5.00		25.0	25.0	20.0	0.00	0.00	0.00	5.00					50		None
HSVE-106S	12/08/15	Zone 1		ND	14.21	18.72	9.16	14.16	5.00		70.0	68.6	20.8	0.00	1.41	0.00	19.0	11.9	0.05	101	52.0	50		None
HSVE-106S	01/04/16	Zone 1		ND	12.25	13.65	9.16	14.16	3.09													50		None
HSVE-106S	01/12/16	Zone 1		ND	12.23	13.62	9.16	14.16	3.07		4.00	4.00	20.8	0.00	0.00	0.00	1.00	29.9	0.32	113	40.0	0	100	None
HSVE-106S HSVE-106S	01/25/16	Zone 1		ND ND	11.95 12.33	13.65	9.16	14.16	2.79 3.17													0	100 100	None
HSVE-106S	02/09/16 02/22/16	Zone 1 Zone 1		ND ND	12.33 Dry	13.65 16.65	9.16 9.16	14.16 14.16	5.00		56.0	56.0	20.8	0.00	0.00	0.00	17.0	45.7	0.74	106	47.0	50	100	None None
HSVE-106S	03/08/16	Zone 1		ND	11.80	13.47	9.16	14.16	2.64		00.0	00.0	20.0	0.00	0.00	0.00	17.0	40.7	0.74	100	47.0	50	100	None
HSVE-106S	03/14/16	Zone 1		NA	NA	13.47	9.16	14.16														66.7		None
HSVE-106S		Zone 1		ND	12.12	13.40	9.16	14.16	2.96		30.0	27.1	20.8	0.00	2.94	0.00	10.0	66.4	1.54	104	43.0	66.7	50	None
HSVE-107D		Zone 1		ND	28.85	50.38	33.90	43.90	-5.05		55.0	55.0	00.0	0.00	0.00	0.00	44.0					0	0	Straw Stinger
HSVE-107D HSVE-107D		Zone 1 Zone 1		ND ND	31.88 30.80	48.70 48.64	33.90 33.90	43.90 43.90	-2.02 -3.10		55.0	55.0	20.8	0.00	0.00	0.00	14.0					0	0	Straw Stinger Straw Stinger
HSVE-107D		Zone 1		ND	30.68	48.75	33.90	43.90	-3.10													0	0	Straw Stinger
HSVE-107D		Zone 1		ND	32.91	48.70	33.90	43.90	-0.99		7.00	7.00	20.8	0.00	0.00	0.00	2.00					0	0	Straw Stinger
HSVE-107D		Zone 1		ND	27.80	48.75	33.90	43.90	-6.10													0	0	Straw Stinger
HSVE-107D		Zone 1		ND	26.65	48.55	33.90	43.90	-7.25		212	212	20.7	0.00	0.00	0.00	52.0					0	0	Straw Stinger
HSVE-107D		Zone 1		ND ND	17.97 10.12	48.75 48.70	33.90	43.90	-15.93													0	0	Straw Stinger
HSVE-107D HSVE-107D		Zone 1 Zone 1		ND ND	19.12 25.25	48.70 48.74	33.90 33.90	43.90 43.90	-14.78 -8.65													0	0	Straw Stinger Straw Stinger
HSVE-107D		Zone 1		25.30	32.80	47.05	33.90	43.90	-8.60													0	0	Straw Stinger
HSVE-107D	02/08/16	Zone 1		ND	26.70	48.80	33.90	43.90	-7.20													0	0	Straw Stinger
HSVE-107D		Zone 1		ND	28.30	48.70	33.90	43.90	-5.60													0	0	Straw Stinger
HSVE-107D HSVE-107D		Zone 1 Zone 1		ND ND	28.45 28.40	48.75 48.00	33.90 33.90	43.90 43.90	-5.45 -5.50													0 0	0	Straw Stinger Straw Stinger

201605_SVEOMMdata_APP-B 34 of 35

						Fluid Le	evel and Stin	nger Data				Soil	Vapor Fiel	d Screenin	g Results				Flow Rate	Estimation Dat	ta	SV	E Control	Valve Data
																							Straw	
																						Header	Stinger	
					Depth to						Total Volatile									SVE	Venturi	Valve	Valve	
				Depth to	Groundwat		Top of	Bottom of	Open	Stinger	Petroleum	Petroleum		Carbon					Differential	Wellhead	Surface	Percent	Percent	
				Product	er	Total Depth	Screen	Screen	Screen	Depth	Hydrocarbons	Hydrocabons	Oxygen	Dioxide	Methane	LEL	PID Reading	Flow Rate	Pressure	Vacuum	Temperature	Open	Open	Stinger Type
Location	Date	Zone	Stratum	ft-btoc	ft-btoc	ft-btoc	ft-btoc	ft-btoc	ft	ft-btoc	ppmv	ppmv	%	%	ppmv	%	ppmv	scfm	in-H ₂ O	in-H ₂ O	°F	%	%	
HSVE-107S		Zone 1		NA	NA	16.10	9.21	14.21														0	100	Straw Stinger
HSVE-107S	10/05/15	Zone 1		ND	14.38	16.50	9.21	14.21	5.00													0		Straw Stinger
HSVE-107S		Zone 1		ND	14.55	16.15	9.21	14.21	5.00		105	104	20.8	0.00	1.39	0.00	22.0					0	0	Straw Stinger
HSVE-107S		Zone 1		ND	14.55	16.15	9.21	14.21	5.00		42.0	39.2	20.8	0.00	2.78	0.00	9.00					0	0	Straw Stinger
HSVE-107S		Zone 1		NA	NA	16.15	9.21	14.21														0	0	Straw Stinger
HSVE-107S		Zone 1		NA	NA	16.15	9.21	14.21														0	100	Straw Stinger
HSVE-107S		Zone 1		ND	14.42	16.07	9.21	14.21	5.00													0	100	Straw Stinger
HSVE-107S		Zone 1								29.51												0	100	Straw Stinger
HSVE-107S		Zone 1		ND	14.45	16.10	9.21	14.21	5.00													0	100	Straw Stinger
HSVE-107S		Zone 1		ND	14.85	16.15	9.21	14.21	5.00		9.00	9.00	20.8	0.00	0.00	0.00	2.00	15.6	0.09	115	56.0	0	100	Straw Stinger
HSVE-107S		Zone 1		ND	14.65	16.16	9.21	14.21	5.00													0	100	Straw Stinger
HSVE-107S		Zone 1		ND	14.95	16.60	9.21	14.21	5.00		322	313	20.6	0.00	8.57	0.00	72.0	21.0	0.16	112	49.0	0	100	Straw Stinger
HSVE-107S		Zone 1		NA	11.16	16.05	9.21	14.21	1.95	26.70												0	100	Straw Stinger
HSVE-107S		Zone 1		NA	11.80	16.00	9.21	14.21	2.59													0	100	Straw Stinger
HSVE-107S		Zone 1		NA	12.17	16.00	9.21	14.21	2.96														100	Straw Stinger
HSVE-107S		Zone 1		ND	12.64	15.98	9.21	14.21	3.43			0.004						0.4.0					100	Straw Stinger
HSVE-107S		Zone 1		ND	12.85	15.95	9.21	14.21	3.64		8,920	3,821	20.5	0.40	5,099	11.0	233	31.2	0.35	115	38.0	0	100	Straw Stinger
HSVE-107S		Zone 1		ND	13.15	15.75	9.21	14.21	3.94													0	100	Straw Stinger
HSVE-107S		Zone 1		ND	13.11	15.93	9.21	14.21	3.90													0	100	Straw Stinger
HSVE-107S		Zone 1		ND ND	13.79	15.95	9.21	14.21	4.58		67.0	50.7	20.0	0.00	7.05	0.00	47.0	F0.6	0.00	100	40.0	0	100	Straw Stinger
HSVE-107S		Zone 1		ND ND	13.75 15.37	18.11	9.21	14.21	4.54 5.00		67.0	59.7	20.8	0.00	7.35	0.00	17.0	52.6	0.98	106	48.0	0	100	Straw Stinger
HSVE-107S		Zone 1 Zone 1		ND ND		15.94	9.21 9.21	14.21 14.21	5.00 4.54		362	362	20.0	0.00	0.00	0.00	90.0	E0.2	1.20	112	EE 0	0	100 100	Straw Stinger
HSVE-107S MPE-A001	03/21/16 10/14/15	Zone i		27.86	13.75 29.15	16.00 45.12	9.21	14.21	4.54		302	302	20.8	0.00	0.00	0.00	89.0	59.2	1.29	113	55.0	0	100	Straw Stinger
MPE-A001	01/07/16			20.19	20.26	45.12																0		
MPE-A001	10/02/15			18.04	29.90	45.12					6.00	6.00	20.7	0.00	0.00	0.00	2.00	19.9	0.71	142	68.0	16.7		
MPE-A002	10/02/15			NA	29.90 NA	45.84					6.00	6.00	20.7	0.00	0.00	0.00	2.00	19.9	0.71	142	68.0	16.7		
MPE-A002	10/02/15			27.58	31.12	45.84					0.00	0.00	20.7	0.00	0.00	0.00	2.00	19.9	0.71	142	06.0	16.7		
MPE-A002	10/14/15			27.50	31.12	45.04					7.230	2,646	20.8	0.00	4,584	5.00	200					16.7		
MPE-A002	11/11/15			NA	NA	45.84					1,230	2,040	20.0	0.00	4,004	5.00	200					16.7		
MPE-A002	01/07/16			13.71	17.41	45.84																16.7		
MPE-A002	10/14/15			27.48	27.87	44.80																0		
MPE-A003	01/07/16			19.60	19.69	44.80																o o		
MPE-A004	10/14/15			ND	28.65	46.72																o o		
MPE-A004	01/07/16			20.72	20.92	46.72																o o		
MPE-A005	10/14/15			28.25	30.28	46.40																0		
MPE-A005	01/07/16			20.53	22.70	46.40																o o		

Notes:

ft-btoc - feet below top of casing

ft - feet

ppmv - parts per million by volume

% - percent in-H₂O- inches of water °F - degrees Fahrenheit

201605_SVEOMMdata_APP-B 35 of 35

APPENDIX C

APPENDIX C-1. EFFECTIVENESS MONITORING, FOURTH QUARTER 2015 VAPOR SCREENING RESULTS HARTFORD PETROLEUM RELEASE SITE, HARTFORD, ILLINOIS

Location	Date	Effectiveness Zone	Subsurface Layer	Static Pressure/ Vacuum	Estimated Soil Gas Permeability	Probe Specific Capacity	Oxygen	Carbon Dioxide	Lower Explosive Level	Methane	FID TVPH Concentration	FID PHC Concentration	PID Volatile Organic Chemicals	Well Diameter	Well Plug Replaced	Wellhead Reduction
				(in-H ₂ O)	(cm ²)	(cm³/s·in H₂O)	(%)	(%)	(%)	(ppmv)	(ppmv)	(ppmv)	(ppmv)	(inches)		(inches)
HMW-053A	11/17/2015	Zone 4	N Olive	-0.83	3.65E-09	-10.02	16.1	6.5	0	156	370	214	6.00	2.00	N	
HMW-054A	11/17/2015	Zone 4	N Olive	0.00	5.04E-09	-13.81	14.0	3.3	0	0.00	18.0	18.0	0.00	2.00	Υ	0.50
MP-012S	11/18/2015	Zone 2	A Clay	0.00	1.12E-08	-28.65	18.2	1.3	0	0.00	30.0	30.0	12.0	1.00	N	
MP-016S	11/18/2015	Zone 4	A Clay	0.00	9.71E-09	-21.70	16.1	3.5	0	0.00	0.00	0.00	0.00	1.00	Υ	1.51
MP-022	11/19/2015	Zone 4	Backfill	0.00	2.04E-09	-0.38	20.7	0.0	0	0.00	2.00	2.00	2.00	0.13	N	
MP-029A	11/17/2015	Zone 6	N Olive	0.00	1.91E-08	-20.00	0.1	16.0	100	330,000	420,000	90,000	26.0	1.00	Υ	
MP-030A	11/15/2015	Zone 1	N Olive	0.00	3.96E-09	-20.75	15.9	7.4	0	0.00	0.00	0.00	0.00	1.00	Υ	
MP-031A	11/15/2015	Zone 1	A Clay	0.00	7.67E-09	-12.08	16.3	2.9	0	14.1	14.4	0.32	17.4	1.00	N	
MP-032A	11/18/2015	Zone 1	N Olive	-0.14	9.96E-09	-10.47	10.7	9.0	0	760	1,250	490	7.00	1.00	Υ	
MP-033A	11/18/2015	Zone 2	A Clay	-2.57	2.23E-08	-35.00	20.2	0.7	0	0.00	5.00	5.00	2.00	1.00	N	
MP-033B	11/18/2015	Zone 1	N Olive	-1.28	3.58E-09	-5.03	0.7	21.8	100	1,000,000	1,670,000	670,000	280	1.00	N	
MP-034A	11/17/2015	Zone 1	N Olive	0.00	2.04E-09	-1.50	19.5	0.7	0	0.00	7.00	7.00	2.00	1.00	N	
MP-035A	11/15/2015	Zone 1	A Clay	-2.59	1.15E-08	-18.04	20.9	0.0	0	11.0	11.6	0.61	5.10	1.00	Υ	
MP-035B	11/15/2015	Zone 1	N Olive	-2.02	7.02E-09	-14.73	20.9	0.0	0	7.00	7.00	0.00	3.90	1.00	N	
MP-036A	11/17/2015	Zone 1	N Olive	0.00	2.62E-08	-36.15	10.6	12.3	0	10.0	25.0	15.0	0.00	1.00	N	
MP-037A	11/17/2015	Zone 6	N Olive	0.08	1.18E-09	-3.12	0.6	6.8	0	6.00	11.0	5.00	0.00	1.00	Υ	
MP-038A	11/18/2015	Zone 2	N Olive	0.00	4.79E-09	-10.08	4.0	9.8	0	0.00	50.0	50.0	2.00	1.00	Υ	
MP-039A	11/18/2015	Zone 2	N Olive	0.00	2.05E-08	-53.68	15.8	5.9	0	0.00	25.0	25.0	1.00	1.00	Υ	
MP-040A	11/19/2015	Zone 2	A Clay	-0.11	1.84E-08	-43.21	19.8	1.0	0	0.00	2.00	2.00	2.00	1.00	Υ	
MP-041A	11/17/2015	Zone 6	N Olive	0.14	4.50E-09	-4.76	4.3	7.0	0	0.00	0.00	0.00	0.00	1.00	Υ	
MP-042A	11/17/2015	Zone 6	N Olive	0.00	1.20E-08	-62.81	10.0	11.6	0	0.00	40.0	40.0	0.00	1.00	Υ	
MP-043A	11/18/2015	Zone 2	N Olive	0.00	2.83E-09	-3.00	4.8	13.2	0	0.00	10.0	10.0	0.00	1.00	N	
MP-043B	11/18/2015	Zone 2	Main Silt	0.00	8.47E-09	-20.62	1.2	14.5	0	0.00	17.0	17.0	1.00	1.00	Υ	
MP-044A	11/17/2015	Zone 5	A Clay	-1.70	1.98E-08	-31.07	20.4	0.3	0	3.86	7.00	3.14	0.00	1.00	Υ	0.35
MP-044B	11/17/2015	Zone 5	N Olive	-0.89	6.64E-09	-6.99	20.4	0.0	0	0.00	17.0	17.0	1.00	1.00	Υ	
MP-045A	11/17/2015	Zone 5	N Olive	-0.25	1.82E-09	-3.84	0.4	16.3	100	100,000	570,000	470,000	480	1.00	N	
MP-046A	11/17/2015	Zone 5	N Olive	0.00	1.10E-08	-34.64	17.5	2.4	0	0.00	22.0	22.0	3.00	1.00	Υ	0.65
MP-047A	11/17/2015	Zone 5	N Olive	0.00	3.59E-09	-11.33	13.6	2.1	0	0.00	10.0	10.0	0.00	1.00	Υ	
MP-048A	11/18/2015	Zone 2	N Olive	0.00	9.62E-09	-50.42	16.7	5.6	0	0.00	9.00	9.00	4.60	1.00	N	
MP-049A	11/19/2015	Zone 2	A Clay	0.00	5.96E-09	-15.64	18.3	2.0	0	0.00	4.00	4.00	2.00	1.00	Υ	0.48
MP-050A	11/17/2015	Zone 5	A Clay	0.00	6.84E-10	-2.13	8.0	12.2	100	160,000	235,000	75,000	39.0	1.00	Υ	
MP-051B	11/17/2015	Zone 5	N Olive	0.00	6.83E-09	-7.20	2.8	10.1	2	500	2,520	2,020	13.0	1.00	Υ	
MP-052A	11/17/2015	Zone 5	A Clay	-0.06	1.03E-08	-21.70	18.1	2.6	0	0.00	0.00	0.00	0.00	1.00	Υ	
MP-053A	11/17/2015	Zone 5	A Clay	0.00	1.35E-09	-3.56	15.7	2.3	0	0.00	0.00	0.00	0.00	1.00	Υ	0.66
MP-054A	11/17/2015	Zone 5	Area A, N Olive	-0.10	6.45E-09	-16.92	19.8	0.7	0	0.00	2.00	2.00	0.00	1.00	Υ	
MP-055A	11/17/2015	Zone 5	Area A, N Olive	0.00	1.67E-09	-8.76	0.2	7.4	49	35,000	73,000	38,000	104	1.00	Υ	
MP-056A	11/17/2015	Zone 5	Area A, N Olive	0.00	1.27E-08	-33.25	17.6	3.5	0	1.43	7.00	5.57	1.50	1.00	Υ	0.88
MP-057A	11/17/2015	Zone 4	Area A, N Olive	-0.52	1.32E-09	-4.88	20.0	0.5	0	0.00	1.50	1.50	0.00	1.00	Y	

201602_01-2Q15-EffectivenessScreen_APP-C1

Location	Date	Effectiveness Zone	Subsurface Layer	Static Pressure/ Vacuum	Estimated Soil Gas	s Probe Specific Capacity	Oxygen	Carbon Dioxide	Lower Explosive Level	Methane	FID TVPH Concentration	FID PHC Concentration	PID Volatile Organic Chemicals	Well Diameter	Well Plug Replaced	Wellhead Reduction
				(in-H ₂ O)	(cm ²)	(cm³/s·in H ₂ O)	(%)	(%)	(%)	(ppmv)	(ppmv)	(ppmv)	(ppmv)	(inches)		(inches)
MP-058A	11/17/2015	Zone 4	A Clay	0.00	3.53E-08	-73.99	20.0	0.9	0	0.00	0.00	0.00	0.00	1.00	N	
MP-059A	11/17/2015	Zone 4	A Clay	0.00	7.48E-10	-0.87	18.2	2.0	0	0.00	13.0	13.0	1.00	1.00	Υ	
MP-059B	11/17/2015	Zone 4	Main Silt	-0.07	1.47E-08	-46.21	18.6	1.6	0	0.00	0.00	0.00	0.00	1.00	Υ	
MP-060A	11/17/2015	Zone 4	A Clay	-0.25	1.65E-08	-34.64	20.4	0.5	0	0.00	0.00	0.00	0.00	1.00	N	
MP-064A	11/16/2015	Zone 4	A Clay	0.00	2.50E-09	-5.27	18.8	2.5	0	0.00	6.00	6.00	4.00	1.00	Υ	0.50
MP-068	11/15/2015	Zone 1	N Olive	0.00	4.16E-09	-15.50	12.1	8.4	0	0.00	0.00	0.00	0.00	1.00	Υ	
MP-078A	11/15/2015	Zone 1	A Clay	0.00	2.71E-08	-28.41	15.0	2.0	0	0.00	14.0	14.0	0.48	1.00	Υ	
MP-078B	11/15/2015	Zone 1	N Olive	0.00	6.63E-09	-6.98	20.9	0.0	0	11.7	17.1	5.41	7.10	1.00	Υ	
MP-079A	11/17/2015	Zone 1	N Olive	0.00	1.92E-08	-44.36	0.2	20.5	100	75,000	172,000	97,000	144	1.00	N	
MP-080A	11/17/2015	Zone 1	N Olive	-0.35	4.15E-09	-23.07	20.3	0.5	0	0.00	0.00	0.00	0.00	1.00	N	
MP-083A	11/15/2015	Zone 1	N Olive	0.00	6.77E-09	-9.61	3.1	15.3	4	5,220	6,060	840	30.0	1.00	Υ	
MP-084A	11/18/2015	Zone 2	A Clay	-0.60	1.15E-08	-16.84	20.5	0.0	0	0.00	10.0	10.0	4.00	1.00	Υ	
MP-085A	11/17/2015	Zone 6	N Olive	0.00	1.98E-07	-52.83	20.5	0.0	0	84.3	92.0	7.71	1.00	1.00	Υ	
MP-086A	11/19/2015	Zone 3	A Clay	0.00	1.57E-08	-16.50	19.7	0.4	0	0.00	3.00	3.00	0.00	1.00	N	
MP-087A	11/18/2015	Zone 2	A Clay	-3.46	2.85E-09	-1.53	20.6	0.0	0	0.00	23.0	23.0	8.00	1.00	Υ	
MP-088A	11/16/2015	Zone 4	A Clay	-7.39	1.88E-10	-0.45	16.2	1.3	0	0.00	6.00	6.00	4.00	1.00	Υ	0.33
MP-088B	11/16/2015	Zone 4	Main Silt	-0.20	1.14E-08	-27.47	20.1	1.1	0	0.00	7.00	7.00	3.00	1.00	Υ	0.54
MP-090A	11/19/2015	Zone 2	A Clay	-0.49	6.19E-09	-1.15	20.8	0.0	0	0.00	8.00	8.00	3.00	0.13	Υ	
MP-090B	11/18/2015	Zone 2	Main Silt	-7.02	6.04E-08	-31.66	20.8	0.0	0	0.00	12.0	12.0	5.00	1.00	Υ	
MP-091B	11/18/2015	Zone 2	Main Silt	0.00	1.65E-08	-8.69	6.8	10.3	0	0.00	30.0	30.0	0.00	1.00	Υ	
MP-112M	11/18/2015	Zone 2	Main Silt	-0.12	2.39E-08	-10.05	6.7	4.4	0	0.00	49.0	49.0	1.90	0.50	N	
MP-112S	11/18/2015	Zone 2	N Olive	-0.06	5.57E-08	-23.39	10.2	6.5	0	0.00	0.00	0.00	0.00	0.50	N	
MP-113M	11/19/2015	Zone 2	Main Silt	-0.45	4.76E-08	-20.00	20.5	0.0	0	1.39	21.0	19.6	6.00	0.50	N	
MP-113S	11/19/2015	Zone 2	A Clay	-0.40	8.68E-09	-3.68	20.6	0.0	0	0.00	7.00	7.00	3.00	0.50	N	
MP-114M	11/19/2015	Zone 2	Main Silt	-0.30	6.50E-09	-2.77	18.9	1.0	0	0.00	19.0	19.0	8.00	0.50	N	
MP-114S	11/19/2015	Zone 2	A Clay	-0.28	1.74E-08	-7.34	20.0	1.0	0	0.00	22.0	22.0	8.00	0.50	N	
MP-115S	11/18/2015	Zone 2	N Olive	0.00	4.91E-08	-20.62	6.0	11.6	0	0.00	0.00	0.00	0.00	0.50	N	
MP-116S	11/18/2015	Zone 6	N Olive	0.00	3.60E-09	-1.55	4.9	18.5	100	85,000	160,000	75,000	342	0.50	N	
MP-117S	11/18/2015	Zone 6	N Olive	0.00	5.30E-09	-2.26	0.9	26.2	100	80,000	185,000	105,000	301	0.50	N	
MP-118S	11/18/2015	Zone 6	N Olive	0.00	2.75E-09	-1.19	11.0	9.4	50	55,000	75,000	20,000	16.0	0.50	N	
MP-120S	11/19/2015	Zone 6	N Olive	0.00	5.31E-09	-2.26	11.3	6.5	100	115,000	150,000	35,000	8.00	0.50	N	
MP-121S	11/18/2015	Zone 6	N Olive	0.00	6.14E-09	-2.61	13.8	7.1	9	10,500	13,500	3,000	1.00	0.50	N	
MP-122S	11/18/2015	Zone 6	N Olive	0.00	3.85E-08	-16.18	18.0	1.0	0	0.00	13.0	13.0	5.00	0.50	N	
MP-123S	11/18/2015	Zone 6	N Olive	-0.08	7.48E-08	-31.36	18.2	4.5	0	0.00	8.00	8.00	4.00	0.50	N	
MP-124M	11/18/2015	Zone 6	N Olive	0.00	7.15E-09	-3.04	20.2	0.0	0	0.00	18.0	18.0	6.00	0.50	N	
MP-124S	11/18/2015	Zone 6	N Olive	-0.09	5.49E-09	-2.34	14.1	3.2	0	0.00	0.00	0.00	0.00	0.50	N	
MP-125S	11/18/2015	Zone 6	N Olive	0.00	1.23E-08	-5.21	11.6	3.1	0	0.00	13.0	13.0	0.00	0.50	N	
MP-126M	11/18/2015	Zone 6	N Olive	0.00	3.60E-09	-1.55	18.7	0.3	0	0.00	6.00	6.00	2.50	0.50	N	

201602_01-2Q15-EffectivenessScreen_APP-C1

Location	Date	Effectiveness Zone	Subsurface Layer	Static Pressure/ Vacuum	Estimated Soil Gas	Probe Specific Capacity	Oxygen	Carbon Dioxide	Lower Explosive Level	Methane	FID TVPH Concentration	FID PHC Concentration	PID Volatile Organic Chemicals	Well Diameter	Well Plug Replaced	Wellhead Reduction
				(in-H ₂ O)	(cm ²)	(cm³/s·in H₂O)	(%)	(%)	(%)	(ppmv)	(ppmv)	(ppmv)	(ppmv)	(inches)		(inches)
MP-126S	11/18/2015	Zone 6	N Olive	-0.06	3.42E-09	-1.47	17.3	0.3	0	0.00	4.00	4.00	1.70	0.50	N	
MP-127D	11/19/2015	Zone 6	Rand	-0.62	1.97E-08	-8.31	0.7	17.2	100	100,000	165,000	65,000	205	0.50	N	
MP-127M	11/19/2015	Zone 6	N Olive	-0.11	6.19E-09	-2.64	16.9	1.6	0	1.39	8.00	6.61	3.00	0.50	N	
MP-127S	11/19/2015	Zone 6	N Olive	-0.06	8.36E-09	-3.54	18.8	0.5	0	2.78	7.00	4.22	2.00	0.50	N	
MP-128S	11/19/2015	Zone 5	N Olive	0.00	2.01E-08	-8.47	16.4	6.0	0	0.00	1.00	1.00	1.00	0.50	N	
MP-129S	11/19/2015	Zone 5	N Olive	-0.14	6.14E-09	-2.61	18.6	2.6	0	0.00	5.00	5.00	3.00	0.50	N	
MP-130M	11/19/2015	Zone 4	N Olive	-4.59	1.34E-08	-5.65	11.3	4.3	0	0.00	0.00	0.00	0.00	0.50	N	
MP-130S	11/19/2015	Zone 4	N Olive	-0.17	4.96E-09	-2.12	18.6	0.2	0	1.39	4.00	2.61	1.00	0.50	N	
VMP-001S	11/13/2015	Zone 1	A Clay	0.00	4.18E-10	-0.08	18.7	2.3	0	19.4	22.8	3.43	0.00	0.50	Υ	
VMP-002D	11/13/2015	Zone 1	N Olive	0.00	7.88E-09	-1.47	20.0	0.0	0	0.00	0.00	0.00	0.00	0.50	Υ	
VMP-006S	11/14/2015	Zone 1	N Olive	0.00	1.96E-09	-0.37	2.9	5.8	0	0.00	32.0	32.0	1.20	0.50	Υ	
VMP-007	11/15/2015	Zone 1	N Olive	-0.22	1.19E-08	-2.23	20.7	0.5	0	24.5	29.8	5.29	8.40	0.50	Υ	
VMP-015M	11/14/2015	Zone 5	B Clay	0.00	5.02E-09	-0.94	4.8	12.0	0	0.00	0.00	0.00	0.00	0.50	Υ	
VMP-015S	11/14/2015	Zone 5	N Olive	0.00	9.29E-09	-1.73	18.7	2.5	0	0.00	12.0	12.0	5.00	0.50	Υ	
VMP-015VS	11/14/2015	Zone 5	A Clay	0.00	2.46E-09	-0.46	5.7	2.1	0	2,500	9,800	7,300	78.5	0.50	Υ	
VMP-023M	11/14/2015	Zone 1	N Olive	0.00	8.92E-09	-1.66	19.1	1.3	0	0.00	8.50	8.50	23.3	0.50	Υ	
VMP-023S	11/14/2015	Zone 1	N Olive	0.00	6.88E-10	-0.13								0.50	Υ	
VMP-026M	11/13/2015	Zone 4	A Clay	0.00	3.87E-09	-0.72	14.4	0.0	0	0.00	0.00	0.00	0.00	0.50	Υ	
VMP-026S	11/13/2015	Zone 4	A Clay	0.00	3.44E-09	-0.64	11.7	0.0	0	0.00	0.00	0.00	0.00	0.50	Υ	
VMP-027M	11/13/2015	Zone 1	B Clay	0.00	7.48E-08	-13.88	20.9	0.0	0	0.00	0.00	0.00	0.00	0.50	Υ	
VMP-027S	11/13/2015	Zone 1	A Clay	0.00	6.09E-09	-1.13	20.4	0.0	0	0.00	1.50	1.50	0.00	0.50	Υ	
VMP-036S	11/15/2015	Zone 5	B Clay	0.00	2.41E-09	-0.45	2.0	8.3	1	930	1,420	490	1.00	0.50	Υ	
VMP-036VS	11/15/2015	Zone 5	A Clay	0.00	7.48E-09	-1.39	17.6	3.1	0	13.5	32.0	18.5	15.1	0.50	Υ	
VMP-052S	11/14/2015	Zone 1	A Clay	0.00	7.58E-09	-1.41	11.8	8.3	0	0.00	24.0	24.0	1.20	0.13	Υ	
VMP-053S	11/14/2015	Zone 1	N Olive	0.00	9.59E-09	-1.78	5.6	14.2	0	0.00	14.0	14.0	0.00	0.13	Υ	
VMP-053VS	11/14/2015	Zone 1	A Clay	0.00	1.58E-08	-2.94	16.6	4.7	0	0.00	8.10	8.10	4.10	0.13	Υ	
VMP-057VS	11/14/2015	Zone 1	A Clay	0.00	6.05E-08	-11.24	20.4	0.5	0	0.00	56.4	56.4	17.4	0.50	Υ	
VMP-058S	11/14/2015	Zone 1	N Olive	0.00	1.90E-08	-3.53	0.0	16.0	15	0.00	220,540	220,540	9.40	0.50	Υ	
VMP-058VS	11/15/2015	Zone 1	A Clay	0.00	2.03E-08	-3.77	0.0	17.0	21	206,900	31,900	175,000	2.30	0.50	Υ	
VMP-064M	11/14/2015	Zone 6	N Olive	0.00	3.72E-09	-0.69	2.5	5.1	43	5,420	64,250	58,830	501		Υ	
VMP-064S	11/14/2015	Zone 6	N Olive	0.00	1.79E-09	-0.34	1.6	7.6	0	26.0	168	142	6.55	0.50	Υ	
VMP-064VS	11/14/2015	Zone 6	A Clay	0.00	5.02E-09	-0.94	3.4	8.4	0	0.00	245	245	9.50	0.50	Υ	
VMP-065S	11/15/2015	Zone 5	N Olive	0.00	1.94E-09	-0.36	6.4	3.2	0	17.0	50.0	33.0	1.70	0.50	Υ	
VMP-065VS	11/15/2015	Zone 5	A Clay	0.00	5.14E-09	-0.96	0.1	5.2	3	735	4,300	3,565	85.6	0.50	Υ	
VMP-066M	11/13/2015	Zone 2	Main Silt	0.00	7.48E-09	-1.39	6.1	9.8	0	0.00	0.00	0.00	0.00	0.50	Υ	
VMP-066S	11/14/2015	Zone 2	N Olive	0.00	1.31E-08	-2.44	10.7	10.3	0	0.00	234	234	6.00	0.50	Υ	
VMP-066VS	11/13/2015	Zone 2	A Clay	0.00	2.42E-08	-4.50	12.7	7.1	0	0.00	0.00	0.00	0.00	0.50	Υ	
VMP-067S	11/13/2015	Zone 2	Main Silt	0.00	7.45E-09	-1.39	19.8	1.4	0	0.00	0.00	0.00	0.00	0.50	Υ	

3 of 5

APPENDIX C-1. EFFECTIVENESS MONITORING, FOURTH QUARTER 2015 VAPOR SCREENING RESULTS HARTFORD PETROLEUM RELEASE SITE, HARTFORD, ILLINOIS

Location	Dete	Effectiveness	Subsurface	Static Pressure/	Estimated Soil Gas		0	Carbon	Lower Explosive	NA stile see s	FID TVPH	FID PHC	PID Volatile Organic	Mall Diamatan	Well Plug	Wellhead
Location	Date	Zone	Layer	Vacuum	Permeability	Specific Capacity	Oxygen	Dioxide	Level	Methane	Concentration	Concentration	Chemicals	Well Diameter	Replaced	Reduction
				(in-H ₂ O)	(cm ²)	(cm ³ /s·in H ₂ O)	(%)	(%)	(%)	(ppmv)	(ppmv)	(ppmv)	(ppmv)	(inches)		(inches)
VMP-067VS	11/13/2015	Zone 2	A Clay	0.00	2.16E-08	-4.01	20.0	0.0	0	0.00	0.00	0.00	0.00	0.50	Υ	
VMP-068S	11/14/2015	Zone 5	Rand	0.00	8.33E-09	-1.55	0.0	17.7	9	0.00	13,850	13,850	350	0.50	Υ	
VMP-068VS	11/14/2015	Zone 5	A Clay	0.00	1.87E-08	-3.46	19.0	2.2	0	0.00	14.2	14.2	5.60	0.50	Υ	
VMP-069M	11/14/2015	Zone 5	Main Silt	-0.08	7.65E-09	-1.42	20.6	0.5	0	0.00	0.00	0.00	0.00	0.50	Υ	
VMP-069VS	11/14/2015	Zone 5	A Clay	0.00	1.79E-08	-3.33	20.4	1.0	0	0.00	0.00	0.00	0.00	0.50	Υ	
VMP-070M	11/14/2015	Zone 5	Rand	0.00	6.52E-09	-1.21	0.0	6.0	100	36,600	700,000	663,400	609	0.50	Υ	
VMP-071S	11/14/2015	Zone 5	N Olive	-0.06	4.24E-09	-0.79	20.8	0.0	0	13.6	16.5	2.94	1.80	0.50	Υ	
VMP-071VS	11/14/2015	Zone 5	A Clay	-0.13	1.27E-08	-2.36	20.9	0.0	0	0.00	0.00	0.00	0.00	0.50	Υ	
VMP-073M	11/13/2015	Zone 3	Main Silt	-0.05	6.05E-09	-1.13	20.0	0.0	0	0.00	0.00	0.00	0.00	0.50	Υ	
VMP-073S	11/13/2015	Zone 3	A Clay	-0.08	8.41E-09	-1.56	15.5	1.1	0	0.00	0.00	0.00	0.00	0.50	Υ	
VMP-074M	11/15/2015	Zone 4	Main Silt	-0.22	4.69E-09	-0.87	19.5	1.2	0	1.41	28.9	30.3	14.1	0.50	Υ	
VMP-074VS	11/14/2015	Zone 4	A Clay	0.00	1.38E-08	-2.56	20.9	0.0	0	0.00	0.00	0.00	0.00	0.50	Υ	
VMP-075S	11/14/2015	Zone 5	N Olive	0.00	7.71E-09	-1.43	10.7	9.9	0	0.00	12.0	12.0	0.00	0.50	Υ	
VMP-075VS	11/14/2015	Zone 5	A Clay	0.00	1.70E-08	-3.17	17.3	2.6	0	0.00	7.90	7.90	3.80	0.50	Υ	
VMP-076S	11/14/2015	Zone 5	N Olive	0.00	1.04E-08	-1.93	19.7	1.5	0	1.64	8.10	6.46	4.00	0.50	Υ	
VMP-076VS	11/14/2015	Zone 5	A Clay	0.00	1.07E-08	-1.99	22.2	0.9	0	0.00	5.40	5.40	4.60	0.50	Υ	
VMP-080S	11/14/2015	Zone 4	A Clay, Main Silt	0.00	2.75E-09	-0.51	6.0	0.6	0	0.00	0.00	0.00	0.00	0.50	Υ	
VMP-080VS	11/14/2015	Zone 4	A Clay	0.00	1.38E-08	-2.56	20.4	0.3	0	0.00	0.00	0.00	0.00	0.50	Υ	
VMP-081M	11/13/2015	Zone 4	Main Silt	0.00	6.90E-09	-1.28	19.2	1.3	0	0.00	0.00	0.00	0.00	0.50	Υ	
VMP-081S	11/13/2015	Zone 4	A Clay	0.00	9.97E-09	-1.85	19.8	1.1	0	0.00	0.00	0.00	0.00	0.50	Υ	
VMP-089S	11/13/2015	Zone 1	N Olive	-0.52	4.51E-09	-0.84	20.6	0.0	0	0.00	0.00	0.00	0.00	0.50	Υ	
VMP-089VS	11/13/2015	Zone 1	A Clay	-0.75	6.59E-09	-1.23	20.9	0.0	0	0.00	0.00	0.00	0.00	0.50	Υ	
VMP-093S	11/15/2015	Zone 5	N Olive	0.00	4.04E-09	-0.75	14.2	7.0	0	0.00	36.0	36.0	1.70	0.50	Υ	
VMP-094S	11/14/2015	Zone 5	N Olive	0.00	2.54E-09	-0.48	4.0	3.6	0	0.00	918	918	11.2	0.50	Υ	
VMP-094VS	11/14/2015	Zone 5	A Clay	0.00	5.10E-09	-0.95	1.4	6.4	0	0.00	100	100	0.00	0.50	Υ	
VP-004S	11/15/2015	Zone 6	N Olive	0.00	1.47E-09	-0.28	8.0	8.4	73	70,300	110,000	39,700	47.5	0.50	N	

Notes:

- VMP-021S, VMP-037S, VMP-037M, VMP-044VS, and VMP-044S along N Old St. Louis; VMP-062VS, VMP-062S on N Olive; and VMP-078M could not be screened because these locations have been paved over
- VMP-090VS, VMP-012M, VMP-012S and VMP-052VS could not be screened due to occlusion of the well screen
- VMP-070VS could not be screened due to low permeability or well probe blockage (deadhead conditions)
- MP-031B could not be screened due to being inaccessible from a car being parked over the well
- Expansion well plug indicated with a Y if replaced or N if not replaced (bold indicates wellhead reduction required)

TPH - total petroleum hydrocarbons

TVPH - total volatile petroleum hydrocarbons

PHC - petroleum hydrocarbons (equal to the FID TVPH concentration minus the FID methane concentration)

FID - flame ionization detector

PID - photoionization detector

-- - not applicable

in-H₂O - inches of water

201602_01-2Q15-EffectivenessScreen_APP-C1

									Lower				PID Volatile			
		Effectiveness	Subsurface	Static Pressure/	Estimated Soil Gas	Probe		Carbon	Explosive		FID TVPH	FID PHC	Organic		Well Plug	Wellhead
Location	Date	Zone	Layer	Vacuum	Permeability	Specific Capacity	Oxygen	Dioxide	Level	Methane	Concentration	Concentration	Chemicals	Well Diameter	Replaced	Reduction
				(in-H ₂ O)	(cm ²)	(cm³/s·in H ₂ O)	(%)	(%)	(%)	(ppmv)	(ppmv)	(ppmv)	(ppmv)	(inches)		(inches)

cm² - square centimeters

cm³/s·in H₂O - cubic centimeters per second per inch of water

% - percent

ppmv - parts per million by volume

201602_01-2Q15-EffectivenessScreen_APP-C1

May 1949 May 1949	Location	Date	Effectiveness Zone	Subsurface Layer	Static Pressure/ Vacuum	Estimated Soil Gas	s Probe Specific Capacity	Oxygen	Carbon Dioxide	Lower Explosive Level	Methane	FID TVPH Concentration	FID PHC Concentration	PID Volatile Organic Chemicals	Well Diameter	Well Plug Replaced	Wellhead Reduction
MM-M-M-M-M-M-M-M-M-M-M-M-M-M-M-M-M-M-M					(in-H ₂ O)	(cm ²)	(cm ³ /s·in H ₂ O)	(%)	(%)	(%)	(ppmv)	(ppmv)	(ppmv)	(ppmv)	(inches)		(inches)
Mary	HMW-053A	2/6/2016	Zone 4	N Olive	-0.42	4.71E-09	-12.89	19.9	1.7	0	0.00	0.00	0.00	1.50	2.00	N	
MP-1958 21/22016 Zone 4 A.Clay 0.00 8.28E-09 -1.886 19.9 19.0 19.0 0.00	HMW-054A	2/6/2016	Zone 4	N Olive	0.00	5.56E-09	-15.21	5.3	5.1	0	95.0	180	85.0	0.00	2.00	Υ	0.50
MP-0224 2/2/2/19 Zune Backfill 0.48 2.016-29 -0.38 2.07 0.0 0.0 0.00 0.00 0.00 0.00 0.00 0.13 N -1	MP-012S	2/6/2016	Zone 2	A Clay	0.00	1.08E-08	-27.70	20.8	0.0	0	0.00	0.00	0.00	0.00	1.00	N	
MR-190A 19/20/16 Zone 1	MP-016S	2/6/2016	Zone 4	A Clay	0.00	8.28E-09	-18.86	19.9	2.2	0	0.00	0.00	0.00	0.00	1.00	Υ	1.51
MP-0304 25/2018 Zone 1	MP-022	2/2/2016	Zone 4	Backfill	0.48	2.01E-09	-0.38	20.7	0.0	0	0.00	0.00	0.00	0.00	0.13	N	
MR-0316 28/52016 Zme 1	MP-029A	2/5/2016	Zone 6	N Olive	-0.35	1.45E-08	-15.21	3.3	11.0	100	373,000	590,000	217,000	48.5	1.00	Υ	
M-04818 Ziscorid Ziscorid M-010ke O.00 9.50E-198 -9.57 1.73 1.8 0.0 0.00 72.0 72.0 27.0 1.00 0.0 1.00 M-0480A M-0480A	MP-030A	2/5/2016	Zone 1	N Olive	0.00	3.98E-09	-20.88	12.5	9.7	0	0.000	0.000	0.000	0.000	1.00	Υ	
MP-032A 25/2016 Zone 1 N Olive -0.05 9.50F-09 -9.99 -2.2 14.5 46 12.430 33.050 26.620 152 1.00 Y	MP-031A	2/5/2016	Zone 1	A Clay	0.00	6.39E-09	-10.08	18.7	1.6	0	2.17	10.5	8.33	2.15	1.00	N	
MP-033A Z/5/2016 Zone 2 A Clay -0.82 1.016-08 -1.587 Z0 4 0.6 0.6 1.41 72.5 8.84 1.79 1.00 N -1.00 MP-034A Z/5/2016 Zone 1 N Clive -0.06 2.73E-09 -7.67 2.08 0.5 0.0 6.16 2.70 2.08 3.00 1.00 N -1.00 MP-034A Z/5/2016 Zone 1 A Clay -2.08 1.45E-08 -2.24 2.09 0.0 0.0 0.00 0.00 0.00 0.00 0.00 1.00 Y -1.00 MP-035A Z/4/2016 Zone 1 N Clive -2.08 1.45E-08 -2.24 2.09 0.0 0.0 0.00 0.00 0.00 0.00 0.00 1.00 Y -1.00 MP-035B Z/4/2016 Zone 1 N Clive -2.08 T.78E-08 -1.6.34 2.09 0.0 0.0 0.00 2.50 2.50 0.57 1.00 N -1.00 MP-035A Z/5/2016 Zone 2 N Clive -0.17 1.41E-08 -2.73E -0.37 1.15 1.00 MP-035A Z/5/2016 Zone 5 N Clive -0.17 1.41E-08 -2.73E -0.37 1.15 1.00 MP-035A Z/5/2016 Zone 5 N Clive -0.17 1.41E-08 -2.73E -0.37 1.15 1.00 MP-035A Z/5/2016 Zone 5 N Clive -0.17 1.41E-08 -2.73E -0.37 1.15 1.00 MP-035A Z/5/2016 Zone 2 N Clive -0.17 1.41E-08 -2.73E -0.37 1.79 2.5 0.0 1.88 40.0 2.72 1.25 1.00 Y -0.00 MP-035A Z/5/2016 Zone 2 N Clive -0.18 5.2E-08 -5.50 1.26 3.7 0.0 1.88 40.0 2.12 1.25 1.00 Y -0.00 MP-035A Z/5/2016 Zone 2 N Clive -0.18 5.2E-08 -5.50 1.26 3.7 0.0 3.00 5.00 3.00 5.00 3.50 0.00 1.00 Y -0.00 MP-035A Z/5/2016 Zone 2 N Clive -0.18 5.2E-08 -5.50 1.26 3.7 0.0 3.00 5.00 3.50 3.50 0.00 1.00 Y -0.00 MP-035A Z/5/2016 Zone 2 N Clive -0.18 5.2E-08 -5.50 1.26 3.7 0.0 3.00 5.00 3.50 3.50 0.00 1.00 Y -0.00 MP-035A Z/5/2016 Zone 2 N Clive -0.18 5.2E-08 -5.50 0.4 1.5 0.0 0.0 0.00	MP-031B	2/5/2016	Zone 1	N Olive	0.00	9.50E-09	-6.71	17.3	1.9	0	0.00	72.0	72.0	27.0	1.00	N	
MP-0338 2/5/2016 Zene 1 N Olive 0.68 2.73E-09 4.33 3.3 14.5 100 780.00 1.864.000 884.000 186 1.00 N	MP-032A	2/5/2016	Zone 1	N Olive	-0.05	9.50E-09	-9.99	2.2	14.5	46	12,430	39,050	26,620	152	1.00	Υ	
MP-035A 25/2016 Zone 1 N Olive 0.00 7.26-09 -7.67 20.6 0.5 0 6.18 27.0 28.8 3.00 1.00 N	MP-033A	2/5/2016	Zone 2	A Clay	-0.62	1.01E-08	-15.87	20.4	0.6	0	14.1	72.5	58.4	17.9	1.00	N	
MP-035A 24/2016 Zone 1	MP-033B	2/5/2016	Zone 1	N Olive	-0.66	2.73E-09	-4.33	3.3	14.5	100	780,000	1,664,000	884,000	186	1.00	N	
MP-0368	MP-034A	2/5/2016	Zone 1	N Olive	0.00	7.29E-09	-7.67	20.6	0.5	0	6.16	27.0	20.8	3.00	1.00	N	
MP-0368	MP-035A	2/4/2016	Zone 1	A Clay	-2.08	1.43E-08	-22.44	20.9	0.0	0	0.00	0.00	0.00	0.00	1.00	Υ	
MP-037A 2/5/2016 Zone 6 N Olive -0.17 1.41E-09 -3.72 14.8 1.7 0 0.00 0.00 0.00 0.00 0.00 0.00 1.00 Y -1	MP-035B	2/4/2016	Zone 1	N Olive	-2.06	7.78E-09	-16.34	20.9	0.0	0	0.00	1.75	1.75	1.50	1.00	N	
MP-038A 2/5/2016 Zone 2 N Olive 0.00 5.51E-09 -11.57 0.5 8.1 41 14.280 28.720 14.440 92.0 1.00 Y -1	MP-036A	2/4/2016	Zone 1	N Olive	0.00	1.78E-08	-27.93	20.5	0.6	0	0.00	2.50	2.50	0.75	1.00	N	
MP-049A 2/5/2016 Zone 2 N Olive 0.00 1.01E-08 -26.37 17.9 2.5 0 18.8 40.0 21.2 12.5 1.00 Y	MP-037A	2/5/2016	Zone 6	N Olive	-0.17	1.41E-09	-3.72	14.8	1.7	0	0.00	0.00	0.00	0.00	1.00	Υ	
MP-040A 2/5/2016 Zone 2 A Clay -0.51 1.04E-08 -27.24 20.9 0.4 0 0.00 0.00 0.00 0.00 0.00 1.00 Y MP-041A 2/5/2016 Zone 6 N Olive -0.18 5.22E-09 5.50 12.6 3.7 0 30.0 65.0 35.0 0.00 1.00 Y MP-042A 2/5/2016 Zone 6 N Olive -0.19 4.77E-09 -23.39 2.8 10.0 0 0.00 0.00 0.00 0.00 0.00 1.00 Y MP-043A 2/5/2016 Zone 2 N Olive -0.00 3.94E-09 4.17 4.8 7.8 11 4.310 6.270 1.960 17.5 1.00 N MP-043B 2/5/2016 Zone 2 Main Silt 0.00 5.90E-09 1.55.0 0.4 12.6 0 0.00 1.030 1.030 18.0 1.00 Y MP-044A 2/5/2016 Zone 5 N Olive -0.99 1.30E-08 -20.50 20.9 0.0 0 0.0 0.00 0.00 0.00 0.00 0.0	MP-038A	2/5/2016	Zone 2	N Olive	0.00	5.51E-09	-11.57	0.5	8.1	41	14,280	28,720	14,440	92.0	1.00	Υ	
MP-041A 2/5/2016 Zone 6	MP-039A	2/5/2016	Zone 2	N Olive	0.00	1.01E-08	-26.37	17.9	2.5	0	18.8	40.0	21.2	12.5	1.00	Υ	
MP-042A 2/5/2016 Zone 6 N Olive -0.19 4.77E-09 -23.39 2.8 10.0 0 0.00 0.00 0.00 1.00 Y MP-043A 2/5/2016 Zone 2 N Olive 0.00 3.94E-09 -4.17 4.8 7.8 11 4.310 6.270 1.960 17.5 1.00 N MP-043B 2/5/2016 Zone 5 A Clay -0.99 1.30E-08 -20.50 20.9 0.0 0 0.00 1.030 18.0 1.00 Y MP-044B 2/6/2016 Zone 5 A Clay -0.99 1.30E-08 -12.22 20.9 0.0 0 0.00 0.00 0.00 1.00 Y MP-045A 2/6/2016 Zone 5 N Olive -0.21 5.47E-09 -8.86 4.9 8.7 0 0.00 0.00 0.00 1.00 N MP-046A 2/6/2016 Zone 5 N Olive <t< td=""><td>MP-040A</td><td>2/5/2016</td><td>Zone 2</td><td>A Clay</td><td>-0.51</td><td>1.04E-08</td><td>-27.24</td><td>20.9</td><td>0.4</td><td>0</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>1.00</td><td>Υ</td><td></td></t<>	MP-040A	2/5/2016	Zone 2	A Clay	-0.51	1.04E-08	-27.24	20.9	0.4	0	0.00	0.00	0.00	0.00	1.00	Υ	
MP-043A 2/5/2016 Zone 2 N Olive 0.00 3.94E-09 -4.17 4.8 7.8 11 4.310 6.270 1.960 17.5 1.00 N MP-043B 2/5/2016 Zone 5 Main Silt 0.00 5.90E-09 1.550 0.4 12.6 0 0.00 1.030 1.030 18.0 1.00 Y MP-044A 2/6/2016 Zone 5 A Clay 0.99 1.30E-08 -20.50 20.9 0.0 0 0.0 29.0 93.0 64.0 6.00 1.00 Y 0.35 MP-044B 2/6/2016 Zone 5 N Olive 0.91 1.16E-08 1.22 20.9 0.0 0 0.0 0.00 0.00 0.00 0.00 1.00 Y MP-045A 2/6/2016 Zone 5 N Olive 0.01 5.47E-09 -8.86 4.9 8.7 0 0.00 0.00 0.00 0.00 0.00 1.00 N MP-046A 2/6/2016 Zone 5 N Olive 0.00 9.11E-09 -28.65 18.3 2.0 0 0.0 0.00 0.00 0.00 0.00 1.00 Y MP-047A 2/5/2016 Zone 5 N Olive 0.03 3.35E-09 1.057 17.4 0.0 0 5.07 6.50 1.43 0.00 1.00 Y MP-048A 2/5/2016 Zone 2 N Olive 0.00 5.33E-09 1.057 17.4 0.0 0 5.07 6.50 1.43 0.00 1.00 Y MP-049A 2/5/2016 Zone 2 A Clay 0.27 4.93E-09 1.294 20.0 1.0 0.0 0.00 0.00 2.50 2.50 0.00 1.00 Y 0.48 MP-050A 2/6/2016 Zone 5 A Clay 0.11 2.35E-09 1.656 4.8 8.8 100 210,000 210,000 2.00 80.0 1.00 Y 0.48 MP-051B 2/6/2016 Zone 5 A Clay 0.11 2.35E-09 1.655 1.97 1.5 0 0.00 0.00 0.00 0.00 0.00 1.00 Y MP-052A 2/6/2016 Zone 5 A Clay 0.00 7.31E-09 1.535 19.7 1.5 0 0.00 0.00 0.00 0.00 0.00 1.00 Y MP-053A 2/6/2016 Zone 5 A Clay 0.01 7.31E-09 1.535 19.7 1.5 0 0.00 0.00 0.00 0.00 0.00 1.00 Y MP-053A 2/6/2016 Zone 5 A Clay 0.01 7.31E-09 1.535 19.7 1.5 0 0.00 0.00 0.00 0.00 0.00 1.00 Y MP-053A 2/6/2016 Zone 5 A Clay 0.00 7.31E-09 1.535 19.7 1.5 0 0.00 0.00 0.00 0.00 0.00 0.00 1.00 Y MP-054A 2/6/2016 Zone 5 A Clay 0.01 7.31E-09 1.535 19.7 1.5 0 0.00 0.00 0.00 0.00 0.00 0.00 1.00 Y MP-054A 2/6/2016 Zone 5 A Clay 0.01 7.31E-09 1.535 19.7 1.5 0 0.00 0.00 0.00 0.00 0.00 0.00 1.00 Y MP-055A 2/6/2016 Zone 5 A Clay 0.00 7.31E-09 1.535 19.7 1.5 0 0.00 0.00 0.00 0.00 0.00 0.00 0.0	MP-041A	2/5/2016	Zone 6	N Olive	-0.18	5.22E-09	-5.50	12.6	3.7	0	30.0	65.0	35.0	0.00	1.00	Υ	
MP-043B 2/5/2016 Zone 2 Main Silt 0.00 5.90E-09 -15.50 0.4 12.6 0 0.00 1,030 1,030 18.0 1.00 Y MP-044A 2/6/2016 Zone 5 A Clay -0.99 1.30E-08 -20.50 20.9 0.0 0 29.0 93.0 64.0 6.00 1.00 Y 0.35 MP-044B 2/6/2016 Zone 5 N Olive -0.91 1.16E-08 -12.22 20.9 0.0 0.00 0.00 0.00 0.00 1.00 Y MP-045A 2/6/2016 Zone 5 N Olive -0.21 5.47E-09 -8.86 4.9 8.7 0 0.00 0.00 0.00 1.00 N MP-046A 2/6/2016 Zone 5 N Olive -0.33 3.35E-09 -10.57 17.4 0.0 0 0.00 1.03 1.0 N MP-048A 2/5/2016 Zone 2 A Clay	MP-042A	2/5/2016	Zone 6	N Olive	-0.19	4.77E-09	-23.39	2.8	10.0	0	0.00	0.00	0.00	0.00	1.00	Υ	
MP-044A 2/6/2016 Zone 5 A Clay -0.99 1.30E-08 -20.50 20.9 0.0 0 29.0 93.0 64.0 6.00 1.00 Y 0.35 MP-044B 2/6/2016 Zone 5 N Olive -0.91 1.16E-08 -12.22 20.9 0.0 0 0.00 0.00 0.00 0.00 1.00 Y MP-045A 2/6/2016 Zone 5 N Olive -0.21 5.47E-09 -8.86 4.9 8.7 0 0.00 0.00 0.00 0.00 1.00 N MP-046A 2/6/2016 Zone 5 N Olive 0.03 3.35E-09 -10.57 17.4 0.0 0 0.00 0.00 0.00 1.00 Y 0.65 MP-048A 2/5/2016 Zone 2 N Olive 0.03 3.35E-09 -27.93 13.4 5.4 0 0.00 1.05 1.55 2.30 1.00 N	MP-043A	2/5/2016	Zone 2	N Olive	0.00	3.94E-09	-4.17	4.8	7.8	11	4,310	6,270	1,960	17.5	1.00	N	
MP-044B 2/6/2016 Zone 5 N Olive -0.91 1.16E-08 -12.22 20.9 0.0 0 0.00 0.00 0.00 0.00 1.00 Y MP-045A 2/6/2016 Zone 5 N Olive -0.21 5.47E-09 -8.86 4.9 8.7 0 0.00 0.00 0.00 1.00 N MP-046A 2/6/2016 Zone 5 N Olive 0.00 9.11E-09 -28.65 18.3 2.0 0 0.00 0.00 0.00 1.00 Y 0.65 MP-047A 2/5/2016 Zone 5 N Olive -0.33 3.35E-09 -10.57 17.4 0.0 0 5.07 6.50 1.43 0.00 1.00 Y MP-048A 2/5/2016 Zone 2 N Clay -0.27 4.93E-09 -12.94 20.0 1.0 0 0.00 2.50 2.50 0.00 1.00 Y 0.48 MP-054A 2/6/2016 Z	MP-043B	2/5/2016	Zone 2	Main Silt	0.00	5.90E-09	-15.50	0.4	12.6	0	0.00	1,030	1,030	18.0	1.00	Υ	
MP-045A 2/6/2016 Zone 5 N Olive -0.21 5.47E-09 -8.86 4.9 8.7 0 0.00 0.00 0.00 0.00 0.00 1.00 N MP-046A 2/6/2016 Zone 5 N Olive 0.00 9.11E-09 -28.65 18.3 2.0 0 0.00 0.00 0.00 0.00 0.00 1.00 Y 0.65 MP-047A 2/5/2016 Zone 5 N Olive -0.33 3.35E-09 -10.57 17.4 0.0 0 5.07 6.50 1.43 0.00 1.00 Y MP-048A 2/5/2016 Zone 2 N Olive 0.00 5.33E-09 -27.93 13.4 5.4 0 0.00 155 155 2.30 1.00 N MP-049A 2/5/2016 Zone 2 A Clay -0.27 4.93E-09 -12.94 20.0 1.0 0 0.00 2.50 2.50 0.00 1.00 Y 0.48 MP-050A 2/6/2016 Zone 5 A Clay 0.11 2.35E-09 -7.65 4.8 8.8 100 210,000 212,000 2,000 80.0 1.00 Y MP-051B 2/6/2016 Zone 5 N Olive 0.00 6.34E-09 -6.88 4.9 7.3 72 15,230 43,130 27,000 195 1.00 Y MP-052A 2/6/2016 Zone 5 A Clay 0.12 4.64E-09 -15.35 19.7 1.5 0 0.00 0.00 0.00 0.00 0.00 0.00 1.00 Y 0.66 MP-053A 2/6/2016 Zone 5 A Clay 0.12 4.64E-09 -12.17 13.9 2.0 0 0 0.00 0.00 0.00 0.00 0.00 0.00	MP-044A	2/6/2016	Zone 5	A Clay	-0.99	1.30E-08	-20.50	20.9	0.0	0	29.0	93.0	64.0	6.00	1.00	Υ	0.35
MP-046A 2/6/2016 Zone 5 N Olive 0.00 9.11E-09 -28.65 18.3 2.0 0 0.00 0.00 0.00 0.00 0.00 1.00 Y 0.65 MP-047A 2/5/2016 Zone 5 N Olive -0.33 3.35E-09 -10.57 17.4 0.0 0 5.07 6.50 1.43 0.00 1.00 Y 0.65 MP-048A 2/5/2016 Zone 2 N Olive 0.00 5.33E-09 -27.93 13.4 5.4 0 0.00 155 155 2.30 1.00 N MP-049A 2/5/2016 Zone 2 A Clay -0.27 4.93E-09 -12.94 20.0 1.0 0 0.00 2.50 2.50 2.50 0.00 1.00 Y 0.48 MP-050A 2/6/2016 Zone 5 A Clay 0.11 2.35E-09 -7.65 4.8 8.8 100 210,000 212,000 2,000 80.0 1.00 Y MP-051B 2/6/2016 Zone 5 N Olive 0.00 6.34E-09 -6.68 4.9 7.3 72 15,230 43,130 27,900 195 1.00 Y MP-052A 2/6/2016 Zone 5 A Clay 0.00 7.31E-09 -15.35 19.7 1.5 0 0.00 0.00 0.00 0.00 0.00 1.00 Y MP-053A 2/6/2016 Zone 5 A Clay 0.12 4.64E-09 -12.17 13.9 2.0 0 0.00 0.00 0.00 0.00 0.00 1.00 Y 0.66 MP-054A 2/6/2016 Zone 5 Area A, N Olive 0.00 3.29E-09 -17.28 10.9 3.6 100 30,600 54,550 23,950 115 1.00 Y MP-055A 2/6/2016 Zone 5 Area A, N Olive 0.00 3.29E-09 -17.28 10.9 3.6 10.9 3.60 54,550 23,950 115 1.00 Y	MP-044B	2/6/2016	Zone 5	N Olive	-0.91	1.16E-08	-12.22	20.9	0.0	0	0.00	0.00	0.00	0.00	1.00	Υ	
MP-047A 2/5/2016 Zone 5 N Olive -0.33 3.35E-09 -10.57 17.4 0.0 0 5.07 6.50 1.43 0.00 1.00 Y MP-048A 2/5/2016 Zone 2 N Olive 0.00 5.33E-09 -27.93 13.4 5.4 0 0.00 155 155 2.30 1.00 N MP-049A 2/5/2016 Zone 2 A Clay -0.27 4.93E-09 -12.94 20.0 1.0 0 0.00 2.50 2.50 0.00 1.00 Y MP-050A 2/6/2016 Zone 5 A Clay 0.11 2.35E-09 -7.65 4.8 8.8 100 210,000 212,000 2.00 80.0 1.00 Y MP-051B 2/6/2016 Zone 5 N Clay 0.00 6.34E-09 -6.68 4.9 7.3 72 15,230 43,130 27,900 195 1.00 Y MP-05	MP-045A	2/6/2016	Zone 5	N Olive	-0.21	5.47E-09	-8.86	4.9	8.7	0	0.00	0.00	0.00	0.00	1.00	N	
MP-048A 2/5/2016 Zone 2 N Olive 0.00 5.3E-09 -27.93 13.4 5.4 0 0.00 155 155 2.30 1.00 N MP-049A 2/5/2016 Zone 2 A Clay -0.27 4.93E-09 -12.94 20.0 1.0 0 0.00 2.50 2.50 0.00 1.00 Y 0.48 MP-050A 2/6/2016 Zone 5 A Clay 0.11 2.35E-09 -7.65 4.8 8.8 100 210,000 212,000 80.0 1.00 Y MP-051B 2/6/2016 Zone 5 N Olive 0.00 6.34E-09 -6.68 4.9 7.3 72 15,230 43,130 27,900 195 1.00 Y MP-052A 2/6/2016 Zone 5 A Clay 0.00 7.31E-09 -15.35 19.7 1.5 0 0.00 0.00 0.00 1.00 Y MP-053A 2/6/2016 <t< td=""><td>MP-046A</td><td>2/6/2016</td><td>Zone 5</td><td>N Olive</td><td>0.00</td><td>9.11E-09</td><td>-28.65</td><td>18.3</td><td>2.0</td><td>0</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>1.00</td><td>Υ</td><td>0.65</td></t<>	MP-046A	2/6/2016	Zone 5	N Olive	0.00	9.11E-09	-28.65	18.3	2.0	0	0.00	0.00	0.00	0.00	1.00	Υ	0.65
MP-049A 2/5/2016 Zone 2 A Clay -0.27 4.93E-09 -12.94 20.0 1.0 0 0.00 2.50 2.50 0.00 1.00 Y 0.48 MP-050A 2/6/2016 Zone 5 A Clay 0.11 2.35E-09 -7.65 4.8 8.8 100 210,000 212,000 2,000 80.0 1.00 Y MP-051B 2/6/2016 Zone 5 N Olive 0.00 6.34E-09 -6.68 4.9 7.3 72 15,230 43,130 27,900 195 1.00 Y MP-052A 2/6/2016 Zone 5 A Clay 0.00 7.31E-09 -15.35 19.7 1.5 0 0.00 0.00 0.00 1.00 Y MP-053A 2/6/2016 Zone 5 A Clay 0.12 4.64E-09 -12.17 13.9 2.0 0 0.00 0.00 0.00 0.00 1.00 Y MP-054A	MP-047A	2/5/2016	Zone 5	N Olive	-0.33	3.35E-09	-10.57	17.4	0.0	0	5.07	6.50	1.43	0.00	1.00	Υ	
MP-050A 2/6/2016 Zone 5 A Clay 0.11 2.35E-09 -7.65 4.8 8.8 100 210,000 212,000 2,000 80.0 1.00 Y MP-051B 2/6/2016 Zone 5 N Olive 0.00 6.34E-09 -6.68 4.9 7.3 72 15,230 43,130 27,900 195 1.00 Y MP-052A 2/6/2016 Zone 5 A Clay 0.00 7.31E-09 -15.35 19.7 1.5 0 0.00 0.00 0.00 0.00 0.00 1.00 Y MP-053A 2/6/2016 Zone 5 A Clay 0.12 4.64E-09 -12.17 13.9 2.0 0 0.00 0.00 0.00 0.00 0.00 1.00 Y 0.66 MP-054A 2/6/2016 Zone 5 Area A, N Olive -0.05 7.40E-09 -19.41 20.5 0.8 0 5.80 18.0 12.2 1.50 1.00 Y MP-055A 2/6/2016 Zone 5 Area A, N Olive 0.00 3.29E-09 -17.28 10.9 3.6 100 30,600 54,550 23,950 115 1.00 Y	MP-048A	2/5/2016	Zone 2	N Olive	0.00	5.33E-09	-27.93	13.4	5.4	0	0.00	155	155	2.30	1.00	N	
MP-051B 2/6/2016 Zone 5 N Olive 0.00 6.34E-09 -6.68 4.9 7.3 72 15,230 43,130 27,900 195 1.00 Y MP-052A 2/6/2016 Zone 5 A Clay 0.00 7.31E-09 -15.35 19.7 1.5 0 0.00 0.00 0.00 0.00 0.00 1.00 Y MP-053A 2/6/2016 Zone 5 A Clay 0.12 4.64E-09 -12.17 13.9 2.0 0 0.00 0.00 0.00 0.00 0.00 1.00 Y 0.66 MP-054A 2/6/2016 Zone 5 Area A, N Olive -0.05 7.40E-09 -19.41 20.5 0.8 0 5.80 18.0 12.2 1.50 1.00 Y MP-055A 2/6/2016 Zone 5 Area A, N Olive 0.00 3.29E-09 -17.28 10.9 3.6 10.0 30,600 54,550 23,950 115 1.00 Y	MP-049A	2/5/2016	Zone 2	A Clay	-0.27	4.93E-09	-12.94	20.0	1.0	0	0.00	2.50	2.50	0.00	1.00	Υ	0.48
MP-052A 2/6/2016 Zone 5 A Clay 0.00 7.31E-09 -15.35 19.7 1.5 0 0.00 0.00 0.00 0.00 0.00 1.00 Y MP-053A 2/6/2016 Zone 5 A Clay 0.12 4.64E-09 -12.17 13.9 2.0 0 0.00 0.00 0.00 0.00 0.00 1.00 Y 0.66 MP-054A 2/6/2016 Zone 5 Area A, N Olive -0.05 7.40E-09 -19.41 20.5 0.8 0 5.80 18.0 12.2 1.50 1.00 Y MP-055A 2/6/2016 Zone 5 Area A, N Olive 0.00 3.29E-09 -17.28 10.9 3.6 100 30,600 54,550 23,950 115 1.00 Y	MP-050A	2/6/2016	Zone 5	A Clay	0.11	2.35E-09	-7.65	4.8	8.8	100	210,000	212,000	2,000	80.0	1.00	Υ	
MP-053A 2/6/2016 Zone 5 A Clay 0.12 4.64E-09 -12.17 13.9 2.0 0 0.00 0.00 0.00 0.00 0.00 1.00 Y 0.66 MP-054A 2/6/2016 Zone 5 Area A, N Olive -0.05 7.40E-09 -19.41 20.5 0.8 0 5.80 18.0 12.2 1.50 1.00 Y MP-055A 2/6/2016 Zone 5 Area A, N Olive 0.00 3.29E-09 -17.28 10.9 3.6 100 30,600 54,550 23,950 115 1.00 Y	MP-051B	2/6/2016	Zone 5	N Olive	0.00	6.34E-09	-6.68	4.9	7.3	72	15,230	43,130	27,900	195	1.00	Υ	
MP-054A 2/6/2016 Zone 5 Area A, N Olive -0.05 7.40E-09 -19.41 20.5 0.8 0 5.80 18.0 12.2 1.50 1.00 Y MP-055A 2/6/2016 Zone 5 Area A, N Olive 0.00 3.29E-09 -17.28 10.9 3.6 100 30,600 54,550 23,950 115 1.00 Y	MP-052A		Zone 5	A Clay	0.00	7.31E-09	-15.35	19.7	1.5	0	0.00	0.00	0.00	0.00	1.00	Υ	
MP-054A 2/6/2016 Zone 5 Area A, N Olive -0.05 7.40E-09 -19.41 20.5 0.8 0 5.80 18.0 12.2 1.50 1.00 Y MP-055A 2/6/2016 Zone 5 Area A, N Olive 0.00 3.29E-09 -17.28 10.9 3.6 100 30,600 54,550 23,950 115 1.00 Y	MP-053A	2/6/2016	Zone 5	A Clay	0.12	4.64E-09	-12.17	13.9	2.0	0	0.00	0.00	0.00	0.00	1.00	Υ	0.66
	MP-054A		Zone 5	Area A, N Olive	-0.05	7.40E-09	-19.41	20.5	0.8	0	5.80	18.0	12.2	1.50	1.00	Υ	
	MP-055A	2/6/2016	Zone 5	Area A, N Olive	0.00	3.29E-09	-17.28	10.9	3.6	100	30,600	54,550	23,950	115	1.00	Υ	
	MP-056A		Zone 5	Area A, N Olive	0.00	8.22E-09	-21.56	19.9	1.3	0	0.00	0.00	0.00	0.00	1.00	Υ	0.88

201602_02-1Q16-EffectivenessScreen_APP-C2

Location	Date	Effectiveness Zone	Subsurface Layer	Static Pressure/ Vacuum	Estimated Soil Ga Permeability	s Probe Specific Capacity	Oxygen	Carbon Dioxide	Lower Explosive Level	Methane	FID TVPH Concentration	FID PHC Concentration	PID Volatile Organic Chemicals	Well Diameter	Well Plug Replaced	Wellhead Reduction
				(in-H ₂ O)	(cm ²)	(cm³/s·in H₂O)	(%)	(%)	(%)	(ppmv)	(ppmv)	(ppmv)	(ppmv)	(inches)		(inches)
MP-057A	2/6/2016	Zone 4	Area A, N Olive	0.00	3.31E-09	-12.17	20.9	0.0	0	0.00	0.00	0.00	0.00	1.00	Υ	
MP-058A	2/6/2016	Zone 4	A Clay	0.00	1.76E-08	-36.96	19.3	1.8	0	0.00	0.00	0.00	0.00	1.00	N	
MP-059A	2/6/2016	Zone 4	A Clay	0.00	4.23E-09	-4.81	20.5	0.2	0	0.00	54.0	54.0	23.0	1.00	Υ	
MP-059B	2/6/2016	Zone 4	Main Silt	0.10	1.20E-08	-37.80	17.7	2.0	0	0.00	0.00	0.00	0.00	1.00	Υ	
MP-060A	2/6/2016	Zone 4	A Clay	0.00	1.62E-08	-33.93	18.3	0.6	0	0.00	33.0	33.0	14.0	1.00	N	
MP-064A	2/6/2016	Zone 4	A Clay	0.00	5.82E-09	-12.22	20.5	1.1	0	0.00	0.00	0.00	0.00	1.00	Υ	0.50
MP-068	2/4/2016	Zone 1	N Olive	-0.09	3.87E-09	-13.47	17.0	3.5	0	0.00	0.00	0.00	0.00	1.00	Υ	
MP-078A	2/4/2016	Zone 1	A Clay	-0.65	6.21E-09	-6.55	20.9	0.2	0	0.00	0.00	0.00	0.00	1.00	Υ	
MP-078B	2/4/2016	Zone 1	N Olive	-0.60	2.21E-08	-23.23	20.8	0.0	0	0.00	0.00	0.00	0.00	1.00	Υ	
MP-079A	2/4/2016	Zone 1	N Olive	0.00	9.28E-09	-21.42	1.8	18.1	100	78,920	167,000	88,080	242	1.00	N	
MP-080A	2/4/2016	Zone 1	N Olive	0.00	3.99E-09	-21.29	20.9	0.0	0	0.00	3.00	3.00	1.00	1.00	N	
MP-083A	2/5/2016	Zone 1	N Olive	0.00	8.55E-09	-12.13	1.2	23.1	100	256,000	297,000	41,000	76.0	1.00	Υ	
MP-084A	2/5/2016	Zone 2	A Clay	-1.64	1.48E-08	-21.71	20.9	0.0	0	0.00	0.00	0.00	0.00	1.00	Υ	
MP-086A	2/5/2016	Zone 3	A Clay	-0.22	1.45E-08	-15.21	20.9	0.0	0	0.00	2.00	2.00	0.00	1.00	N	
MP-087A	2/5/2016	Zone 2	A Clay	-0.26	1.67E-08	-8.81	20.9	0.0	0	0.00	0.00	0.00	0.00	1.00	Υ	
MP-088A	2/6/2016	Zone 4	A Clay	0.00	5.78E-09	-12.74	20.9	0.4	0	0.00	5.00	5.00	1.50	1.00	Υ	0.33
MP-088B	2/6/2016	Zone 4	Main Silt	0.00	1.42E-08	-34.28	20.2	1.0	0	0.00	0.00	0.00	0.00	1.00	Υ	0.54
MP-090A	2/2/2016	Zone 2	A Clay	-2.03	1.97E-08	-3.65	20.8	0.0	0	0.00	0.00	0.00	0.00	0.13	Υ	
MP-090B	2/5/2016	Zone 2	Main Silt	-5.53	3.86E-08	-20.24	20.9	0.0	0	0.00	0.00	0.00	0.00	1.00	Υ	
MP-091B	2/5/2016	Zone 2	Main Silt	-0.27	1.45E-08	-7.65	3.2	8.5	0	0.00	0.00	0.00	0.00	1.00	Υ	
MP-112M	2/7/2016	Zone 2	Main Silt	0.00	1.09E-08	-4.59	13.8	2.6	0	0.00	0.00	0.00	0.00	0.50	N	
MP-112S	2/7/2016	Zone 2	N Olive	-0.15	3.65E-08	-15.35	19.3	0.8	0	0.00	0.00	0.00	0.00	0.50	N	
MP-113M	2/7/2016	Zone 2	Main Silt	-1.42	4.03E-08	-16.93	20.9	0.0	0	0.00	0.00	0.00	0.00	0.50	N	
MP-113S	2/7/2016	Zone 2	A Clay	-0.75	3.03E-08	-12.74	20.9	0.0	0	0.00	0.00	0.00	0.00	0.50	N	
MP-114M	2/7/2016	Zone 2	Main Silt	-0.20	1.51E-08	-6.35	20.6	0.7	0	0.00	0.00	0.00	0.00	0.50	N	
MP-114S	2/7/2016	Zone 2	A Clay	0.00	2.77E-08	-11.66	20.9	0.0	0	0.00	0.00	0.00	0.00	0.50	N	
MP-115S	2/7/2016	Zone 2	N Olive	0.00	3.83E-08	-16.10	13.8	6.7	0	0.00	0.00	0.00	0.00	0.50	N	
MP-116S	2/7/2016	Zone 6	N Olive	0.00	1.05E-09	-0.48								0.50	N	
MP-118S	2/7/2016	Zone 6	N Olive	0.07	1.90E-09	-0.84								0.50	N	
MP-121S	2/7/2016	Zone 6	N Olive	0.00	1.77E-08	-7.44								0.50	N	
MP-122S	2/7/2016	Zone 6	N Olive	0.00	3.92E-09	-1.68	20.9	0.0	0	0.00	136	136	31.5	0.50	N	
MP-123S	2/7/2016	Zone 6	N Olive	0.00	3.94E-09	-1.69	20.9	0.0	0	0.00	154	154	44.0	0.50	N	
MP-124M	2/7/2016	Zone 6	N Olive	0.06	3.64E-09	-1.57								0.50	N	
MP-124S	2/7/2016	Zone 6	N Olive	0.08	1.53E-09	-0.68								0.50	N	
MP-125S	2/7/2016	Zone 6	N Olive	0.00	1.67E-08	-7.04	11.8	2.5	0	0.00	55.0	55.0	0.50	0.50	N	
MP-126M	2/7/2016	Zone 6	N Olive	0.15	3.05E-09	-1.32								0.50	N	
MP-126S	2/7/2016	Zone 6	N Olive	-0.08	2.41E-08	-10.14	19.6	0.4	0	0.00	19.0	19.0	4.00	0.50	N	
MP-127D	2/7/2016	Zone 6	Rand	-0.12	3.07E-08	-12.89	2.7	15.7	100	478,000	583,000	105,000	185	0.50	N	

201602_02-1Q16-EffectivenessScreen_APP-C2

Location	Date	Effectiveness Zone	Subsurface Layer	Static Pressure/ Vacuum	Estimated Soil Ga Permeability	s Probe Specific Capacity	Oxygen	Carbon Dioxide	Lower Explosive Level	Methane	FID TVPH Concentration	FID PHC Concentration	PID Volatile Organic Chemicals	Well Diameter	Well Plug Replaced	Wellhead Reduction
				(in-H ₂ O)	(cm ²)	(cm ³ /s·in H ₂ O)	(%)	(%)	(%)	(ppmv)	(ppmv)	(ppmv)	(ppmv)	(inches)		(inches)
MP-127M	2/7/2016	Zone 6	N Olive	0.00	2.49E-08	-10.47	16.1	1.6	0	62.2	587	525	118	0.50	N	
MP-127S	2/7/2016	Zone 6	N Olive	0.00	2.43E-08	-10.21	18.9	0.6	0	5.97	350	344	83.0	0.50	N	
MP-128S	2/7/2016	Zone 5	N Olive	0.00	1.65E-08	-6.95	17.7	4.1	0	0.00	65.5	65.5	16.1	0.50	N	
MP-129S	2/7/2016	Zone 5	N Olive	0.00	2.36E-08	-9.93	11.9	6.0	0	0.00	50.0	50.0	1.50	0.50	N	
MP-130M	2/7/2016	Zone 4	N Olive	0.00	1.24E-08	-5.24	13.7	3.6	0	0.00	35.0	35.0	1.00	0.50	N	
MP-130S	2/7/2016	Zone 4	N Olive	0.00	2.43E-08	-10.24	19.2	0.4	0	0.00	36.5	36.5	10.0	0.50	N	
VMP-001S	2/3/2016	Zone 1	A Clay	0.12	3.96E-10	-0.08	12.1	5.2	0	460	520	60.0	0.50	0.50	Υ	
VMP-002D	2/3/2016	Zone 1	N Olive	0.00	6.35E-09	-1.18	20.6	8.0	0	0.00	4.00	4.00	2.00	0.50	Υ	
VMP-007	2/3/2016	Zone 1	N Olive	-0.78	7.27E-09	-1.35	20.8	0.7	0	0.00	1.00	1.00	0.50	0.50	Υ	
VMP-015M	2/2/2016	Zone 5	B Clay	-0.16	5.60E-09	-1.04	2.2	14.2	73	50,550	58,540	7,990	42.0	0.50	Υ	
VMP-015S	2/2/2016	Zone 5	N Olive	-0.05	1.39E-08	-2.58	4.1	9.0	0	0.00	0.00	0.00	0.00	0.50	Υ	
VMP-015VS	2/2/2016	Zone 5	A Clay	0.62	3.19E-09	-0.60	11.5	1.0	5	1,560	25,120	23,560	306	0.50	Υ	
VMP-023M	2/3/2016	Zone 1	N Olive	-1.37	7.09E-09	-1.32	20.9	0.0	0	0.00	2.30	2.30	1.50	0.50	Υ	
VMP-023S	2/3/2016	Zone 1	N Olive	-1.62	4.05E-10	-0.08	20.7	1.2	0	0.00	3.50	3.50	2.25	0.50	Υ	
VMP-026M	2/2/2016	Zone 4	A Clay	-0.65	3.87E-09	-0.72	19.0	0.0	0	0.00	0.00	0.00	0.00	0.50	Υ	
VMP-026S	2/2/2016	Zone 4	A Clay	-2.30	3.87E-09	-0.72								0.50	Υ	
VMP-027M	2/3/2016	Zone 1	B Clay	-2.61	1.54E-08	-2.87	20.9	0.0	0	0.00	2.00	2.00	0.75	0.50	Υ	
VMP-027S	2/3/2016	Zone 1	A Clay	-0.08	1.81E-09	-0.34	20.9	0.0	0	0.00	2.00	2.00	1.00	0.50	Υ	
VMP-036S	2/3/2016	Zone 5	B Clay	-0.27	3.85E-09	-0.72	3.4	7.6	9	4,080	4,680	600	3.66	0.50	Υ	
VMP-036VS	2/3/2016	Zone 5	A Clay	-0.22	2.36E-08	-4.38	18.7	2.2	0	0.00	193	193	91.5	0.50	Υ	
VMP-052S	2/3/2016	Zone 1	A Clay	-7.68	1.92E-09	-0.36	20.9	0.0	0	0.00	1.00	1.00	1.00	0.13	Υ	
VMP-053S	2/3/2016	Zone 1	N Olive	-8.42	6.19E-09	-1.15	13.9	10.1	0	0.00	22.5	22.5	0.00	0.13	Υ	
VMP-053VS	2/3/2016	Zone 1	A Clay	-8.74	8.70E-09	-1.62	18.8	3.5	0	0.00	9.50	9.50	2.50	0.13	Υ	
VMP-057VS	2/3/2016	Zone 1	A Clay	6.00	2.26E-09	-0.42	15.3	1.3	0	0.00	0.00	0.00	0.00	0.50	Υ	
VMP-058S	2/3/2016	Zone 1	N Olive	-1.01	6.49E-09	-1.21	2.8	11.9	4	1,710	1,960	250	3.00	0.50	Υ	
VMP-058VS	2/3/2016	Zone 1	A Clay	-0.54	3.34E-09	-0.62	2.2	9.4	14	7,170	7,770	600	1.00	0.50	Υ	
VMP-064VS	2/3/2016	Zone 6	A Clay	-0.11	6.17E-09	-1.15	4.9	5.5	0	93.4	640	547	8.50	0.50	Υ	
VMP-065S	2/3/2016	Zone 5	N Olive	-0.16	2.52E-09	-0.47	5.8	4.8	0	480	610	130	1.00	0.50	Υ	
VMP-065VS	2/3/2016	Zone 5	A Clay	-0.14	3.61E-09	-0.67	6.8	1.4	4	885	2,470	1,585	30.0	0.50	Υ	
VMP-066M	2/4/2016	Zone 2	Main Silt	-0.68	7.48E-09	-1.39	10.8	9.3	0	0.00	0.00	0.00	0.00	0.50	Υ	
VMP-066S	2/4/2016	Zone 2	N Olive	-0.13	9.65E-09	-1.79	15.3	7.6	0	0.00	0.00	0.00	0.00	0.50	Υ	
VMP-066VS	2/4/2016	Zone 2	A Clay	-0.12	1.32E-08	-2.46	19.7	1.4	0	0.00	0.00	0.00	0.00	0.50	Υ	
VMP-067S	2/4/2016	Zone 2	Main Silt	-0.13	6.44E-09	-1.20	20.6	0.9	0	0.00	0.00	0.00	0.00	0.50	Υ	
VMP-067VS	2/4/2016	Zone 2	A Clay	0.00	1.38E-08	-2.56	20.9	0.0	0	0.00	0.00	0.00	0.00	0.50	Υ	
VMP-068S	2/3/2016	Zone 5	Rand	-0.22	8.14E-09	-1.51	1.6	15.0	17	656	14,530	13,874	284	0.50	Υ	
VMP-068VS	2/3/2016	Zone 5	A Clay	-0.09	2.04E-08	-3.78	19.8	1.1	0	1.81	4.16	2.35	0.60	0.50	Υ	
VMP-069M	2/2/2016	Zone 5	Main Silt	-0.41	1.02E-08	-1.90	20.8	0.0	0	0.00	0.00	0.00	0.00	0.50	Υ	
VMP-069VS	2/2/2016	Zone 5	A Clay	-0.05	1.99E-08	-3.70	20.7	0.0	0	0.00	0.00	0.00	0.00	0.50	Υ	

3 of 4

Location	Date	Effectiveness Zone	Subsurface Layer	Static Pressure/ Vacuum	Estimated Soil Gas Permeability	Probe Specific Capacity	Oxygen	Carbon Dioxide	Lower Explosive Level	Methane	FID TVPH Concentration	FID PHC Concentration	PID Volatile Organic Chemicals	Well Diameter	Well Plug Replaced	Wellhead Reduction
				(in-H ₂ O)	(cm ²)	(cm³/s·in H₂O)	(%)	(%)	(%)	(ppmv)	(ppmv)	(ppmv)	(ppmv)	(inches)		(inches)
VMP-070M	2/2/2016	Zone 5	Rand	0.00	8.53E-09	-1.59	2.1	5.7	100	71,680	1,000,000	928,320	731	0.50	Υ	
VMP-071S	2/2/2016	Zone 5	N Olive	-1.97	7.71E-09	-1.43	20.2	0.7	0	637	637	0.00	7.00	0.50	Υ	
VMP-071VS	2/2/2016	Zone 5	A Clay	-0.78	3.82E-08	-7.08	20.6	0.1	9	448	448	0.00	3.40	0.50	Υ	
VMP-073M	2/4/2016	Zone 3	Main Silt	-0.30	5.51E-09	-1.03	20.2	1.2	0	0.00	0.00	0.00	0.00	0.50	Υ	
VMP-073S	2/4/2016	Zone 3	A Clay	-0.47	2.96E-09	-0.55	18.6	0.6	0	0.00	0.00	0.00	0.00	0.50	Υ	
VMP-074M	2/2/2016	Zone 4	Main Silt	-1.75	8.45E-09	-1.57	19.8	1.0	0	0.00	5.26	5.26	3.41	0.50	Υ	
VMP-074VS	2/2/2016	Zone 4	A Clay	-0.10	1.54E-08	-2.87	20.9	0.0	0	0.00	0.00	0.00	0.00	0.50	Υ	
VMP-075S	2/2/2016	Zone 5	N Olive	0.05	9.86E-09	-1.83	1.7	11.5	5	2,250	2,670	420	0.00	0.50	Υ	
VMP-075VS	2/2/2016	Zone 5	A Clay	0.00	2.06E-08	-3.82	6.1	2.7	0	22.5	27.0	4.50	0.00	0.50	Υ	
VMP-076S	2/2/2016	Zone 5	N Olive	-0.15	1.38E-08	-2.56	20.8	0.0	0	0.00	0.00	0.00	0.00	0.50	Υ	
VMP-076VS	2/2/2016	Zone 5	A Clay	-0.11	1.00E-08	-1.86	20.4	0.3	0	0.00	0.00	0.00	0.00	0.50	Υ	
VMP-080S	2/3/2016	Zone 4	A Clay, Main Silt	-0.33	3.51E-09	-0.66	6.4	0.4	0	0.00	0.00	0.00	0.00	0.50	Υ	
VMP-080VS	2/3/2016	Zone 4	A Clay	-0.04	1.53E-08	-2.84	20.4	0.0	0	0.00	3.81	3.81	1.00	0.50	Υ	
VMP-081M	2/2/2016	Zone 4	Main Silt	-0.06	9.29E-09	-1.73	19.6	1.2	0	0.00	0.00	0.00	0.00	0.50	Υ	
VMP-081S	2/2/2016	Zone 4	A Clay	-0.10	1.20E-08	-2.23	20.0	0.9	0	0.00	0.00	0.00	0.00	0.50	Υ	
VMP-089S	2/4/2016	Zone 1	N Olive	0.00	6.95E-09	-1.29	19.8	1.0	0	0.00	0.00	0.00	0.00	0.50	Υ	
VMP-089VS	2/4/2016	Zone 1	A Clay	0.00	1.30E-08	-2.41	20.9	0.0	0	0.00	1.00	1.00	0.00	0.50	Υ	
VMP-093S	2/4/2016	Zone 5	N Olive	0.00	4.27E-09	-0.80	17.6	3.1	0	0.00	0.00	0.00	0.00	0.50	Υ	
VMP-094S	2/2/2016	Zone 5	N Olive	0.54	3.78E-09	-0.71	2.2	4.8	0	300	770	470	16.0	0.50	Υ	
VMP-094VS	2/2/2016	Zone 5	A Clay	0.00	5.19E-09	-0.97	2.9	4.0	0	180	1,040	860	19.0	0.50	Υ	
VP-004S	2/3/2016	Zone 6	N Olive	0.00	2.99E-09	-0.56	6.3	5.6	100	105,000	105,000	0.00	31.0	0.50	N	

Notes:

TPH - total petroleum hydrocarbons

TVPH - total volatile petroleum hydrocarbons

PHC - petroleum hydrocarbons (equal to the FID TVPH concentration minus the FID methane concentration)

FID - flame ionization detector

PID - photoionization detector

-- - not applicable

201602_02-1Q16-EffectivenessScreen_APP-C2

⁻ VMP-021S, VMP-037M, VMP-037S, VMP-044S, and VMP-044VS along N Old St. Louis; VMP-062S, VMP-062VS on N Olive; and VMP-078M could not be screened because these locations have been paved over

⁻ MP-085A, MP-117S, MP-120S, VMP-006S, VMP-012M, VMP-012S, VMP-052VS, VMP-064M, VMP-064S, and VMP-090VS could not be screened due to occlusion of the well screen

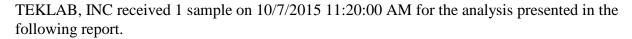
⁻ VMP-070VS could not be screened due to low permeability or well probe blockage (deadhead conditions)

⁻ Expansion well plug indicated with a Y if replaced or N if not replaced (bold indicates wellhead reduction required)

APPENDIX D

AP ACCREC

WorkOrder: 15100377


October 14, 2015

Todd Aseltyne
Trihydro Corporation
1252 Commerce Drive
Laramie, WY 82070
TEL: (513) 429-7470

FAX:

RE: Soil Vapor System

Dear Todd Aseltyne:

Samples are analyzed on an as received basis unless otherwise requested and documented. The sample results contained in this report relate only to the requested analytes of interest as directed on the chain of custody. NELAP accredited fields of testing are indicated by the letters NELAP under the Certification column. Unless otherwise documented within this report, Teklab Inc. analyzes samples utilizing the most current methods in compliance with 40CFR. All tests are performed in the Collinsville, IL laboratory unless otherwise noted in the Case Narrative.

All quality control criteria applicable to the test methods employed for this project have been satisfactorily met and are in accordance with NELAP except where noted. The following report shall not be reproduced, except in full, without the written approval of Teklab, Inc.

If you have any questions regarding these tests results, please feel free to call.

Sincerely,

Marvin L. Darling Project Manager

(618)344-1004 ex 41

mdarling@teklabinc.com

Mowin L. Darling II

Client Project: Soil Vapor System

Report Contents

http://www.teklabinc.com/

Work Order: 15100377
Report Date: 14-Oct-15

This reporting package includes the following:

Client: Trihydro Corporation

Cover Letter	1
Report Contents	2
Definitions	3
Case Narrative	4
Laboratory Results	5
Quality Control Results	8
Receiving Check List	19
Chain of Custody	Appended

Definitions

http://www.teklabinc.com/

Client: Trihydro Corporation Work Order: 15100377
Client Project: Soil Vapor System Report Date: 14-Oct-15

Abbr Definition

- CCV Continuing calibration verification is a check of a standard to determine the state of calibration of an instrument between recalibration.
 - DF Dilution factor is the dilution performed during analysis only and does not take into account any dilutions made during sample preparation. The reported result is final and includes all dilutions factors.
- DNI Did not ignite
- DUP Laboratory duplicate is an aliquot of a sample taken from the same container under laboratory conditions for independent processing and analysis independently of the original aliquot.
- ICV Initial calibration verification is a check of a standard to determine the state of calibration of an instrument before sample analysis is initiated.
- IDPH IL Dept. of Public Health
- LCS Laboratory control sample, spiked with verified known amounts of analytes, is analyzed exactly like a sample to establish intra-laboratory or analyst specific precision and bias or to assess the performance of all or a portion of the measurement system. The acceptable recovery range is in the QC Package (provided upon request).
- LCSD Laboratory control sample duplicate is a replicate laboratory control sample that is prepared and analyzed in order to determine the precision of the approved test method. The acceptable recovery range is listed in the QC Package (provided upon request).
- MBLK Method blank is a sample of a matrix similar to the batch of associated sample (when available) that is free from the analytes of interest and is processed simultaneously with and under the same conditions as samples through all steps of the analytical procedures, and in which no target analytes or interferences should present at concentrations that impact the analytical results for sample analyses.
- MDL Method detection limit means the minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero.
- MS Matrix spike is an aliquot of matrix fortified (spiked) with known quantities of specific analytes that is subjected to the entire analytical procedures in order to determine the effect of the matrix on an approved test method's recovery system. The acceptable recovery range is listed in the QC Package (provided upon request).
- MSD Matrix spike duplicate means a replicate matrix spike that is prepared and analyzed in order to determine the precision of the approved test method. The acceptable recovery range is listed in the QC Package (provided upon request).
- MW Molecular weight
- ND Not Detected at the Reporting Limit

NELAP NELAP Accredited

- PQL Practical quantitation limit means the lowest level that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operation conditions. The acceptable recovery range is listed in the QC Package (provided upon request).
- RL The reporting limit the lowest level that the data is displayed in the final report. The reporting limit may vary according to customer request or sample dilution. The reporting limit may not be less than the MDL.
- RPD Relative percent difference is a calculated difference between two recoveries (ie. MS/MSD). The acceptable recovery limit is listed in the QC Package (provided upon request).
- SPK The spike is a known mass of target analyte added to a blank sample or sub-sample; used to determine recovery deficiency or for other quality control purposes.
- Surr Surrogates are compounds which are similar to the analytes of interest in chemical composition and behavior in the analytical process, but which are not normally found in environmental samples.
- TIC Tentatively identified compound: Analytes tentatively identified in the sample by using a library search. Only results not in the calibration standard will be reported as tentatively identified compounds. Results for tentatively identified compounds that are not present in the calibration standard, but are assigned a specific chemical name based upon the library search, are calculated using total peak areas from reconstructed ion chromatograms and a response factor of one. The nearest Internal Standard is used for the calculation. The results of any TICs must be considered estimated, and are flagged with a "T". If the estimated result is above the calibration range it is flagged "ET"
- TNTC Too numerous to count (> 200 CFU)

Qualifiers

- # Unknown hydrocarbon
- E Value above quantitation range
- I Associated internal standard was outside method criteria
- M Manual Integration used to determine area response
- R RPD outside accepted recovery limits
- T TIC(Tentatively identified compound)

- B Analyte detected in associated Method Blank
- H Holding times exceeded
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- S Spike Recovery outside recovery limits
- X Value exceeds Maximum Contaminant Level

Case Narrative

http://www.teklabinc.com/

Client: Trihydro Corporation Work Order: 15100377
Client Project: Soil Vapor System Report Date: 14-Oct-15

Cooler Receipt Temp: 5.82 °C

Collinsville

Kentucky Kentucky

Missouri

Oklahoma

5445 Horseshoe Lake Road

Address

Locations and Accreditations

Kansas City

8421 Nieman Road

Collinsville Air

12/31/2015

1/31/2016

5/31/2017

8/31/2016

5445 Horseshoe Lake Road

Collinsville

Collinsville

Collinsville

Collinsville

Springfield

KDEP

UST

MDNR

ODEQ

3920 Pintail Dr

	Collinsville, IL 62234-7425	Springfield, IL 627	711-9415 Lene	exa, KS 66214	C	Collinsville, IL 62234-7425	
Phone	(618) 344-1004	(217) 698-1004	(913	3) 541-1998	(618) 344-1004	
Fax	(618) 344-1005	(217) 698-1005	(913	3) 541-1998	(618) 344-1005	
Email	jhriley@teklabinc.com	KKlostermann@te	klabinc.com dtho	mpson@teklabinc.	com E	Hurley@teklabinc.com	
	State	Dept	Cert #	NELAP	Exp Date	Lab	
	Illinois	IEPA	100226	NELAP	1/31/2016	Collinsville	
	Kansas	KDHE	E-10374	NELAP	11/30/2015	Collinsville	
	Louisiana	LDEQ	166493	NELAP	6/30/2016	Collinsville	
	Louisiana	LDEQ	166578	NELAP	6/30/2016	Collinsville	
	Texas	TCEQ	T104704515-12-1	NELAP	7/31/2016	Collinsville	
	Arkansas	ADEQ	88-0966		3/14/2016	Collinsville	
	Illinois	IDPH	17584		5/31/2017	Collinsville	

98006

0073

00930

9978

http://www.teklabinc.com/

Client: Trihydro Corporation Work Order: 15100377

Client Project: Soil Vapor System Report Date: 14-Oct-15
Lab ID: 15100377-001 Client Sample ID: Tank 3

Matrix: AQUEOUS Collection Date: 10/07/2015 7:15

NELAP S BY ICP (TOTAL NELAP EMI-VOLATILE O	60 .) 0.0150		>200	°F	1	10/08/2015 9:40	D210120
S BY ICP (TOTAL NELAP	.)		>200	°F	1	10/08/2015 0:40	D210120
NELAP	•					10/00/2010 9.40	RZ 10 130
NELAP	•						
EMI-VOLATILE O			0.0173	mg/L	1	10/08/2015 10:36	112971
	RGANIC COM	IPOUNDS B	Y GC/MS	J			
	0.00050	00.1202	ND	mg/L	5	10/12/2015 11:34	112987
NELAP	0.00050		ND	mg/L	5	10/12/2015 11:34	
NELAP	0.00050		ND	mg/L	5	10/12/2015 11:34	
				-			
				-			
				-			
				-			
				-			
				-			
				-			
				-			
				-			
				-			
				-			
				-			
				-			
				-			
NELAP				-			
			65.0	%REC	5	10/12/2015 11:34	112987
		00/140					
		GC/IVIS	ND	//	4	40/00/0045 40:40	440040
NELAP							
NEL AB							
NELAP							
					1		
					1		
NELAP			ND	μg/L	1		
NELAP	5.0		ND	μg/L	1	10/08/2015 12:19	
NELAP	5.0		ND	μg/L	1	10/08/2015 12:19	
NELAP	5.0		ND	μg/L	1	10/08/2015 12:19	
NELAP	5.0		ND	μg/L	1	10/08/2015 12:19	113010
	NELAP	NELAP 0.00050 NELAP 5.0	NELAP 0.00050 NELAP 0.10050 NELAP 0.00050 NELAP 5.0	NELAP 0.00050 ND NELAP 0.00050 0.00050 ND NELAP 0.00050 0.00050 NELAP 0.00050 ND NELAP 0.00050 0.00050 NELAP 0.00050 0.00050 NELAP 0.00050 ND NELAP 5.0 ND NELAP 5.0 ND NELAP 5.0 ND	NELAP 0.00050 ND mg/L NELAP 5.0 ND µg/L NELAP 5.0 ND µg/L NELAP 5.0 ND µg/L	NELAP 0.00050 ND mg/L 5 NELAP 0.00050 ND mg/L 10-143 57.0 %REC 5 10-143 57.0 %REC 5 10-146 61.0 %REC 5 10-137 65.0 %REC 5 B ORGANIC COMPOUNDS BY GC/MS NELAP 5.0 ND µg/L 1	NELAP 0.00050 ND mg/L 5 10/12/2015 11:34 10-166 61.0 %REC 5 10/12/2015 11:34 10-166 61.0 %REC 5 10/12/2015 11:34 10-137 65.0 %REC 5 10/12/2015 11:34 10-137 65.0 MP μg/L 1 10/08/2015 12:19 NELAP 5.0 ND μg/L 1 10/08/2015 12:

http://www.teklabinc.com/

Client: Trihydro Corporation Work Order: 15100377
Client Project: Soil Vapor System Report Date: 14-Oct-15

Matrix: AQUEOUS Collection Date: 10/07/2015 7:15

Matrix: AQUEOUS				Conection	Date: 10/	07/2013	7.13	
Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Batch
SW-846 5030, 8260B, VOLA	ATILE ORGANIC COMPO	DUNDS BY	GC/MS					
1,3-Dichloropropane	NELAP	5.0		ND	μg/L	1	10/08/2015 12:19	113010
1,4-Dichlorobenzene	NELAP	5.0		ND	μg/L	1	10/08/2015 12:19	113010
1-Chlorobutane	NELAP	5.0		ND	μg/L	1	10/08/2015 12:19	113010
2,2-Dichloropropane	NELAP	5.0		ND	μg/L	1	10/08/2015 12:19	113010
2-Butanone	NELAP	25.0		ND	μg/L	1	10/08/2015 12:19	113010
2-Chloroethyl vinyl ether	NELAP	20.0		ND	μg/L	1	10/08/2015 12:19	113010
2-Chlorotoluene	NELAP	5.0		ND	μg/L	1	10/08/2015 12:19	113010
2-Hexanone	NELAP	25.0		ND	μg/L	1	10/08/2015 12:19	113010
2-Nitropropane	NELAP	50.0		ND	μg/L	1	10/08/2015 12:19	113010
4-Chlorotoluene	NELAP	5.0		ND	μg/L	1	10/08/2015 12:19	113010
4-Methyl-2-pentanone	NELAP	25.0		ND	μg/L	1	10/08/2015 12:19	113010
Acetone	NELAP	25.0		ND	μg/L	1	10/08/2015 12:19	113010
Acetonitrile	NELAP	50.0		ND	μg/L	1	10/08/2015 12:19	113010
Acrolein	NELAP	100		ND	μg/L	1	10/08/2015 12:19	113010
Acrylonitrile	NELAP	5.0		ND	μg/L	1	10/08/2015 12:19	113010
Allyl chloride	NELAP	5.0		ND	μg/L	1	10/08/2015 12:19	113010
Benzene	NELAP	2.0		ND	μg/L	1	10/08/2015 12:19	113010
Bromobenzene	NELAP	5.0		ND	μg/L	1	10/08/2015 12:19	113010
Bromochloromethane	NELAP	5.0		ND	μg/L	1	10/08/2015 12:19	113010
Bromodichloromethane	NELAP	5.0		ND	μg/L	1	10/08/2015 12:19	113010
Bromoform	NELAP	5.0		ND	μg/L	1	10/08/2015 12:19	113010
Bromomethane	NELAP	10.0		ND	μg/L	1	10/08/2015 12:19	113010
Carbon disulfide	NELAP	5.0		ND	μg/L	1	10/08/2015 12:19	113010
Carbon tetrachloride	NELAP	5.0		ND	μg/L	1	10/08/2015 12:19	113010
Chlorobenzene	NELAP	5.0		ND	μg/L	1	10/08/2015 12:19	113010
Chloroethane	NELAP	10.0		ND	μg/L	1	10/08/2015 12:19	113010
Chloroform	NELAP	5.0		ND	μg/L	1	10/08/2015 12:19	113010
Chloromethane	NELAP	10.0		ND	μg/L	1	10/08/2015 12:19	113010
Chloroprene	NELAP	20.0		ND	μg/L	1	10/08/2015 12:19	113010
cis-1,2-Dichloroethene	NELAP	5.0		ND	μg/L	1	10/08/2015 12:19	113010
cis-1,3-Dichloropropene	NELAP	5.0		ND	μg/L	1	10/08/2015 12:19	113010
cis-1,4-Dichloro-2-butene	NELAP	5.0		ND	μg/L	1	10/08/2015 12:19	
Cyclohexanone		50.0		ND	μg/L	1	10/08/2015 12:19	
Dibromochloromethane	NELAP	5.0		ND	μg/L	1	10/08/2015 12:19	113010
Dibromomethane	NELAP	5.0		ND	μg/L	1	10/08/2015 12:19	113010
Dichlorodifluoromethane	NELAP	10.0		ND	μg/L	1	10/08/2015 12:19	113010
Ethyl acetate	NELAP	10.0		ND	μg/L	1	10/08/2015 12:19	113010
Ethyl ether	NELAP	5.0		ND	μg/L	1	10/08/2015 12:19	113010
Ethyl methacrylate	NELAP	5.0		ND	μg/L	1	10/08/2015 12:19	113010
Ethylbenzene	NELAP	5.0		ND	μg/L	1	10/08/2015 12:19	113010
Hexachlorobutadiene	NELAP	5.0		ND	μg/L	1	10/08/2015 12:19	
Hexachloroethane	NELAP	10.0		ND	μg/L	1	10/08/2015 12:19	
Iodomethane	NELAP	5.0		ND	μg/L	1		
Isopropylbenzene	NELAP	5.0		ND	μg/L	1		
m,p-Xylenes	NELAP	5.0		ND	μg/L	1		
Methacrylonitrile	NELAP	10.0		ND	μg/L	1		
Methyl Methacrylate	NELAP	5.0		ND	μg/L	1	10/08/2015 12:19	113010

http://www.teklabinc.com/

Client: Trihydro Corporation Work Order: 15100377

Client Project: Soil Vapor System Report Date: 14-Oct-15

Matrix: AQUEOUS Collection Date: 10/07/2015 7:15

Man //QULUUS				Contestion	1 2 4 6 6 10/	07/2013	7113	
Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Batch
SW-846 5030, 8260B, VOLAT	ILE ORGANIC COMI	POUNDS BY	GC/MS					
Methyl tert-butyl ether	NELAP	2.0		ND	μg/L	1	10/08/2015 12:19	113010
Methylacrylate		10.0		ND	μg/L	1	10/08/2015 12:19	113010
Methylene chloride	NELAP	5.0		ND	μg/L	1	10/08/2015 12:19	113010
Naphthalene	NELAP	10.0		ND	μg/L	1	10/08/2015 12:19	113010
n-Butyl acetate		25.0		ND	μg/L	1	10/08/2015 12:19	113010
n-Butylbenzene	NELAP	5.0		ND	μg/L	1	10/08/2015 12:19	113010
n-Heptane		20.0		ND	μg/L	1	10/08/2015 12:19	113010
n-Hexane		20.0		ND	μg/L	1	10/08/2015 12:19	113010
Nitrobenzene	NELAP	50.0		ND	μg/L	1	10/08/2015 12:19	113010
n-Propylbenzene	NELAP	5.0		ND	μg/L	1	10/08/2015 12:19	113010
o-Xylene	NELAP	5.0		ND	μg/L	1	10/08/2015 12:19	113010
Pentachloroethane	NELAP	20.0		ND	μg/L	1	10/08/2015 12:19	113010
p-Isopropyltoluene	NELAP	5.0		ND	μg/L	1	10/08/2015 12:19	113010
Propionitrile	NELAP	50.0		ND	μg/L	1	10/08/2015 12:19	113010
sec-Butylbenzene	NELAP	5.0		ND	μg/L	1	10/08/2015 12:19	113010
Styrene	NELAP	5.0		ND	μg/L	1	10/08/2015 12:19	113010
tert-Butylbenzene	NELAP	5.0		ND	μg/L	1	10/08/2015 12:19	113010
Tetrachloroethene	NELAP	5.0		ND	μg/L	1	10/08/2015 12:19	113010
Tetrahydrofuran	NELAP	20.0		ND	μg/L	1	10/08/2015 12:19	113010
Toluene	NELAP	5.0		ND	μg/L	1	10/08/2015 12:19	113010
trans-1,2-Dichloroethene	NELAP	5.0		ND	μg/L	1	10/08/2015 12:19	113010
trans-1,3-Dichloropropene	NELAP	5.0		ND	μg/L	1	10/08/2015 12:19	113010
trans-1,4-Dichloro-2-butene	NELAP	10.0		ND	μg/L	1	10/08/2015 12:19	113010
Trichloroethene	NELAP	5.0		ND	μg/L	1	10/08/2015 12:19	113010
Trichlorofluoromethane	NELAP	5.0		ND	μg/L	1	10/08/2015 12:19	113010
Vinyl acetate	NELAP	10.0		ND	μg/L	1	10/08/2015 12:19	113010
Vinyl chloride	NELAP	2.0		ND	μg/L	1	10/08/2015 12:19	113010
Surr: 1,2-Dichloroethane-d4		74.7-129		93.4	%REC	1	10/08/2015 12:19	113010
Surr: 4-Bromofluorobenzene		86-119		93.1	%REC	1	10/08/2015 12:19	113010
Surr: Dibromofluoromethane		81.7-123		102.5	%REC	1	10/08/2015 12:19	113010
Surr: Toluene-d8		84.3-114		92.7	%REC	1	10/08/2015 12:19	113010

http://www.teklabinc.com/

SW-846 1020B									
Batch R210138 SampType SampID: LCS-R210138	: LCS		Units °F						Date
Analyses		RL	Qual	Result Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Ignitability, Closed Cup		60		81 81.00	0	100.0	97	103	10/08/2015
Batch R210138 SampType	: DUP		Units °F				RPD	Limit 5	
SampID: 15100377-001BDUP									Date Analyzed
Analyses		RL	Qual	Result Spike	SPK Ref Val	%REC	RPD Ref \	/al %RPD	
								0.00	10/08/2015
Ignitability, Closed Cup		60		>200			0	0.00	10/06/2015
· · · · · · · · · · · · · · · · · · ·	ALS BY		TAL)	>200			0	0.00	10/06/2013
Ignitability, Closed Cup SW-846 3005A, 6010B, META Batch 112971 SampType		ICP (TO	TAL) Units mg/L	>200			0	0.00	10/06/2015
SW-846 3005A, 6010B, META		ICP (TO	-	>200			0	0.00	Date
SW-846 3005A, 6010B, META Batch 112971 SampType		ICP (TO	-	>200 Result Spike	SPK Ref Val	%REC	•	0.00 High Limit	
SW-846 3005A, 6010B, META Batch 112971 SampType SampID: MBLK-112971		ICP (TO	Units mg/L			%REC	•		Date
SW-846 3005A, 6010B, META Batch 112971 SampType SampID: MBLK-112971 Analyses Lead	e: MBLK	ICP (TO	Units mg/L	Result Spike			Low Limit	High Limit	Date Analyzed
SW-846 3005A, 6010B, META Batch 112971 SampType SampID: MBLK-112971 Analyses Lead	e: MBLK	ICP (TO	Units mg/L Qual	Result Spike			Low Limit	High Limit	Date Analyzed
SW-846 3005A, 6010B, META Batch 112971 SampType SampID: MBLK-112971 Analyses Lead Batch 112971 SampType	e: MBLK	ICP (TO	Units mg/L Qual	Result Spike	0	0	Low Limit	High Limit	Date Analyzed 10/08/2015

Satch 112987 SampTyp	e: MBLK	Units mg/L						
ampID: MBLK-112987								Date
Analyses	RL	Qual	Result Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
1-Methylnaphthalene	0.00010	-	ND					10/09/201
Acenaphthene	0.00010		ND					10/09/201
Acenaphthylene	0.00010		ND					10/09/201
Anthracene	0.00010		ND					10/09/201
Benzo(a)anthracene	0.00010		ND					10/09/201
Benzo(a)pyrene	0.00010		ND					10/09/201
Benzo(b)fluoranthene	0.00010		ND					10/09/201
Benzo(g,h,i)perylene	0.00010		ND					10/09/201
Benzo(k)fluoranthene	0.00010		ND					10/09/20
Chrysene	0.00010		ND					10/09/20
Dibenzo(a,h)anthracene	0.00010		ND					10/09/20
Fluoranthene	0.00010		ND					10/09/20
Fluorene	0.00010		ND					10/09/20
Indeno(1,2,3-cd)pyrene	0.00010		ND					10/09/20
Naphthalene	0.00010		ND					10/09/20
Phenanthrene	0.00010		ND					10/09/20
Pyrene	0.00010		ND					10/09/20
Surr: 2-Fluorobiphenyl			0.00377 0.005000		75.4	44.4	89.6	10/09/201
Surr: Nitrobenzene-d5			0.00354 0.005000		70.8	40.9	81.4	10/09/20
Surr: p-Terphenyl-d14			0.00400 0.005000		80.0	54.3	104	10/09/201

http://www.teklabinc.com/

Client: Trihydro Corporation Work Order: 15100377

Client Project: Soil Vapor System Report Date: 14-Oct-15

SW-846 3510C, 8270C SIMS,	SEMI-VOLATILE	ORGANIC C	OMPOUNDS BY	GC/MS				
Batch 112987 SampType		Units mg/L						
SampID: LCS-112987								Date
Analyses	RL	Qual	Result Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
1-Methylnaphthalene	0.00010		0.00351).005000	0	70.2	44.3	94.9	10/09/2015
Acenaphthene	0.00010		0.00370 0.005000	0	74.0	50.1	94.9	10/09/2015
Acenaphthylene	0.00010		0.00386 0.005000	0	77.2	50.6	96.9	10/09/2015
Anthracene	0.00010		0.00382).005000	0	76.4	53.5	94.3	10/09/2015
Benzo(a)anthracene	0.00010		0.00379).005000	0	75.8	48.3	104	10/09/2015
Benzo(a)pyrene	0.00010		0.00435).005000	0	87.0	52	103	10/09/2015
Benzo(b)fluoranthene	0.00010		0.00415).005000	0	83.0	55.3	98.4	10/09/2015
Benzo(g,h,i)perylene	0.00010		0.00316 0.005000	0	63.2	51.1	104	10/09/2015
Benzo(k)fluoranthene	0.00010		0.00434).005000	0	86.8	56.1	99.3	10/09/2015
Chrysene	0.00010		0.00352).005000	0	70.4	54.3	99.4	10/09/2015
Dibenzo(a,h)anthracene	0.00010		0.00346 0.005000	0	69.2	53.7	104	10/09/2015
Fluoranthene	0.00010		0.00377).005000	0	75.4	56.8	96.9	10/09/2015
Fluorene	0.00010		0.00397 0.005000	0	79.4	53.6	97	10/09/2015
Indeno(1,2,3-cd)pyrene	0.00010		0.00343 0.005000	0	68.6	53.4	103	10/09/2015
Naphthalene	0.00010		0.00350 0.005000	0	70.0	43.4	95	10/09/2015
Phenanthrene	0.00010		0.00376 0.005000	0	75.2	53.8	94.2	10/09/2015
Pyrene	0.00010		0.00377 0.005000	0	75.4	56.1	97.1	10/09/2015
Surr: 2-Fluorobiphenyl			0.00327 0.005000		65.4	44.4	89.6	10/09/2015
Surr: Nitrobenzene-d5			0.00372 0.005000		74.4	40.9	81.4	10/09/2015
Surr: p-Terphenyl-d14			0.00373 0.005000		74.6	54.3	104	10/09/2015

atch 112987 SampType	e: LCSD	Units mg/L				RPD Li	mit 40	
ampID: LCSD-112987								Date
Analyses	RL	Qual	Result Spike	SPK Ref Val	%REC	RPD Ref Val	%RPD	Analyze
1-Methylnaphthalene	0.00010		0.00392).005000	0	78.4	0.003510	11.04	10/09/20
Acenaphthene	0.00010		0.00377 0.005000	0	75.4	0.003700	1.87	10/09/20
Acenaphthylene	0.00010		0.00381 0.005000	0	76.2	0.003860	1.30	10/09/20
Anthracene	0.00010		0.00394 0.005000	0	78.8	0.003820	3.09	10/09/20
Benzo(a)anthracene	0.00010		0.00378 0.005000	0	75.6	0.003790	0.26	10/09/20
Benzo(a)pyrene	0.00010		0.00435 0.005000	0	87.0	0.004350	0.00	10/09/20
Benzo(b)fluoranthene	0.00010		0.00424 0.005000	0	84.8	0.004150	2.15	10/09/20
Benzo(g,h,i)perylene	0.00010		0.00314 0.005000	0	62.8	0.003160	0.63	10/09/20
Benzo(k)fluoranthene	0.00010		0.00429).005000	0	85.8	0.004340	1.16	10/09/20
Chrysene	0.00010		0.00366 0.005000	0	73.2	0.003520	3.90	10/09/20
Dibenzo(a,h)anthracene	0.00010		0.00347).005000	0	69.4	0.003460	0.29	10/09/20
Fluoranthene	0.00010		0.00329).005000	0	65.8	0.003770	13.60	10/09/20
Fluorene	0.00010		0.00383 0.005000	0	76.6	0.003970	3.59	10/09/20
Indeno(1,2,3-cd)pyrene	0.00010		0.00344).005000	0	68.8	0.003430	0.29	10/09/20
Naphthalene	0.00010		0.00364 0.005000	0	72.8	0.003500	3.92	10/09/20
Phenanthrene	0.00010		0.00386 0.005000	0	77.2	0.003760	2.62	10/09/20
Pyrene	0.00010		0.00328 0.005000	0	65.6	0.003770	13.90	10/09/20
Surr: 2-Fluorobiphenyl			0.00331 0.005000		66.2			10/09/20
Surr: Nitrobenzene-d5			0.00359 0.005000		71.8			10/09/20
Surr: p-Terphenyl-d14			0.00320 0.005000		64.0			10/09/20

http://www.teklabinc.com/

SW-846 5030, 8260B, VOLATILE OI			BY GC/MS	5					
Batch 113010 SampType: MBL SampID: MBLK-R151008-1	.K	Units µg/L							Date
Analyses	RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
1,1,1,2-Tetrachloroethane	5.0	-	ND	-					10/08/2015
1,1,1-Trichloroethane	5.0		ND						10/08/2015
1,1,2,2-Tetrachloroethane	5.0		ND						10/08/2015
1,1,2-Trichloro-1,2,2-trifluoroethane	20.0		ND						10/08/2015
1,1,2-Trichloroethane	5.0		ND						10/08/2015
1,1-Dichloro-2-propanone	50.0		ND						10/08/2015
1,1-Dichloroethane	5.0		ND						10/08/2015
1,1-Dichloroethene	5.0		ND						10/08/2015
1,1-Dichloropropene	5.0		ND						10/08/2015
1,2,3-Trichlorobenzene	5.0		ND						10/08/2015
1,2,3-Trichloropropane	5.0		ND						10/08/2015
1,2,3-Trimethylbenzene	5.0		ND						10/08/2015
1,2,4-Trichlorobenzene	5.0		ND						10/08/2015
1,2,4-Trimethylbenzene	5.0		ND						10/08/2015
1,2-Dibromo-3-chloropropane	5.0		ND						10/08/2015
1,2-Dibromoethane	5.0		ND						10/08/2015
1,2-Dichlorobenzene	5.0		ND						10/08/2015
1,2-Dichloroethane	5.0		ND						10/08/2015
1,2-Dichloropropane	5.0		ND						10/08/2015
1,3,5-Trimethylbenzene	5.0		ND						10/08/2015
1,3-Dichlorobenzene	5.0		ND						10/08/2015
1,3-Dichloropropane	5.0		ND						10/08/2015
1,4-Dichlorobenzene	5.0		ND						10/08/2015
1-Chlorobutane	5.0		ND						10/08/2015
2,2-Dichloropropane	5.0		ND						10/08/2015
2-Butanone	25.0		ND						10/08/2015
2-Chloroethyl vinyl ether	20.0		ND						10/08/2015
2-Chlorotoluene	5.0		ND						10/08/2015
2-Hexanone	25.0		ND						10/08/2015
	50.0		ND ND						10/08/2015
2-Nitropropane									
4-Chlorotoluene 4-Methyl-2-pentanone	5.0 25.0		ND						10/08/2015 10/08/2015
			ND						10/08/2015
Acetone	25.0 50.0		ND						10/08/2015
Acetonitrile Acrolein			ND						
	100		ND						10/08/2015
Acrylonitrile	5.0		ND						10/08/2015
Allyl chloride	5.0		ND						10/08/2015
Benzene	2.0		ND						10/08/2015
Bromobenzene	5.0		ND						10/08/2015
Bromochloromethane	5.0		ND						10/08/2015
Bromodichloromethane	5.0		ND						10/08/2015
Bromoform	5.0		ND						10/08/2015
Bromomethane	10.0		ND						10/08/2015
Carbon disulfide	5.0		ND						10/08/2015
Carbon tetrachloride	5.0		ND						10/08/2015
Chlorobenzene	5.0		ND						10/08/2015
Chloroethane	10.0		ND						10/08/2015

http://www.teklabinc.com/

Analyses	SW-846 5030, 8260B, VOLAT	ILE ORGANIC C	OMPOUNDS BY GO	/MS					
Analyses	Batch 113010 SampType:	MBLK	Units µg/L						
Chloroform	SampID: MBLK-R151008-1								Date
Chloroferm	Analyses	RL	Qual Re	sult Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Chloroprene 20.0 ND 10/08 cis-1,2-Dichloroethene 5.0 ND 10/08 cis-1,3-Dichloropropene 5.0 ND 10/08 cis-1,4-Dichloro-2-butene 5.0 ND 10/08 Cyclohexanone 60.0 ND 10/08 Dibromochioromethane 5.0 ND 10/08 Dibromomethane 5.0 ND 10/08 Dichlorodifluoromethane 10.0 ND 10/08 Eithyl acetate 10.0 ND 10/08 Eithyl ether 5.0 ND 10/08 Ethyl methacrylate 5.0 ND 10/08 Ethyl methacrylate 5.0 ND 10/08 Hexachlorobutadiene 5.0 ND 10/08 Hexachlorobutadiene 5.0 ND 10/08 Hexachlorobutadiene 5.0 ND 10/08 Idexachlorobutadiene 5.0 ND 10/08 Metayleneshame 5.0 ND 10/08 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>10/08/2015</td></t<>									10/08/2015
cis-1,2-Dichloroethene 5.0 ND 10/08 cis-1,3-Dichloropropene 5.0 ND 10/08 cis-1,4-Dichloro-2-buttene 5.0 ND 10/08 Cyclohexanone 5.0 ND 10/08 Dibrormoerlioromethane 5.0 ND 10/08 Dibrormoethane 1.0 ND 10/08 Dibrormoethane 1.0 ND 10/08 Ethyl acetate 10.0 ND 10/08 Ethyl acetate 1.0 ND 10/08 Ethyl there 5.0 ND 10/08 Ethyl benzene 5.0 ND 10/08 Hexachlorobutadiene 5.0 ND 10/08 Hexachlorobutadiene 5.0 ND 10/08 Hexachloroethane 10.0 ND 10/08 Isopropylbenzene 5.0 ND 10/08 Isopropylbenzene 5.0 ND 10/08 Methyl Wethacrylate 5.0 ND 10/08 Methyl Wethacry	Chloromethane	10.0		ND					10/08/2015
cis-1,3-Dichloropropene 5.0 ND 10/08 cis-1,4-Dichloro-2-butene 5.0 ND 10/08 Cyclohexanone 50.0 ND 10/08 Dibromochloromethane 5.0 ND 10/08 Dichlorodifloromethane 1.0 ND 10/08 Eithyl acetate 10.0 ND 10/08 Eithyl ether 5.0 ND 10/08 Ethyl methacrylate 5.0 ND 10/08 Ethylmacrylate 5.0 ND 10/08 Ethylsenzene 5.0 ND 10/08 Hexachlorobutadiene 5.0 ND 10/08 Hexachlorobutadiene 5.0 ND 10/08 Hexachlorobethane 5.0 ND 10/08 Idex portopylbenzene 5.0 ND 10/08 Idex portopylbenzene 5.0 ND 10/08 Methylacrylate 5.0 ND 10/08 Methylene-bulyl ether 2.0 ND 10/08 N	Chloroprene	20.0		ND					10/08/2015
cis-1,4-Dichloro-2-butene 5.0 ND 10/08 Cyclohexanone 50.0 ND 10/08 Dibromochloromethane 5.0 ND 10/08 Dibromomethane 10.0 ND 10/08 Eithyl acteate 10.0 ND 10/08 Eithyl ether 5.0 ND 10/08 Eithyl methacrylate 5.0 ND 10/08 Eithyl benzene 5.0 ND 10/08 Ethylbenzene 5.0 ND 10/08 Hexachlorobutadiene 5.0 ND 10/08 Hexachloroeithane 10.0 ND 10/08 Isopropylbenzene 5.0 ND 10/08 Isopropylbenzene 5.0 ND 10/08 Methacrylonitrile 10.0 ND 10/08 Methyl Methacrylate 5.0 ND 10/08 Methyl tert-butyl ether 2.0 ND 10/08 Methylacrylate 1.0 ND 10/08 Methylacrylate <td>cis-1,2-Dichloroethene</td> <td>5.0</td> <td></td> <td>ND</td> <td></td> <td></td> <td></td> <td></td> <td>10/08/2015</td>	cis-1,2-Dichloroethene	5.0		ND					10/08/2015
Cyclohexanone 50.0 ND 10/08 Dibromochloromethane 5.0 ND 10/08 Dibromomethane 5.0 ND 10/08 Dichlorodifluoromethane 10.0 ND 10/08 Ethyl acetate 10.0 ND 10/08 Ethyl erber 5.0 ND 10/08 Ethyl methacrylate 5.0 ND 10/08 Ethylenzene 5.0 ND 10/08 Hexachlorobutadiene 5.0 ND 10/08 Hexachloroethane 10.0 ND 10/08 Idodomethane 5.0 ND 10/08 Isopropylbenzene 5.0 ND 10/08 Isopropylbenzene 5.0 ND 10/08 Methyl Methacrylate 5.0 ND 10/08 Methyl Interbutyl ether 2.0 ND 10/08 Methylacrylate 1.0 ND 10/08 Methylacrylate 1.0 ND 10/08 Naphthalene 1	cis-1,3-Dichloropropene	5.0		ND					10/08/2015
Dibromochloromethane 5.0 ND 10/08 Dibromomethane 5.0 ND 10/08 Dichlorodifluoromethane 10.0 ND 10/08 Ethyl acetate 10.0 ND 10/08 Ethyl ether 5.0 ND 10/08 Ethyl methacrylate 5.0 ND 10/08 Ethylbenzene 5.0 ND 10/08 Ethylbenzene 5.0 ND 10/08 Hexachlorobutadiene 5.0 ND 10/08 Hexachloroethane 10.0 ND 10/08 Isopropylbenzene 5.0 ND 10/08 Isopropylbenzene 5.0 ND 10/08 Methyl tert-butyl ether 5.0 ND 10/08 Methyl tert-butyl ether 2.0 ND 10/08 Methylacrylate 10.0 ND 10/08 Methylacrylate 10.0 ND 10/08 Methylacrylate 5.0 ND 10/08 Naphthalene	cis-1,4-Dichloro-2-butene	5.0		ND					10/08/2015
Dibromomethane 5.0 ND 10/08 Dichlorodifluoromethane 10.0 ND 10/08 Ethyl cetate 10.0 ND 10/08 Ethyl ether 5.0 ND 10/08 Ethyl methacrylate 5.0 ND 10/08 Ethylbenzene 5.0 ND 10/08 Hexachlorobutadiene 5.0 ND 10/08 Hexachloroethane 10.0 ND 10/08 Iodomethane 5.0 ND 10/08 Isopropylbenzene 5.0 ND 10/08 Isopropylbenzene 5.0 ND 10/08 Methylacylate 10.0 ND 10/08 Methyl Methacrylate 10.0 ND 10/08 Methylacylate 5.0 ND 10/08 Methylacylate 10.0 ND 10/08 Methylacylate 5.0 ND 10/08 Methylacylate 10.0 ND 10/08 Naphthalene 10.0	Cyclohexanone	50.0		ND					10/08/2015
Dichlorodiffluoromethane 10.0 ND 10/08 Ethyl acetate 10.0 ND 10/08 Ethyl ether 5.0 ND 10/08 Ethyl methacrylate 5.0 ND 10/08 Ethylbenzene 5.0 ND 10/08 Hexachlorobutadiene 5.0 ND 10/08 Hexachlorobtane 10.0 ND 10/08 Iodomethane 5.0 ND 10/08 Iodomethane 5.0 ND 10/08 Iodomethane 5.0 ND 10/08 Isopropylbenzene 5.0 ND 10/08 Me-p-Xylenes 5.0 ND 10/08 Methylenes 5.0 ND 10/08 Methyl tert-butyl ether 2.0 ND 10/08 Methylencylate 10.0 ND 10/08 Methylencylate 10.0 ND 10/08 NButyl acetate 2.0 ND 10/08 n-Butyl serzene 5.0 <td< td=""><td>Dibromochloromethane</td><td>5.0</td><td></td><td>ND</td><td></td><td></td><td></td><td></td><td>10/08/2015</td></td<>	Dibromochloromethane	5.0		ND					10/08/2015
Ethyl acteate 10.0 ND 10/08 Ethyl ether 5.0 ND 10/08 Ethyl methacrylate 5.0 ND 10/08 Ethylbenzene 5.0 ND 10/08 Hexachlorobutadiene 5.0 ND 10/08 Hexachlorobutadiene 10.0 ND 10/08 Idodomethane 5.0 ND 10/08 Isopropylbenzene 5.0 ND 10/08 Mp-Yylenes 5.0 ND 10/08 Methyl Methacrylate 10.0 ND 10/08 Methyl sert-butyl ether 2.0 ND 10/08 Methyl tert-butyl ether 2.0 ND 10/08 Methyl tert-butyl ether 2.0 ND 10/08 Methylene chloride 5.0 ND 10/08 Methylacetate 10.0 ND 10/08 N-Butylacetate 25.0 ND 10/08 n-Butylacene 5.0 ND 10/08 n-Hexane	Dibromomethane	5.0		ND					10/08/2015
Ethyl ether 5.0 ND 10/08 Ethyl methacrylate 5.0 ND 10/08 Ethylbenzene 5.0 ND 10/08 Hexachlorobutadiene 5.0 ND 10/08 Hexachloroethane 10.0 ND 10/08 Idodomethane 5.0 ND 10/08 Isopropylbenzene 5.0 ND 10/08 Mp. Sylenes 5.0 ND 10/08 Methylenes 5.0 ND 10/08 Methyl Methacrylate 5.0 ND 10/08 Methyl etr-butyl ether 2.0 ND 10/08 Methylacrylate 10.0 ND 10/08 Naphthalene 10.0 ND 10/08 Naphthalene 10.0 N	Dichlorodifluoromethane	10.0		ND					10/08/2015
Ethyl methacrylate 5.0 ND 10/08 Ethylbenzene 5.0 ND 10/08 Hexachlorobutadiene 5.0 ND 10/08 Hexachloroethane 10.0 ND 10/08 Iodomethane 5.0 ND 10/08 Isopropylbenzene 5.0 ND 10/08 m.pXylenes 5.0 ND 10/08 Methacrylonitrile 10.0 ND 10/08 Methyl Methacrylate 5.0 ND 10/08 Methyl Itert-butyl ether 2.0 ND 10/08 Methylacrylate 10.0 ND 10/08 Methylene chloride 5.0 ND 10/08 Maphthalene 10.0 ND 10/08 n-Butyl acetate 25.0 ND 10/08 n-Butylbenzene 5.0 ND 10/08 n-Hexane 20.0 ND 10/08 n-Hexane 20.0 ND 10/08 Nitrobenzene 5.0	Ethyl acetate	10.0		ND					10/08/2015
Ethylbenzene 5.0 ND 10/08 Hexachlorobutadiene 5.0 ND 10/08 Hexachloroethane 10.0 ND 10/08 Iodomethane 5.0 ND 10/08 Isopropylbenzene 5.0 ND 10/08 MpXylenes 5.0 ND 10/08 Methyl Methacrylate 10.0 ND 10/08 Methyl Iert-butyl ether 2.0 ND 10/08 Methyleter-butyl ether 2.0 ND 10/08 Methylene chloride 5.0 ND 10/08 Methylene chloride 5.0 ND 10/08 Naphthalene 10.0 ND 10/08 N-Butyl acetate 25.0 ND 10/08 n-Butylbenzene 5.0 ND 10/08 n-Heytane 20.0 ND 10/08 n-Heytane 20.0 ND 10/08 n-Heytane 5.0 ND 10/08 n-Propylbenzene 5.0	Ethyl ether	5.0		ND					10/08/2015
Hexachlorobutadiene 5.0 ND 10/08 Hexachloroethane 10.0 ND 10/08 Iodomethane 5.0 ND 10/08 Isopropylbenzene 5.0 ND 10/08 m.p-Yylenes 5.0 ND 10/08 Methyl remember 5.0 ND 10/08 Methyl terributyl ether 2.0 ND 10/08 Methylacrylate 10.0 ND 10/08 Methylene chloride 5.0 ND 10/08 Methylene chloride 5.0 ND 10/08 Naphthalene 10.0 ND 10/08 n-Butyl acetate 25.0 ND 10/08 n-Butylbenzene 5.0 ND 10/08 n-Heytane 20.0 ND 10/08 n-Heytane 20.0 ND 10/08 n-Heytane 20.0 ND 10/08 n-Heytane 5.0 ND 10/08 n-Propylbenzene 5.0 ND	Ethyl methacrylate	5.0		ND					10/08/2015
Hexachloroethane 10.0 ND 10/08 Iodomethane 5.0 ND 10/08 Isopropylbenzene 5.0 ND 10/08 Inp-Xylenes 5.0 ND 10/08 Methacrylonitrile 10.0 ND 10/08 Methyl Methacrylate 5.0 ND 10/08 Methyl tert-butyl ether 2.0 ND 10/08 Methylacrylate 10.0 ND 10/08 Naphthalene 10.0 ND 10/08 Naphthalene 10.0 ND 10/08 N-Butyl acetate 25.0 ND 10/08 N-Butylbenzene 5.0 ND 10/08 N-Heptane 20.0 ND 10/08 N-Heyane 20.0 ND 10/08 N-Propylbenzene 5.0 ND 10/08 N-Propylbenzene 5.0 ND 10/08 N-Propylbenzene 5.0 ND 10/08 Pentachloroethane 20.0 ND 10/08 Pentachloroethane 5.0 ND 10/08 Pentachloroethane 5.0 ND 10/08 Pentachloroethane 5.0 ND 10/08 Propionitrile 5.0 ND 10/08 Sec-Butylbenzene 5.0 ND 10/08 Styrene 5.0 ND 10/08 Styrene 5.0 ND 10/08 Styrene 5.0 ND 10/08 tert-Butylbenzene 5.0 ND 10/08 Styrene 5.0 ND 10/08 Lett-Butylbenzene 5.0 ND 10/08 Lett-	Ethylbenzene	5.0		ND					10/08/2015
Iodomethane 5.0 ND 10/08 Isopropylbenzene 5.0 ND 10/08 m.p-Xylenes 5.0 ND 10/08 Methyl Methacrylonitrile 10.0 ND 10/08 Methyl Methacrylate 5.0 ND 10/08 Methyl tert-butyl ether 2.0 ND 10/08 Methylacrylate 10.0 ND 10/08 Methylacrylate 10.0 ND 10/08 Methylacrylate 10.0 ND 10/08 Methylene chloride 5.0 ND 10/08 Naphthalene 10.0 ND 10/08 N-Butyl acetate 25.0 ND 10/08 n-Butyl benzene 5.0 ND 10/08 n-Butylbenzene 5.0 ND 10/08 n-Hexane 20.0 ND 10/08 n-Hexane 20.0 ND 10/08 n-Propylbenzene 5.0 ND 10/08 n-Propylbenzene 5.0	Hexachlorobutadiene	5.0		ND					10/08/2015
Isopropylbenzene	Hexachloroethane	10.0		ND					10/08/2015
m,p-Xylenes 5.0 ND 10/08 Methacrylonitrile 10.0 ND 10/08 Methyl Methacrylate 5.0 ND 10/08 Methyl tert-butyl ether 2.0 ND 10/08 Methylacrylate 10.0 ND 10/08 Methylacrylate 10.0 ND 10/08 Methylacrylate 5.0 ND 10/08 Naphthalene 10.0 ND 10/08 Naphthalene 10.0 ND 10/08 n-Butyl acetate 25.0 ND 10/08 n-Butyl benzene 5.0 ND 10/08 n-Heytane 20.0 ND 10/08 n-Hexane 20.0 ND 10/08 n-Hexane 20.0 ND 10/08 Nitrobenzene 5.0 ND 10/08 n-Propylbenzene 5.0 ND 10/08 o-Xylene 5.0 ND 10/08 p-Isopropyltoluene 5.0 ND	Iodomethane	5.0		ND					10/08/2015
Methacrylonitrile 10.0 ND 10/08 Methyl Methacrylate 5.0 ND 10/08 Methyl tert-butyl ether 2.0 ND 10/08 Methylacrylate 10.0 ND 10/08 Methylene chloride 5.0 ND 10/08 Naphthalene 10.0 ND 10/08 n-Butyl acetate 25.0 ND 10/08 n-Butylbenzene 5.0 ND 10/08 n-Heytane 20.0 ND 10/08 n-Hexane 20.0 ND 10/08 n-Propylbenzene 50.0 ND 10/08 n-Propylbenzene 5.0 ND 10/08 o-Xylene 5.0 ND 10/08 p-Isopropyltoluene 5.0 ND 10/08 p-Isopropyltoluene 5.0 ND 10/08 sec-Butylbenzene 5.0 ND 10/08 Styrene 5.0 ND 10/08 tert-Butylbenzene 5.0 <t< td=""><td>Isopropylbenzene</td><td>5.0</td><td></td><td>ND</td><td></td><td></td><td></td><td></td><td>10/08/2015</td></t<>	Isopropylbenzene	5.0		ND					10/08/2015
Methyl Methacrylate 5.0 ND 10/08 Methyl tert-butyl ether 2.0 ND 10/08 Methylacrylate 10.0 ND 10/08 Methylene chloride 5.0 ND 10/08 Naphthalene 10.0 ND 10/08 n-Butyl acetate 25.0 ND 10/08 n-Butylbenzene 5.0 ND 10/08 n-Heptane 20.0 ND 10/08 n-Hexane 20.0 ND 10/08 n-Hexane 50.0 ND 10/08 n-Propylbenzene 50.0 ND 10/08 n-Propylbenzene 5.0 ND 10/08 o-Xylene 5.0 ND 10/08 Pentachloroethane 20.0 ND 10/08 p-Isopropyltoluene 5.0 ND 10/08 sec-Butylbenzene 5.0 ND 10/08 Styrene 5.0 ND 10/08 tert-Butylbenzene 5.0 ND	m,p-Xylenes	5.0		ND					10/08/2015
Methyl tert-butyl ether 2.0 ND 10/08 Methylacrylate 10.0 ND 10/08 Methylene chloride 5.0 ND 10/08 Naphthalene 10.0 ND 10/08 n-Butyl acetate 25.0 ND 10/08 n-Butylbenzene 5.0 ND 10/08 n-Heytane 20.0 ND 10/08 n-Hexane 20.0 ND 10/08 n-Hexane 20.0 ND 10/08 n-Propylbenzene 5.0 ND 10/08 n-Propylbenzene 5.0 ND 10/08 o-Xylene 5.0 ND 10/08 Pentachloroethane 20.0 ND 10/08 p-Isopropyltoluene 5.0 ND 10/08 p-ropionitrile 5.0 ND 10/08 sec-Butylbenzene 5.0 ND 10/08 Styrene 5.0 ND 10/08 tert-Butylbenzene 5.0 ND	Methacrylonitrile	10.0		ND					10/08/2015
Methylacrylate 10.0 ND 10/08 Methylene chloride 5.0 ND 10/08 Naphthalene 10.0 ND 10/08 n-Butyl acetate 25.0 ND 10/08 n-Butylbenzene 5.0 ND 10/08 n-Heptane 20.0 ND 10/08 n-Hexane 20.0 ND 10/08 Nitrobenzene 50.0 ND 10/08 n-Propylbenzene 5.0 ND 10/08 o-Xylene 5.0 ND 10/08 Pentachloroethane 20.0 ND 10/08 p-Isopropyltoluene 5.0 ND 10/08 Propionitrile 50.0 ND 10/08 sec-Butylbenzene 5.0 ND 10/08 Styrene 5.0 ND 10/08 tert-Butylbenzene 5.0 ND 10/08	Methyl Methacrylate	5.0		ND					10/08/2015
Methylene chloride 5.0 ND 10/08 Naphthalene 10.0 ND 10/08 n-Butyl acetate 25.0 ND 10/08 n-Butylbenzene 5.0 ND 10/08 n-Heptane 20.0 ND 10/08 n-Hexane 20.0 ND 10/08 Nitrobenzene 50.0 ND 10/08 n-Propylbenzene 5.0 ND 10/08 o-Xylene 5.0 ND 10/08 Pentachloroethane 20.0 ND 10/08 p-Isopropyltoluene 5.0 ND 10/08 Propionitrile 50.0 ND 10/08 sec-Butylbenzene 5.0 ND 10/08 Styrene 5.0 ND 10/08 tert-Butylbenzene 5.0 ND 10/08	Methyl tert-butyl ether	2.0		ND					10/08/2015
Naphthalene 10.0 ND 10/08 n-Butyl acetate 25.0 ND 10/08 n-Butylbenzene 5.0 ND 10/08 n-Heptane 20.0 ND 10/08 n-Hexane 20.0 ND 10/08 Nitrobenzene 50.0 ND 10/08 n-Propylbenzene 5.0 ND 10/08 o-Xylene 5.0 ND 10/08 Pentachloroethane 20.0 ND 10/08 p-Isopropyltoluene 5.0 ND 10/08 Propionitrile 50.0 ND 10/08 sec-Butylbenzene 5.0 ND 10/08 Styrene 5.0 ND 10/08 tert-Butylbenzene 5.0 ND 10/08	Methylacrylate	10.0		ND					10/08/2015
n-Butyl acetate 25.0 ND 10/08 n-Butylbenzene 5.0 ND 10/08 n-Heptane 20.0 ND 10/08 n-Hexane 20.0 ND 10/08 Nitrobenzene 50.0 ND 10/08 n-Propylbenzene 5.0 ND 10/08 o-Xylene 5.0 ND 10/08 Pentachloroethane 20.0 ND 10/08 p-Isopropyltoluene 5.0 ND 10/08 Propionitrile 50.0 ND 10/08 sec-Butylbenzene 5.0 ND 10/08 Styrene 5.0 ND 10/08 tert-Butylbenzene 5.0 ND 10/08	Methylene chloride	5.0		ND					10/08/2015
n-Butylbenzene 5.0 ND 10/08 n-Heptane 20.0 ND 10/08 n-Hexane 20.0 ND 10/08 Nitrobenzene 50.0 ND 10/08 n-Propylbenzene 5.0 ND 10/08 o-Xylene 5.0 ND 10/08 Pentachloroethane 20.0 ND 10/08 p-Isopropyltoluene 5.0 ND 10/08 Propionitrile 50.0 ND 10/08 sec-Butylbenzene 5.0 ND 10/08 Styrene 5.0 ND 10/08 tert-Butylbenzene 5.0 ND 10/08	Naphthalene	10.0		ND					10/08/2015
n-Heptane 20.0 ND 10/08 n-Hexane 20.0 ND 10/08 Nitrobenzene 50.0 ND 10/08 n-Propylbenzene 5.0 ND 10/08 o-Xylene 5.0 ND 10/08 Pentachloroethane 20.0 ND 10/08 p-Isopropyltoluene 5.0 ND 10/08 Propionitrile 50.0 ND 10/08 sec-Butylbenzene 5.0 ND 10/08 Styrene 5.0 ND 10/08 tert-Butylbenzene 5.0 ND 10/08	n-Butyl acetate	25.0		ND					10/08/2015
n-Hexane 20.0 ND 10/08 Nitrobenzene 50.0 ND 10/08 n-Propylbenzene 5.0 ND 10/08 o-Xylene 5.0 ND 10/08 Pentachloroethane 20.0 ND 10/08 p-Isopropyltoluene 5.0 ND 10/08 Propionitrile 50.0 ND 10/08 sec-Butylbenzene 5.0 ND 10/08 Styrene 5.0 ND 10/08 tert-Butylbenzene 5.0 ND 10/08	n-Butylbenzene	5.0		ND					10/08/2015
Nitrobenzene 50.0 ND 10/08 n-Propylbenzene 5.0 ND 10/08 o-Xylene 5.0 ND 10/08 Pentachloroethane 20.0 ND 10/08 p-Isopropyltoluene 5.0 ND 10/08 Propionitrile 50.0 ND 10/08 sec-Butylbenzene 5.0 ND 10/08 Styrene 5.0 ND 10/08 tert-Butylbenzene 5.0 ND 10/08	n-Heptane	20.0		ND					10/08/2015
n-Propylbenzene 5.0 ND 10/08 o-Xylene 5.0 ND 10/08 Pentachloroethane 20.0 ND 10/08 p-Isopropyltoluene 5.0 ND 10/08 Propionitrile 50.0 ND 10/08 sec-Butylbenzene 5.0 ND 10/08 Styrene 5.0 ND 10/08 tert-Butylbenzene 5.0 ND 10/08	n-Hexane	20.0		ND					10/08/2015
o-Xylene 5.0 ND 10/08 Pentachloroethane 20.0 ND 10/08 p-Isopropyltoluene 5.0 ND 10/08 Propionitrile 50.0 ND 10/08 sec-Butylbenzene 5.0 ND 10/08 Styrene 5.0 ND 10/08 tert-Butylbenzene 5.0 ND 10/08	Nitrobenzene	50.0		ND					10/08/2015
Pentachloroethane 20.0 ND 10/08 p-Isopropyltoluene 5.0 ND 10/08 Propionitrile 50.0 ND 10/08 sec-Butylbenzene 5.0 ND 10/08 Styrene 5.0 ND 10/08 tert-Butylbenzene 5.0 ND 10/08	n-Propylbenzene	5.0		ND					10/08/2015
p-Isopropyltoluene 5.0 ND 10/08 Propionitrile 50.0 ND 10/08 sec-Butylbenzene 5.0 ND 10/08 Styrene 5.0 ND 10/08 tert-Butylbenzene 5.0 ND 10/08	o-Xylene	5.0		ND					10/08/2015
Propionitrile 50.0 ND 10/08 sec-Butylbenzene 5.0 ND 10/08 Styrene 5.0 ND 10/08 tert-Butylbenzene 5.0 ND 10/08	Pentachloroethane	20.0		ND					10/08/2015
sec-Butylbenzene 5.0 ND 10/08 Styrene 5.0 ND 10/08 tert-Butylbenzene 5.0 ND 10/08	p-Isopropyltoluene	5.0		ND					10/08/2015
Styrene 5.0 ND 10/08 tert-Butylbenzene 5.0 ND 10/08	Propionitrile	50.0		ND					10/08/2015
tert-Butylbenzene 5.0 ND 10/08	sec-Butylbenzene	5.0		ND					10/08/2015
·	Styrene	5.0		ND					10/08/2015
Tetrachloroethene 5.0 ND 10/08	tert-Butylbenzene	5.0		ND					10/08/2015
	Tetrachloroethene	5.0		ND					10/08/2015
Tetrahydrofuran 20.0 ND 10/08	Tetrahydrofuran	20.0		ND					10/08/2015
Toluene 5.0 ND 10/08	Toluene	5.0		ND					10/08/2015
trans-1,2-Dichloroethene 5.0 ND 10/08	trans-1,2-Dichloroethene	5.0		ND					10/08/2015
trans-1,3-Dichloropropene 5.0 ND 10/08	trans-1,3-Dichloropropene	5.0		ND					10/08/2015
trans-1,4-Dichloro-2-butene 10.0 ND 10/08	trans-1,4-Dichloro-2-butene	10.0		ND					10/08/2015
Trichloroethene 5.0 ND 10/08	Trichloroethene	5.0		ND					10/08/2015
Trichlorofluoromethane 5.0 ND 10/08	Trichlorofluoromethane	5.0		ND					10/08/2015
Vinyl acetate 10.0 ND 10/08	Vinyl acetate	10.0		ND					10/08/2015

http://www.teklabinc.com/

Client: Trihydro Corporation Work Order: 15100377

Client Project: Soil Vapor System Report Date: 14-Oct-15

SW-846 5030, 8260B, VOLATILE ORGANIC COMPOUNDS BY GC/MS											
Batch 113010 SampType: SampID: MBLK-R151008-1	MBLK	Units µg/L							Date		
Analyses	RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed		
Vinyl chloride	2.	0	ND						10/08/2015		
Surr: 1,2-Dichloroethane-d4			48.2	50.00		96.5	74.7	129	10/08/2015		
Surr: 4-Bromofluorobenzene			46.8	50.00		93.6	86	119	10/08/2015		
Surr: Dibromofluoromethane			52.3	50.00		104.7	81.7	123	10/08/2015		
Surr: Toluene-d8			46.3	50.00		92.7	84.3	114	10/08/2015		

http://www.teklabinc.com/

Client: Trihydro Corporation Work Order: 15100377

Client Project: Soil Vapor System Report Date: 14-Oct-15

tch 113010 SampType: LCSI	D	Units µg/L					RPD Lir	mit 40		
mpID: LCSD-R151008-1									Date	
Analyses	RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref Val	%RPD	Analyz	
1,1,1,2-Tetrachloroethane	5.0		50.9	50.00	0	101.9	49.62	2.61	10/08/2	
1,1,1-Trichloroethane	5.0		53.7	50.00	0	107.4	51.03	5.14	10/08/2	
1,1,2,2-Tetrachloroethane	5.0		48.2	50.00	0	96.4	46.39	3.87	10/08/2	
1,1,2-Trichloro-1,2,2-trifluoroethane	20.0		52.0	50.00	0	104.1	49.41	5.17	10/08/2	
1,1,2-Trichloroethane	5.0		50.1	50.00	0	100.2	48.76	2.73	10/08/2	
1,1-Dichloro-2-propanone	50.0		117	125.0	0	93.2	106.5	9.00	10/08/2	
1,1-Dichloroethane	5.0		51.8	50.00	0	103.6	49.25	5.07	10/08/2	
1,1-Dichloroethene	5.0		50.4	50.00	0	100.8	47.85	5.21	10/08/2	
1,1-Dichloropropene	5.0		53.9	50.00	0	107.8	51.78	4.01	10/08/2	
1,2,3-Trichlorobenzene	5.0		48.6	50.00	0	97.2	47.07	3.22	10/08/2	
1,2,3-Trichloropropane	5.0		47.7	50.00	0	95.4	46.01	3.63	10/08/2	
1,2,3-Trimethylbenzene	5.0		46.4	50.00	0	92.8	44.52	4.14	10/08/2	
1,2,4-Trichlorobenzene	5.0		46.4	50.00	0	92.8	44.47	4.29	10/08/2	
1,2,4-Trimethylbenzene	5.0		46.6	50.00	0	93.2	44.41	4.86	10/08/2	
1,2-Dibromo-3-chloropropane	5.0		45.9	50.00	0	91.8	42.88	6.80	10/08/2	
1,2-Dibromoethane	5.0		50.1	50.00	0	100.2	49.00	2.18	10/08/2	
1,2-Dichlorobenzene	5.0		46.4	50.00	0	92.8	45.29	2.44	10/08/2	
1,2-Dichloroethane	5.0		53.9	50.00	0	107.8	51.56	4.42	10/08/2	
1,2-Dichloropropane	5.0		54.7	50.00	0	109.4	52.59	3.90	10/08/2	
1,3,5-Trimethylbenzene	5.0		46.4	50.00	0	92.9	44.13	5.08	10/08/2	
1,3-Dichlorobenzene	5.0		47.5	50.00	0	95.0	45.48	4.37	10/08/2	
1,3-Dichloropropane	5.0		49.0	50.00	0	98.0	47.58	2.92	10/08/2	
1,4-Dichlorobenzene	5.0		46.8	50.00	0	93.6	45.13	3.61	10/08/2	
1-Chlorobutane	5.0		52.3	50.00	0	104.6	49.54	5.46	10/08/2	
2,2-Dichloropropane	5.0		50.8	50.00	0	101.7	48.88	3.93	10/08/2	
2-Butanone	25.0			125.0	0	104.6	122.6	6.37	10/08/2	
2-Chloroethyl vinyl ether	20.0		52.1	50.00	0	104.2	50.19	3.70	10/08/2	
2-Chlorotoluene	5.0		45.7	50.00	0	91.5	43.54	4.91	10/08/2	
2-Hexanone	25.0			125.0	0	92.3	110.6	4.24	10/08/2	
2-Nitropropane	50.0		553	500.0	0	110.5	517.0	6.67	10/08/2	
4-Chlorotoluene	5.0		46.4	50.00	0	92.8	44.06	5.13	10/08/2	
4-Methyl-2-pentanone	25.0			125.0	0	99.4	120.5	3.01	10/08/2	
Acetone	25.0		123	125.0	0	98.7	113.0	8.74	10/08/2	
Acetonitrile	50.0		555	500.0	0	111.1	516.2	7.31	10/08/2	
Acrolein	100		478	500.0	0	95.6	450.3	5.95	10/08/2	
Acrylonitrile	5.0		56.8	50.00	0	113.6	53.93	5.22	10/08/2	
Allyl chloride	5.0		53.1	50.00	0	106.1	50.72	4.51	10/08/2	
Benzene	2.0		55.0	50.00	0	110.0	52.22	5.20	10/08/2	
Bromobenzene	5.0			50.00	0	90.5	36.77	20.68	10/08/2	
Bromochloromethane	5.0		52.3	50.00	0	104.6	51.28	2.01	10/08/2	
Bromodichloromethane	5.0		52.3 56.5	50.00	0	113.0	53.50	5.44	10/08/2	
Bromoform	5.0		54.6	50.00	0	109.2	53.39	2.28	10/08/2	
Bromomethane	10.0				0	144.5	66.88	2.26 7.71	10/08/2	
Carbon disulfide	5.0		50.6	50.00	0	101.2	47.89	5.48	10/08/2	
Carbon disuliide Carbon tetrachloride	5.0 5.0		53.5	50.00	0	101.2	47.89 50.45	5.46 5.91	10/08/2	
Carbon tetrachionde Chlorobenzene	5.0 5.0		53.5 49.5	50.00	0	99.1	47.84	3.49	10/08/2	
Chloroethane	10.0			50.00	0	116.0	47.84 56.75	2.20	10/08/2	

http://www.teklabinc.com/

Satch 113010 SampType:		MPOUNDS BY GC/MS Units µg/L	,			RPD Liı	mit 40	
ampID: LCSD-R151008-1	2005	omo pg/L				111 5 2.11	40	Date
Analyses	RL (Qual Result	Spike	SPK Ref Val	%REC	RPD Ref Val	%RPD	Analyzed
Chloroform	5.0	<u>-</u>	50.00	0	106.8	51.36	3.91	10/08/2019
Chloromethane	10.0	54.1	50.00	0	108.2	53.38	1.38	10/08/201
Chloroprene	20.0		50.00	0	97.1	45.98	5.48	10/08/201
cis-1,2-Dichloroethene	5.0		50.00	0	104.9	50.28	4.21	10/08/201
cis-1,3-Dichloropropene	5.0		50.00	0	118.8	56.43	5.16	10/08/201
cis-1,4-Dichloro-2-butene	5.0		50.00	0	96.5	41.72	14.52	10/08/201
Cyclohexanone	50.0		500.0	0	98.5	451.1	8.81	10/08/201
Dibromochloromethane	5.0		50.00	0	108.2	52.15	3.69	10/08/201
Dibromomethane	5.0		50.00	0	114.2	55.07	3.64	10/08/201
Dichlorodifluoromethane	10.0		50.00	0	109.1	52.55	3.75	10/08/201
Ethyl acetate	10.0		50.00	0	115.2	53.07	8.15	10/08/201
Ethyl ether	5.0		50.00	0	103.2	49.91	3.29	10/08/201
Ethyl methacrylate	5.0		50.00	0	98.2	47.81	2.66	10/08/201
Ethylbenzene	5.0		50.00	0	98.1	47.38	3.48	10/08/201
Hexachlorobutadiene	5.0		50.00	0	91.8	45.72	0.39	10/08/201
Hexachloroethane	10.0		50.00	0	89.6	41.96	6.52	10/08/201
lodomethane	5.0		50.00	0	115.7	57.04	1.39	10/08/201
	5.0		50.00	0	99.9	48.20	3.55	10/08/201
Isopropylbenzene	5.0		100.0		98.3	94.59	3.87	10/08/201
m,p-Xylenes			50.00	0	112.9			
Methacrylonitrile	10.0		50.00	0	107.4	53.94	4.51	10/08/201
Methyl Methacrylate	5.0		50.00	0	107.4	51.11	4.91	10/08/201
Methyl tert-butyl ether	2.0		50.00	0	116.9	53.88	3.36	10/08/201
Methylacrylate	10.0			0		56.68	3.07	10/08/201
Methylene chloride	5.0		50.00	0	100.3	47.94	4.47	10/08/201
Naphthalene	10.0		50.00	0	96.0	45.93	4.37	10/08/201
n-Butyl acetate	25.0		50.00	0	93.0	45.07	3.10	10/08/201
n-Butylbenzene	5.0		50.00	0	89.6	42.66	4.92	10/08/201
n-Heptane	20.0		50.00	0	103.3	49.60	4.03	10/08/201
n-Hexane	20.0		50.00	0	97.5	46.52	4.68	10/08/201
Nitrobenzene	50.0		500.0	0	90.7	399.6	12.67	10/08/201
n-Propylbenzene	5.0		50.00	0	92.2	43.66	5.44	10/08/201
o-Xylene	5.0		50.00	0	96.8	46.68	3.64	10/08/201
Pentachloroethane	20.0		50.00	0	93.7	44.80	4.43	10/08/201
p-Isopropyltoluene	5.0		50.00	0	94.7	44.68	5.80	10/08/201
Propionitrile	50.0		500.0	0	120.2	561.2	6.88	10/08/201
sec-Butylbenzene	5.0		50.00	0	93.2	44.57	4.45	10/08/201
Styrene	5.0		50.00	0	101.1	48.88	3.38	10/08/201
tert-Butylbenzene	5.0		50.00	0	88.6	41.95	5.40	10/08/201
Tetrachloroethene	5.0	47.7	50.00	0	95.4	45.94	3.72	10/08/201
Tetrahydrofuran	20.0	52.8	50.00	0	105.6	49.74	5.95	10/08/201
Toluene	5.0	48.5	50.00	0	97.0	47.08	3.01	10/08/201
trans-1,2-Dichloroethene	5.0	52.2	50.00	0	104.5	50.22	3.92	10/08/201
trans-1,3-Dichloropropene	5.0	49.1	50.00	0	98.2	47.15	4.07	10/08/201
trans-1,4-Dichloro-2-butene	10.0	41.6	50.00	0	83.1	37.39	10.56	10/08/201
Trichloroethene	5.0	54.0	50.00	0	107.9	52.30	3.14	10/08/201
Trichlorofluoromethane	5.0	48.3	50.00	0	96.7	45.83	5.33	10/08/201
Vinyl acetate	10.0	53.0	50.00	0	106.0	49.28	7.26	10/08/201

http://www.teklabinc.com/

SW-846 5030, 8260B, VOLATILE ORGANIC COMPOUNDS BY GC/MS												
Batch 113010 SampType:	LCSD		Units µg/L					RPD Li	mit 40			
SampID: LCSD-R151008-1										Date		
Analyses]	RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref Val	%RPD	Analyzed		
Vinyl chloride		2.0		53.9	50.00	0	107.7	52.64	2.29	10/08/2015		
Surr: 1,2-Dichloroethane-d4				48.2	50.00		96.5			10/08/2015		
Surr: 4-Bromofluorobenzene				48.2	50.00		96.4			10/08/2015		
Surr: Dibromofluoromethane				52.0	50.00		104.0			10/08/2015		
Surr: Toluene-d8				46.6	50.00		93.3			10/08/2015		

http://www.teklabinc.com/

SW-846 5030, 8260B, VOLATILE OR	GANIC C	OMPOUNDS E	BY GC/MS	S					
Batch 113010 SampType: LCS		Units µg/L							
SampID: LCS-R151008-1									Date
Analyses	RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
1,1,1,2-Tetrachloroethane	5.0	Quui	49.6	50.00	0	99.2	81.9	115	10/08/2015
1,1,1-Trichloroethane	5.0		51.0	50.00	0	102.1	79.4	124	10/08/2015
1,1,2,2-Tetrachloroethane	5.0		46.4	50.00	0	92.8	74.7	116	10/08/2015
1,1,2-Trichloro-1,2,2-trifluoroethane	20.0		49.4	50.00	0	98.8	72.9	121	10/08/2015
1,1,2-Trichloroethane	5.0		48.8	50.00	0	97.5	80.8	111	10/08/2015
1,1-Dichloro-2-propanone	50.0		106	125.0	0	85.2	66.3	130	10/08/2015
1,1-Dichloroethane	5.0		49.2	50.00	0	98.5	79.4	114	10/08/2015
1,1-Dichloroethene	5.0		47.8	50.00	0	95.7	74.1	117	10/08/2015
1,1-Dichloropropene	5.0		51.8	50.00	0	103.6	81.7	116	10/08/2015
1,2,3-Trichlorobenzene	5.0		47.1	50.00	0	94.1	79.7	118	10/08/2015
1,2,3-Trichloropropane	5.0		46.0	50.00	0	92.0	77.3	112	10/08/2015
1,2,3-Trimethylbenzene	5.0			50.00	0	89.0	79.9	119	10/08/2015
1,2,4-Trichlorobenzene	5.0			50.00	0	88.9	79.3	118	10/08/2015
1,2,4-Trimethylbenzene	5.0		44.4	50.00	0	88.8	78.7	115	10/08/2015
1,2-Dibromo-3-chloropropane	5.0		42.9	50.00	0	85.8	76	122	10/08/2015
1.2-Dibromoethane	5.0			50.00	0	98.0	80.8	114	10/08/2015
1,2-Dichlorobenzene	5.0			50.00	0	90.6	78.3	112	10/08/2015
1,2-Dichloroethane	5.0		51.6	50.00	0	103.1	70.6	118	10/08/2015
1,2-Dichloropropane	5.0			50.00	0	105.2	79.6	113	10/08/2015
1,3,5-Trimethylbenzene	5.0		44.1	50.00	0	88.3	77.5	115	10/08/2015
1,3-Dichlorobenzene	5.0		45.5	50.00	0	91.0	78.6	117	10/08/2015
1,3-Dichloropropane	5.0		47.6	50.00	0	95.2	78.8	112	10/08/2015
1,4-Dichlorobenzene	5.0		45.1	50.00	0	90.3	77.8	114	10/08/2015
1-Chlorobutane	5.0			50.00	0	99.1	78.6	115	10/08/2015
2,2-Dichloropropane	5.0			50.00	0	97.8	74.9	130	10/08/2015
2-Butanone	25.0		123	125.0	0	98.1	70.7	136	10/08/2015
2-Chloroethyl vinyl ether	20.0		50.2	50.00	0	100.4	52.5	145	10/08/2015
2-Chlorotoluene	5.0		43.5	50.00	0	87.1	77.4	114	10/08/2015
2-Hexanone	25.0		111	125.0	0	88.5	73.3	125	10/08/2015
2-Nitropropane	50.0		517	500.0	0	103.4	67.3	139	10/08/2015
4-Chlorotoluene	5.0		44.1	50.00	0	88.1	78.3	115	10/08/2015
4-Methyl-2-pentanone	25.0		121	125.0	0	96.4	76.3	122	10/08/2015
Acetone	25.0		113	125.0	0	90.4	56.4	147	10/08/2015
Acetonitrile	50.0		516	500.0	0	103.2	59.3	129	10/08/2015
Acrolein	100		450	500.0	0	90.1	1	201	10/08/2015
Acrylonitrile	5.0		53.9	50.00	0	107.9	74.1	128	10/08/2015
Allyl chloride	5.0		50.7	50.00	0	101.4	71.5	123	10/08/2015
Benzene	2.0		52.2	50.00	0	104.4	80	114	10/08/2015
Bromobenzene	5.0		36.8	50.00	0	73.5	73.2	118	10/08/2015
Bromochloromethane	5.0			50.00	0	102.6	73.3	121	10/08/2015
Bromodichloromethane	5.0		53.5	50.00	0	107.0	81.6	121	10/08/2015
Bromoform	5.0			50.00	0	106.8	83.1	127	10/08/2015
Bromomethane	10.0		66.9	50.00	0	133.8	44.4	154	10/08/2015
Carbon disulfide	5.0			50.00	0	95.8	73.2	118	10/08/2015
Carbon tetrachloride	5.0			50.00	0	100.9	79.4	130	10/08/2015
Chlorobenzene	5.0			50.00	0	95.7	81.4	110	10/08/2015
Chloroethane	10.0			50.00	0	113.5	52.1	137	10/08/2015

http://www.teklabinc.com/

Client: Trihydro Corporation Work Order: 15100377

Client Project: Soil Vapor System Report Date: 14-Oct-15

SW-846 5030, 8260B, VOLATII	LE ORGANIC C	OMPOUNDS	BY GC/M	S					
Batch 113010 SampType:	LCS	Units µg/L							
SampID: LCS-R151008-1									Date
Analyses	RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Chloroform	5.0	Quui		50.00	0	102.7	82.7	116	10/08/2015
Chloromethane	10.0		53.4		0	106.8	48.2	144	10/08/2015
Chloroprene	20.0		46.0	50.00	0	92.0	80.6	126	10/08/2015
cis-1,2-Dichloroethene	5.0		50.3	50.00	0	100.6	78.2	116	10/08/2015
cis-1,3-Dichloropropene	5.0		56.4		0	112.9	83	119	10/08/2015
cis-1,4-Dichloro-2-butene	5.0		41.7	50.00	0	83.4	60.7	137	10/08/2015
Cyclohexanone	50.0		451	500.0	0	90.2	54.2	145	10/08/2015
Dibromochloromethane	5.0		52.2		0	104.3	81.2	121	10/08/2015
Dibromomethane	5.0		55.1	50.00	0	110.1	78.3	118	10/08/2015
Dichlorodifluoromethane	10.0		52.6	50.00	0	105.1	20.6	154	10/08/2015
Ethyl acetate	10.0		53.1	50.00	0	106.1	73.1	116	10/08/2015
Ethyl ether	5.0		49.9	50.00	0	99.8	75.2	109	10/08/2015
Ethyl methacrylate	5.0		47.8	50.00	0	95.6	80.1	113	10/08/2015
Ethylbenzene	5.0		47.4	50.00	0	94.8	77.2	113	10/08/2015
Hexachlorobutadiene	5.0		45.7	50.00	0	91.4	77.3	123	10/08/2015
Hexachloroethane	10.0		42.0	50.00	0	83.9	74.6	117	10/08/2015
Iodomethane	5.0		57.0	50.00	0	114.1	61.3	140	10/08/2015
Isopropylbenzene	5.0		48.2	50.00	0	96.4	81.3	114	10/08/2015
m,p-Xylenes	5.0		94.6	100.0	0	94.6	79.6	113	10/08/2015
Methacrylonitrile	10.0		53.9	50.00	0	107.9	77.2	125	10/08/2015
Methyl Methacrylate	5.0		51.1	50.00	0	102.2	74.2	121	10/08/2015
Methyl tert-butyl ether	2.0		53.9	50.00	0	107.8	76.8	117	10/08/2015
Methylacrylate	10.0		56.7	50.00	0	113.4	78	124	10/08/2015
Methylene chloride	5.0		47.9	50.00	0	95.9	74.1	114	10/08/2015
Naphthalene	10.0		45.9	50.00	0	91.9	77.9	122	10/08/2015
n-Butyl acetate	25.0		45.1	50.00	0	90.1	74	120	10/08/2015
n-Butylbenzene	5.0		42.7	50.00	0	85.3	71.1	120	10/08/2015
n-Heptane	20.0		49.6	50.00	0	99.2	67.4	129	10/08/2015
n-Hexane	20.0		46.5	50.00	0	93.0	68.4	126	10/08/2015
Nitrobenzene	50.0		400	500.0	0	79.9	37.9	181	10/08/2015
n-Propylbenzene	5.0		43.7	50.00	0	87.3	74.6	118	10/08/2015
o-Xylene	5.0		46.7	50.00	0	93.4	80.1	111	10/08/2015
Pentachloroethane	20.0		44.8	50.00	0	89.6	78.8	117	10/08/2015
p-Isopropyltoluene	5.0		44.7	50.00	0	89.4	77.6	118	10/08/2015
Propionitrile	50.0		561	500.0	0	112.2	72.9	137	10/08/2015
sec-Butylbenzene	5.0		44.6	50.00	0	89.1	74.5	119	10/08/2015
Styrene	5.0		48.9	50.00	0	97.8	83.4	113	10/08/2015
tert-Butylbenzene	5.0		42.0	50.00	0	83.9	75.9	114	10/08/2015
Tetrachloroethene	5.0		45.9	50.00	0	91.9	72.5	125	10/08/2015
Tetrahydrofuran	20.0		49.7	50.00	0	99.5	69.6	125	10/08/2015
Toluene	5.0		47.1	50.00	0	94.2	77.5	113	10/08/2015
trans-1,2-Dichloroethene	5.0		50.2	50.00	0	100.4	79	114	10/08/2015
trans-1,3-Dichloropropene	5.0		47.2	50.00	0	94.3	78	115	10/08/2015
trans-1,4-Dichloro-2-butene	10.0		37.4	50.00	0	74.8	63.3	128	10/08/2015
Trichloroethene	5.0		52.3	50.00	0	104.6	84.4	114	10/08/2015
Trichlorofluoromethane	5.0		45.8	50.00	0	91.7	75.2	132	10/08/2015
Vinyl acetate	10.0		49.3	50.00	0	98.6	64.5	127	10/08/2015

m,p-Xylenes

Trichloroethene

Surr: Toluene-d8

Surr: 1,2-Dichloroethane-d4

Surr: 4-Bromofluorobenzene

Surr: Dibromofluoromethane

o-Xylene

Toluene

250

250

250

250

Quality Control Results

http://www.teklabinc.com/

Client: Trihydro Corporation Work Order: 15100377
Client Project: Soil Vapor System Report Date: 14-Oct-15

Batch 113010 SampType:	LCS		Units µg/L							
SampID: LCS-R151008-1 Analyses		RL	Qual	Result	Snike	SPK Ref Val	%REC	Low Limit	High Limit	Date Analyze
Vinyl chloride		2.0	Quui	52.6	50.00	0	105.3	58	134	10/08/20 ⁻
Surr: 1,2-Dichloroethane-d4				47.3	50.00	Ū	94.6	74.7	129	10/08/20
Surr: 4-Bromofluorobenzene				46.9	50.00		93.7	86	119	10/08/20
Surr: Dibromofluoromethane				51.5	50.00		102.9	81.7	123	10/08/20
Surr: Toluene-d8				46.8	50.00		93.7	84.1	114	10/08/20
Batch 113010 SampType:	MS		Units µg/L							
SampID: 15100381-003GMS Analyses		RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Date Analyze
1,1-Dichloroethene		250	•	2280	2500	0	91.4	35.7	136	10/08/20
Benzene		100		2730	2500	107.5	104.9	62.5	121	10/08/20
Chlorobenzene		250		2320	2500	0	93.0	78.6	114	10/08/20
Ethylbenzene		250		2490	2500	73.50	96.6	74.4	130	10/08/20
m,p-Xylenes		250		3270	2500	802.5	98.7	70.5	126	10/08/20
o-Xylene		250		2300	2500	0	91.8	71.2	124	10/08/20
Toluene		250		2280	2500	0	91.0	69.5	118	10/08/20
Trichloroethene		250		2690	2500	0	107.6	69.4	117	10/08/20
Surr: 1,2-Dichloroethane-d4				2440	2500		97.7	74.7	129	10/08/20
Surr: 4-Bromofluorobenzene				2360	2500		94.2	86	119	10/08/20
Surr: Dibromofluoromethane				2580	2500		103.1	81.7	123	10/08/20
Surr: Toluene-d8				2290	2500		91.8	84.3	114	10/08/20
Batch 113010 SampType:	MSD		Units µg/L					RPD	Limit 20	
SampID: 15100381-003GMSD										Date
Analyses		RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref \	/al %RPD	Analyze
1,1-Dichloroethene		250		2260	2500	0	90.2	2284	1.30	10/08/20
Benzene		100		2690	2500	107.5	103.4	2730	1.42	10/08/20
Chlorobenzene		250		2310	2500	0	92.6	2325	0.47	10/08/20
Ethylbenzene		250		2480	2500	73.50	96.2	2488	0.34	10/08/20

3250

2300

2260

2660

2400

2370

2580

2310

2500

2500

2500

2500

2500

2500

2500

2500

802.5

0

0

0

97.9

92.2

90.3

106.5

95.8

94.9

92.5

103.3

3270

2295

2276

2691

0.58

0.39

0.86

1.06

10/08/2015

10/08/2015

10/08/2015

10/08/2015

10/08/2015

10/08/2015

10/08/2015

10/08/2015

Client: Trihydro Corporation

Receiving Check List

http://www.teklabinc.com/

Work Order: 15100377

Report Date: 14-Oct-15 Client Project: Soil Vapor System Carrier: Nick Harvey Received By: KF Elizabeth a thurley Kalyn Foecke Reviewed by: Completed by: On: On: 07-Oct-15 07-Oct-15 Kalyn Foecke Elizabeth A. Hurley Extra pages included 0 Pages to follow: Chain of custody Shipping container/cooler in good condition? Yes 🗸 No Not Present Temp °C 5.82 Type of thermal preservation? Ice 🗹 Blue Ice None Dry Ice Yes 🗹 No 🗀 Chain of custody present? Yes 🗹 Chain of custody signed when relinquished and received? No __ Yes 🗹 Chain of custody agrees with sample labels? No __ Yes 🗹 Samples in proper container/bottle? No 🗀 Yes 🗹 No 🗌 Sample containers intact? Sufficient sample volume for indicated test? Yes 🗸 No Yes 🗹 All samples received within holding time? No NA 🗸 Field _ Lab 🗌 Reported field parameters measured: Yes 🗹 No 🗌 Container/Temp Blank temperature in compliance? When thermal preservation is required, samples are compliant with a temperature between 0.1°C - 6.0°C, or when samples are received on ice the same day as collected. Yes 🗸 No 🗌 No VOA vials Water - at least one vial per sample has zero headspace? Yes No 🗌 No TOX containers Water - TOX containers have zero headspace? No 🗌 Yes 🗹 Water - pH acceptable upon receipt? NA 🗸 NPDES/CWA TCN interferences checked/treated in the field? Yes No 🗌 Any No responses must be detailed below or on the COC.

CHAIN OF CUSTODY

pg.		of	Work	Order #	ŧ \	51	00	3T	J
	THE RESERVE AND ADDRESS OF THE PERSON NAMED IN				_	_			

TEKLAB, INC. 5445 Horseshoe Lake Road ~ Collinsville, IL 62234 ~ Phone: (618) 344-1004 ~ Fax: (618) 344-1005

Samples on: □ lice □ Blue ice □ No ice

/	minierce Ly Wy	3	رم2	70) 	7/2		Pres Lab		tes	•			1	121 F1 JUL! !! 177 P) I TH	(m/	<u>FO</u> F			<u>USE</u>	ONI	Δ.			
E-Mail: Tasettyne PTily	Fax:	<u>' </u>	! 5			_		Con	ıme			- 10	من دريان		700	- VV	<u>- 0., 1</u>					\overline{D}	A۱	 Y		
 Are these samples known to be involved in litigg Are these samples known to be hazardous? □ Are there any required reporting limits to be me limits in comment section. □ Yes □ No 	Yes □ No																						•			
Project Name / Number	Sample Col	lecto	r's N	am	7	NO MENTION PROPERTY.			MA	TR	IX				1	NDIC	ATE	AN	ALY	rsis	S RE	QUI	ESTE	D		7
Soil Vapor System	Ldd	M							ter										.					7		
Results Requested Billi		# and			Con	taine	rs		Water			ē	J	30	7	4				1						
☐ Standard ☐ 1-2 Pay (100% Surcharge) ☐ Other(5)*3 Day (50% Surcharge)		SES.		4	١,	- §		ē	king		ge	Nasi	10	1/2/2	0	0	3									
Lab Use Only Sample Identification D	Date/Time Sampled	NPF	ag	1250	HCL FOL	NaHSO4	Other	Water	Drin	Soil	Sludge	Sp. Waste	7	17		'	†									
1510037261 Tank 3	int 7 / 15 0715	₽₽	-	=	_	= =	0					-						+	+	+				<u> </u>		
	10/1/15 0113	\vdash	+		+	+		lacksquare					HE	7	17	1	1	+	+	+			 		<u> </u>	\vdash
		\vdash	+	-+	+	+-	-	╁			-		-		-		+	+	+	+					-	
		\vdash	+	\dashv	+	+-	-	-	H						\vdash	 	+	+	+	\dashv		1	 	_	-	-
	·	\vdash	-		-			 		-	<u> </u>				├	 	┼	+-	+	+		<u> </u>	 	<u> </u>	-	├
		\vdash	+		+	-		 			-	-	<u> </u>	<u> </u>	 		╁	+-	+	\dashv			 		-	
		\vdash	+		+	+		-			\vdash			-			+	+	+	+			-	 	<u> </u>	-
	and the second s		+	\dashv	-	+		-	\vdash		-				-	 	+-	+	+	\dashv		 		 	-	
		\vdash	-		-	-		<u> </u>			_				<u> </u>	<u> </u>	╀	+	+	\dashv		<u> </u>		 	├	<u> </u>
		.	\bot		_ _	-	_	<u> </u>			_				ļ	<u> </u>	<u> </u>	╄-		\dashv		<u> </u>	 	 	ļ	<u> </u>
								<u>Ļ</u>					Ļ	<u> </u>	<u></u>		<u> </u>	<u></u>	丄	$oldsymbol{\perp}$			<u></u>			
Relinquished By	,	Date	/ Ti	me				_					Rece	eivec	Ву			· ·	4			Daf	te / T	me		
led front	- 10/7/	5		9		· For		+	1.	/_ (B	#		548*****				+!		174	5	-4	بڼ	5	
	15/1/	<u> </u>		44	- [+	P	111	4	ر َ	fce	<u>die</u>					#	0 -	714	<u> </u>	112	<u>0</u>		
						-		+			*						-	<u> </u>	+							
The individual signing this agreement on head	f of client asknowledge	oo tha	t ho/s	sho h	00.5	and a	nd ·	unds	roto-	ads.	tho	torn	20.00						Ц_			(, , , , , , , , , , , , , , , , , , , 		In the second second		a b

Client:

AP ACCREC

WorkOrder: 15110842

November 19, 2015

Todd Aseltyne
Trihydro Corporation
1252 Commerce Drive
Laramie, WY 82070
TEL: (513) 429-7470

FAX:

RE: Soil Vapor System

Dear Todd Aseltyne:

TEKLAB, INC received 1 sample on 11/16/2015 11:20:00 AM for the analysis presented in the following report.

Samples are analyzed on an as received basis unless otherwise requested and documented. The sample results contained in this report relate only to the requested analytes of interest as directed on the chain of custody. NELAP accredited fields of testing are indicated by the letters NELAP under the Certification column. Unless otherwise documented within this report, Teklab Inc. analyzes samples utilizing the most current methods in compliance with 40CFR. All tests are performed in the Collinsville, IL laboratory unless otherwise noted in the Case Narrative.

All quality control criteria applicable to the test methods employed for this project have been satisfactorily met and are in accordance with NELAP except where noted. The following report shall not be reproduced, except in full, without the written approval of Teklab, Inc.

If you have any questions regarding these tests results, please feel free to call.

Sincerely,

Marvin L. Darling

Project Manager

(618)344-1004 ex 41

mdarling@teklabinc.com

Mowin L. Darling II

Client Project: Soil Vapor System

Report Contents

http://www.teklabinc.com/

Work Order: 15110842 Report Date: 19-Nov-15

This reporting package includes the following:

Client: Trihydro Corporation

Cover Letter	1
Report Contents	2
Definitions	3
Case Narrative	4
Laboratory Results	5
Quality Control Results	8
Receiving Check List	21
Chain of Custody	Appended

Definitions

http://www.teklabinc.com/

Client: Trihydro Corporation Work Order: 15110842
Client Project: Soil Vapor System Report Date: 19-Nov-15

Abbr Definition

- CCV Continuing calibration verification is a check of a standard to determine the state of calibration of an instrument between recalibration.
 - DF Dilution factor is the dilution performed during analysis only and does not take into account any dilutions made during sample preparation. The reported result is final and includes all dilutions factors.
- DNI Did not ignite
- DUP Laboratory duplicate is an aliquot of a sample taken from the same container under laboratory conditions for independent processing and analysis independently of the original aliquot.
- ICV Initial calibration verification is a check of a standard to determine the state of calibration of an instrument before sample analysis is initiated.
- IDPH IL Dept. of Public Health
- LCS Laboratory control sample, spiked with verified known amounts of analytes, is analyzed exactly like a sample to establish intra-laboratory or analyst specific precision and bias or to assess the performance of all or a portion of the measurement system. The acceptable recovery range is in the QC Package (provided upon request).
- LCSD Laboratory control sample duplicate is a replicate laboratory control sample that is prepared and analyzed in order to determine the precision of the approved test method. The acceptable recovery range is listed in the QC Package (provided upon request).
- MBLK Method blank is a sample of a matrix similar to the batch of associated sample (when available) that is free from the analytes of interest and is processed simultaneously with and under the same conditions as samples through all steps of the analytical procedures, and in which no target analytes or interferences should present at concentrations that impact the analytical results for sample analyses.
- MDL Method detection limit means the minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero.
- MS Matrix spike is an aliquot of matrix fortified (spiked) with known quantities of specific analytes that is subjected to the entire analytical procedures in order to determine the effect of the matrix on an approved test method's recovery system. The acceptable recovery range is listed in the QC Package (provided upon request).
- MSD Matrix spike duplicate means a replicate matrix spike that is prepared and analyzed in order to determine the precision of the approved test method. The acceptable recovery range is listed in the QC Package (provided upon request).
- MW Molecular weight
- ND Not Detected at the Reporting Limit

NELAP NELAP Accredited

- PQL Practical quantitation limit means the lowest level that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operation conditions. The acceptable recovery range is listed in the QC Package (provided upon request).
- RL The reporting limit the lowest level that the data is displayed in the final report. The reporting limit may vary according to customer request or sample dilution. The reporting limit may not be less than the MDL.
- RPD Relative percent difference is a calculated difference between two recoveries (ie. MS/MSD). The acceptable recovery limit is listed in the QC Package (provided upon request).
- SPK The spike is a known mass of target analyte added to a blank sample or sub-sample; used to determine recovery deficiency or for other quality control purposes.
- Surr Surrogates are compounds which are similar to the analytes of interest in chemical composition and behavior in the analytical process, but which are not normally found in environmental samples.
- TIC Tentatively identified compound: Analytes tentatively identified in the sample by using a library search. Only results not in the calibration standard will be reported as tentatively identified compounds. Results for tentatively identified compounds that are not present in the calibration standard, but are assigned a specific chemical name based upon the library search, are calculated using total peak areas from reconstructed ion chromatograms and a response factor of one. The nearest Internal Standard is used for the calculation. The results of any TICs must be considered estimated, and are flagged with a "T". If the estimated result is above the calibration range it is flagged "ET"
- TNTC Too numerous to count (> 200 CFU)

Qualifiers

- # Unknown hydrocarbon
- E Value above quantitation range
- I Associated internal standard was outside method criteria
- M Manual Integration used to determine area response
- R RPD outside accepted recovery limits
- T TIC(Tentatively identified compound)

- B Analyte detected in associated Method Blank
- H Holding times exceeded
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
 - S Spike Recovery outside recovery limits
 - X Value exceeds Maximum Contaminant Level

Case Narrative

http://www.teklabinc.com/

Client: Trihydro Corporation Work Order: 15110842
Client Project: Soil Vapor System Report Date: 19-Nov-15

Cooler Receipt Temp: 9.62 °C

Locations and Accreditations

	Collinsville	Springfield	Kansas City	Collinsville Air
Address	5445 Horseshoe Lake Road	3920 Pintail Dr	8421 Nieman Road	5445 Horseshoe Lake Road
	Collinsville, IL 62234-7425	Springfield, IL 62711-9415	Lenexa, KS 66214	Collinsville, IL 62234-7425
Phone	(618) 344-1004	(217) 698-1004	(913) 541-1998	(618) 344-1004
Fax	(618) 344-1005	(217) 698-1005	(913) 541-1998	(618) 344-1005
Email	jhriley@teklabinc.com	KKlostermann@teklabinc.com	dthompson@teklabinc.com	EHurley@teklabinc.com
	State	Dent Cart	# NELAD Evn	Data Lah

State	Dept	Cert #	NELAP	Exp Date	Lab	
Illinois	IEPA	100226	NELAP	1/31/2016	Collinsville	
Kansas	KDHE	E-10374	NELAP	1/31/2016	Collinsville	
Louisiana	LDEQ	166493	NELAP	6/30/2016	Collinsville	
Louisiana	LDEQ	166578	NELAP	6/30/2016	Collinsville	
Texas	TCEQ	T104704515-12-1	NELAP	7/31/2016	Collinsville	
Arkansas	ADEQ	88-0966		3/14/2016	Collinsville	
Illinois	IDPH	17584		5/31/2017	Collinsville	
Kentucky	KDEP	98006		12/31/2015	Collinsville	
Kentucky	UST	0073		1/31/2016	Collinsville	
Missouri	MDNR	00930		5/31/2017	Collinsville	
Oklahoma	ODEQ	9978		8/31/2016	Collinsville	

http://www.teklabinc.com/

Client: Trihydro Corporation Work Order: 15110842

Client Project: Soil Vapor System Report Date: 19-Nov-15
Lab ID: 15110842-001 Client Sample ID: Tank 3

Matrix: AQUEOUS Collection Date: 11/16/2015 8:30

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Batch
SW-846 1020B			<u></u>				y	
Ignitability, Closed Cup	NELAP	60		>200	°F	1	11/16/2015 15:27	R211617
SW-846 3005A, 6010B, METAL)						
Lead	NELAP	0.0150		0.0160	mg/L	1	11/17/2015 10:24	114194
SW-846 3510C, 8270C SIMS, S			ABOLINDA		-	<u> </u>		
1-Methylnaphthalene	DEIVII-VOLATILL O	0.00050	II COND.	ND ND	mg/L	5	11/17/2015 19:43	114101
Acenaphthene	NELAP	0.00050		ND	mg/L	5	11/17/2015 19:43	
Acenaphthylene	NELAP	0.00050		ND	mg/L	5	11/17/2015 19:43	
Anthracene	NELAP	0.00050		ND	mg/L	5	11/17/2015 19:43	
Benzo(a)anthracene	NELAP	0.00050		ND	mg/L	5	11/17/2015 19:43	
Benzo(a)pyrene	NELAP	0.00050		ND	mg/L	5	11/17/2015 19:43	
Benzo(b)fluoranthene	NELAP	0.00050		ND	mg/L	5	11/17/2015 19:43	
Benzo(g,h,i)perylene	NELAP	0.00050		ND	mg/L	5	11/17/2015 19:43	
Benzo(k)fluoranthene	NELAP	0.00050		ND	mg/L	5	11/17/2015 19:43	114191
Chrysene	NELAP	0.00050		ND	mg/L	5	11/17/2015 19:43	114191
Dibenzo(a,h)anthracene	NELAP	0.00050		ND	mg/L	5	11/17/2015 19:43	114191
Fluoranthene	NELAP	0.00050		ND	mg/L	5	11/17/2015 19:43	114191
Fluorene	NELAP	0.00050		ND	mg/L	5	11/17/2015 19:43	114191
Indeno(1,2,3-cd)pyrene	NELAP	0.00050		ND	mg/L	5	11/17/2015 19:43	114191
Naphthalene	NELAP	0.00050		ND	mg/L	5	11/17/2015 19:43	114191
Phenanthrene	NELAP	0.00050		ND	mg/L	5	11/17/2015 19:43	114191
Pyrene	NELAP	0.00050		ND	mg/L	5	11/17/2015 19:43	114191
Surr: 2-Fluorobiphenyl		10-143		68.0	%REC	5	11/17/2015 19:43	114191
Surr: Nitrobenzene-d5		10-166		59.5	%REC	5	11/17/2015 19:43	114191
Surr: p-Terphenyl-d14		10-137		78.5	%REC	5	11/17/2015 19:43	114191
Elevated reporting limit due to samp	ole extract composition	า.						
SW-846 5030, 8260B, VOLATII	LE ORGANIC COM	POUNDS BY	GC/MS					
1,1,1,2-Tetrachloroethane	NELAP	5.0		ND	μg/L	1	11/17/2015 12:46	114221
1,1,1-Trichloroethane	NELAP	5.0		ND	μg/L	1	11/17/2015 12:46	114221
1,1,2,2-Tetrachloroethane	NELAP	5.0		ND	μg/L	1	11/17/2015 12:46	114221
1,1,2-Trichloro-1,2,2-trifluoroethan	ie	20.0		ND	μg/L	1	11/17/2015 12:46	114221
1,1,2-Trichloroethane	NELAP	5.0		ND	μg/L	1	11/17/2015 12:46	114221
1,1-Dichloro-2-propanone		50.0		ND	μg/L	1	11/17/2015 12:46	114221
1,1-Dichloroethane	NELAP	5.0		ND	μg/L	1	11/17/2015 12:46	114221
1,1-Dichloroethene	NELAP	5.0		ND	μg/L	1	11/17/2015 12:46	114221
1,1-Dichloropropene	NELAP	5.0		ND	μg/L	1	11/17/2015 12:46	114221
1,2,3-Trichlorobenzene	NELAP	5.0		ND	μg/L	1	11/17/2015 12:46	114221
1,2,3-Trichloropropane	NELAP	5.0		ND	μg/L	1	11/17/2015 12:46	114221
1,2,3-Trimethylbenzene		5.0		ND	μg/L	1	11/17/2015 12:46	114221
1,2,4-Trichlorobenzene	NELAP	5.0		ND	μg/L	1	11/17/2015 12:46	114221
1,2,4-Trimethylbenzene	NELAP	5.0		ND	μg/L	1	11/17/2015 12:46	
1,2-Dibromo-3-chloropropane	NELAP	5.0		ND	μg/L	1	11/17/2015 12:46	
1,2-Dibromoethane	NELAP	5.0		ND	μg/L	1	11/17/2015 12:46	
1,2-Dichlorobenzene	NELAP	5.0		ND	μg/L	1	11/17/2015 12:46	
1,2-Dichloroethane	NELAP	5.0		ND	μg/L	1	11/17/2015 12:46	
1,2-Dichloropropane	NELAP	5.0		ND	μg/L	1	11/17/2015 12:46	
1,3,5-Trimethylbenzene	NELAP	5.0		ND	μg/L	1	11/17/2015 12:46	
1,3-Dichlorobenzene	NELAP	5.0		ND	μg/L	1	11/17/2015 12:46	114221

http://www.teklabinc.com/

Client: Trihydro Corporation Work Order: 15110842
Client Project: Soil Vapor System Report Date: 19-Nov-15

Matrix: AQUEOUS Collection Date: 11/16/2015 8:30

Matrix. AQUEOUS				Conection	Date: 11/	10/2013	0.50	
Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Batch
SW-846 5030, 8260B, VOLA	ATILE ORGANIC COMPO	OUNDS BY (GC/MS					
1,3-Dichloropropane	NELAP	5.0		ND	μg/L	1	11/17/2015 12:46	114221
1,4-Dichlorobenzene	NELAP	5.0		ND	μg/L	1	11/17/2015 12:46	114221
1-Chlorobutane	NELAP	5.0		ND	μg/L	1	11/17/2015 12:46	114221
2,2-Dichloropropane	NELAP	5.0		ND	μg/L	1	11/17/2015 12:46	114221
2-Butanone	NELAP	25.0		ND	μg/L	1	11/17/2015 12:46	114221
2-Chloroethyl vinyl ether	NELAP	20.0		ND	μg/L	1	11/17/2015 12:46	114221
2-Chlorotoluene	NELAP	5.0		ND	μg/L	1	11/17/2015 12:46	114221
2-Hexanone	NELAP	25.0		ND	μg/L	1	11/17/2015 12:46	114221
2-Nitropropane	NELAP	50.0		ND	μg/L	1	11/17/2015 12:46	114221
4-Chlorotoluene	NELAP	5.0		ND	μg/L	1	11/17/2015 12:46	114221
4-Methyl-2-pentanone	NELAP	25.0		ND	μg/L	1	11/17/2015 12:46	114221
Acetone	NELAP	25.0		ND	μg/L	1	11/17/2015 12:46	114221
Acetonitrile	NELAP	50.0		ND	μg/L	1	11/17/2015 12:46	114221
Acrolein	NELAP	100		ND	μg/L	1	11/17/2015 12:46	114221
Acrylonitrile	NELAP	5.0		ND	μg/L	1	11/17/2015 12:46	114221
Allyl chloride	NELAP	5.0		ND	μg/L	1	11/17/2015 12:46	114221
Benzene	NELAP	2.0		ND	μg/L	1	11/17/2015 12:46	114221
Bromobenzene	NELAP	5.0		ND	μg/L	1	11/17/2015 12:46	114221
Bromochloromethane	NELAP	5.0		ND	μg/L	1	11/17/2015 12:46	114221
Bromodichloromethane	NELAP	5.0		ND	μg/L	1	11/17/2015 12:46	114221
Bromoform	NELAP	5.0		ND	μg/L	1	11/17/2015 12:46	114221
Bromomethane	NELAP	10.0		ND	μg/L	1	11/17/2015 12:46	114221
Carbon disulfide	NELAP	5.0		ND	μg/L	1	11/17/2015 12:46	114221
Carbon tetrachloride	NELAP	5.0		ND	μg/L	1	11/17/2015 12:46	114221
Chlorobenzene	NELAP	5.0		ND	μg/L	1	11/17/2015 12:46	114221
Chloroethane	NELAP	10.0		ND	μg/L	1	11/17/2015 12:46	114221
Chloroform	NELAP	5.0		ND	μg/L	1	11/17/2015 12:46	114221
Chloromethane	NELAP	10.0		ND	μg/L	1	11/17/2015 12:46	114221
Chloroprene	NELAP	20.0		ND	μg/L	1	11/17/2015 12:46	
cis-1,2-Dichloroethene	NELAP	5.0		ND	μg/L	1	11/17/2015 12:46	
cis-1,3-Dichloropropene	NELAP	5.0		ND	μg/L	1	11/17/2015 12:46	
cis-1,4-Dichloro-2-butene	NELAP	5.0		ND	μg/L	1	11/17/2015 12:46	
Cyclohexanone		50.0		ND	μg/L	1	11/17/2015 12:46	
Dibromochloromethane	NELAP	5.0		ND	μg/L	1	11/17/2015 12:46	
Dibromomethane	NELAP	5.0		ND	μg/L	1	11/17/2015 12:46	114221
Dichlorodifluoromethane	NELAP	10.0		ND	μg/L	1	11/17/2015 12:46	114221
Ethyl acetate	NELAP	10.0		ND	μg/L	1	11/17/2015 12:46	114221
Ethyl ether	NELAP	5.0		ND	μg/L	1	11/17/2015 12:46	114221
Ethyl methacrylate	NELAP	5.0		ND	μg/L	1	11/17/2015 12:46	
Ethylbenzene	NELAP	5.0		ND	μg/L	1	11/17/2015 12:46	114221
Hexachlorobutadiene	NELAP	5.0		ND	μg/L	1	11/17/2015 12:46	
Hexachloroethane	NELAP	10.0		ND	μg/L	1	11/17/2015 12:46	
Iodomethane	NELAP	5.0		ND	μg/L	1	11/17/2015 12:46	
Isopropylbenzene	NELAP	5.0		ND	μg/L	1	11/17/2015 12:46	
m,p-Xylenes	NELAP	5.0		ND	μg/L	1	11/17/2015 12:46	
Methacrylonitrile	NELAP	10.0		ND	μg/L	1	11/17/2015 12:46	
Methyl Methacrylate	NELAP	5.0		ND	μg/L	1	11/17/2015 12:46	114221

http://www.teklabinc.com/

Client: Trihydro Corporation Work Order: 15110842

Client Project: Soil Vapor System Report Date: 19-Nov-15

Matrix: AQUEOUS Collection Date: 11/16/2015 8:30

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Batch
SW-846 5030, 8260B, VOLATI	LE ORGANIC COM	IPOUNDS BY	GC/MS					
Methyl tert-butyl ether	NELAP	2.0		ND	μg/L	1	11/17/2015 12:46	114221
Methylacrylate	NELAP	10.0		ND	μg/L	1	11/17/2015 12:46	114221
Methylene chloride	NELAP	5.0		ND	μg/L	1	11/17/2015 12:46	114221
Naphthalene	NELAP	10.0		ND	μg/L	1	11/17/2015 12:46	114221
n-Butyl acetate		25.0		ND	μg/L	1	11/17/2015 12:46	114221
n-Butylbenzene	NELAP	5.0		ND	μg/L	1	11/17/2015 12:46	114221
n-Heptane		20.0		ND	μg/L	1	11/17/2015 12:46	114221
n-Hexane		20.0		ND	μg/L	1	11/17/2015 12:46	114221
Nitrobenzene	NELAP	50.0		ND	μg/L	1	11/17/2015 12:46	114221
n-Propylbenzene	NELAP	5.0		ND	μg/L	1	11/17/2015 12:46	114221
o-Xylene	NELAP	5.0		ND	μg/L	1	11/17/2015 12:46	114221
Pentachloroethane	NELAP	20.0		ND	μg/L	1	11/17/2015 12:46	114221
p-Isopropyltoluene	NELAP	5.0		ND	μg/L	1	11/17/2015 12:46	114221
Propionitrile	NELAP	50.0		ND	μg/L	1	11/17/2015 12:46	114221
sec-Butylbenzene	NELAP	5.0		ND	μg/L	1	11/17/2015 12:46	114221
Styrene	NELAP	5.0		ND	μg/L	1	11/17/2015 12:46	114221
tert-Butylbenzene	NELAP	5.0		ND	μg/L	1	11/17/2015 12:46	114221
Tetrachloroethene	NELAP	5.0		ND	μg/L	1	11/17/2015 12:46	114221
Tetrahydrofuran	NELAP	20.0		ND	μg/L	1	11/17/2015 12:46	114221
Toluene	NELAP	5.0		ND	μg/L	1	11/17/2015 12:46	114221
trans-1,2-Dichloroethene	NELAP	5.0		ND	μg/L	1	11/17/2015 12:46	114221
trans-1,3-Dichloropropene	NELAP	5.0		ND	μg/L	1	11/17/2015 12:46	114221
trans-1,4-Dichloro-2-butene	NELAP	10.0		ND	μg/L	1	11/17/2015 12:46	114221
Trichloroethene	NELAP	5.0		ND	μg/L	1	11/17/2015 12:46	114221
Trichlorofluoromethane	NELAP	5.0		ND	μg/L	1	11/17/2015 12:46	114221
Vinyl acetate	NELAP	10.0		ND	μg/L	1	11/17/2015 12:46	114221
Vinyl chloride	NELAP	2.0		ND	μg/L	1	11/17/2015 12:46	114221
Surr: 1,2-Dichloroethane-d4		74.7-129		94.8	%REC	1	11/17/2015 12:46	114221
Surr: 4-Bromofluorobenzene		86-119		92.3	%REC	1	11/17/2015 12:46	114221
Surr: Dibromofluoromethane		81.7-123		106.7	%REC	1	11/17/2015 12:46	114221
Surr: Toluene-d8		84.3-114		94.0	%REC	1	11/17/2015 12:46	114221

LCS and LCSD recovered outside upper QC limits for iodomethane. Sample results are below reporting limit. Data is reportable per 2009 TNI Standard (Volume1, Module 4, section 1.7.4.2).

http://www.teklabinc.com/

Client: Trihydro Corporation Work Order: 15110842

SW-846 1020B											
Batch R211617	SampType:	LCS		Units °F							
SampID: LCS-R211	617										Date
Analyses			RL	Qual	Result S	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Ignitability, Closed	Cup		60		82 8	31.00	0	101.2	97	103	11/16/201
Batch R211617	SampType:	DUP		Units °F					RPD	Limit 5	
SampID: 15110768-	002ADUP										Date
Analyses			RL	Qual	Result S	Spike	SPK Ref Val	%REC	RPD Ref \	/al %RPD	Analyzed
Ignitability, Closed	Cup		60		>200				0	0.00	11/16/201
SW-846 3005A, 60	10B, METAL	.S BY I	CP (TO	ΓAL)							
Batch 114194	SampType:	MBLK		Units mg/L							
SampID: MBLK-114	194										Date
Analyses			RL	Qual	Result S	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Lead			0.0150		< 0.0150 0.	01500	0	0	-100	100	11/17/201
Batch 114194	SampType:	LCS		Units mg/L							
SampID: LCS-11419	94										Date Analyzed
Analyses			RL	Qual	Result S		SPK Ref Val			High Limit	
Lead			0.0150		0.507 0	.5000	0	101.3	85	115	11/17/201
Batch 114194	SampType:	MS		Units mg/L							
SampID: 15110818-	002BMS										Date
Analyses			RL	Qual	Result S	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Lead			0.0150		0.527 0	.5000	0.02810	99.7	75	125	11/17/201
Batch 114194	SampType:	MSD		Units mg/L					RPD	Limit 20	
SampID: 15110818-	002BMSD										Date
Analyses			RL	Qual	Result S	Spike	SPK Ref Val	%REC	RPD Ref \	/al %RPD	Analyze
Lead			0.0150		0.525 0	.5000	0.02810	99.5	0.5266	0.23	11/17/201

http://www.teklabinc.com/

Client: Trihydro Corporation Work Order: 15110842
Client Project: Soil Vapor System Report Date: 19-Nov-15

Batch 114191 SampTyp	e: MBLK	Units mg/L						
SampID: MBLK-114191								Date
Analyses	RL	Qual	Result Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
1-Methylnaphthalene	0.00010		ND					11/17/201
Acenaphthene	0.00010		ND					11/17/201
Acenaphthylene	0.00010		ND					11/17/201
Anthracene	0.00010		ND					11/17/201
Benzo(a)anthracene	0.00010		ND					11/17/201
Benzo(a)pyrene	0.00010		ND					11/17/201
Benzo(b)fluoranthene	0.00010		ND					11/17/201
Benzo(g,h,i)perylene	0.00010		ND					11/17/201
Benzo(k)fluoranthene	0.00010		ND					11/17/201
Chrysene	0.00010		ND					11/17/201
Dibenzo(a,h)anthracene	0.00010		ND					11/17/201
Fluoranthene	0.00010		ND					11/17/201
Fluorene	0.00010		ND					11/17/201
Indeno(1,2,3-cd)pyrene	0.00010		ND					11/17/201
Naphthalene	0.00010		ND					11/17/201
Phenanthrene	0.00010		ND					11/17/201
Pyrene	0.00010		ND					11/17/201
Surr: 2-Fluorobiphenyl			0.00274 0.005000		54.8	44.4	89.6	11/17/201
Surr: Nitrobenzene-d5			0.00266 0.005000		53.2	40.9	81.4	11/17/201
Surr: p-Terphenyl-d14			0.00360 0.005000		72.0	54.3	104	11/17/201

atch 114191 SampType	e: LCS	Units mg/L						
mpID: LCS-114191 Analyses	RL	Qual	Result Spike	SPK Ref Val	%REC	Low Limit	High Limit	Date Analyze
1-Methylnaphthalene	0.00010	Quui	0.00288 0.005000		57.6	44.3	94.9	11/17/20
Acenaphthene	0.00010		0.00333 0.005000	-	66.6	50.1	94.9	11/17/20
Acenaphthylene	0.00010		0.00331 0.005000		66.2	50.6	96.9	11/17/20
Anthracene	0.00010		0.00361 0.005000	0	72.2	53.5	94.3	11/17/20
Benzo(a)anthracene	0.00010		0.00388 0.005000	0	77.6	48.3	104	11/17/20
Benzo(a)pyrene	0.00010		0.00369 0.005000	0	73.8	52	103	11/17/2
Benzo(b)fluoranthene	0.00010		0.00362 0.005000	0	72.4	55.3	98.4	11/17/2
Benzo(g,h,i)perylene	0.00010		0.00390).005000	0	78.0	51.1	104	11/17/2
Benzo(k)fluoranthene	0.00010		0.00369 0.005000	0	73.8	56.1	99.3	11/17/2
Chrysene	0.00010		0.00358).005000	0	71.6	54.3	99.4	11/17/2
Dibenzo(a,h)anthracene	0.00010		0.00393).005000	0	78.6	53.7	104	11/17/2
Fluoranthene	0.00010		0.00349).005000	0	69.8	56.8	96.9	11/17/2
Fluorene	0.00010		0.00341).005000	0	68.2	53.6	97	11/17/2
Indeno(1,2,3-cd)pyrene	0.00010		0.00393).005000	0	78.6	53.4	103	11/17/2
Naphthalene	0.00010		0.00301 0.005000	0	60.2	43.4	95	11/17/2
Phenanthrene	0.00010		0.00351 0.005000	0	70.2	53.8	94.2	11/17/2
Pyrene	0.00010		0.00344).005000	0	68.8	56.1	97.1	11/17/2
Surr: 2-Fluorobiphenyl			0.00286 0.005000		57.2	44.4	89.6	11/17/2
Surr: Nitrobenzene-d5			0.00290 0.005000		58.0	40.9	81.4	11/17/2
Surr: p-Terphenyl-d14			0.00356 0.005000		71.2	54.3	104	11/17/2

http://www.teklabinc.com/

Client: Trihydro Corporation Work Order: 15110842

Batch 114191 SampType	e: LCSD	Units mg/L				RPD Lir	nit 40	
SampID: LCSD-114191	D.	0.1	D 1. G 11	SPK Ref Val	0/ DEC	RPD Ref Val	0/ DDD	Date Analyzed
Analyses	RL	Qual	Result Spike					
1-Methylnaphthalene	0.00010		0.00292 0.005000		58.4	0.002880	1.38	11/17/2015
Acenaphthene	0.00010		0.00339 0.005000		67.8	0.003330	1.79	11/17/2015
Acenaphthylene	0.00010		0.00337 0.005000	0	67.4	0.003310	1.80	11/17/2015
Anthracene	0.00010		0.00368 0.005000	0	73.6	0.003610	1.92	11/17/2015
Benzo(a)anthracene	0.00010		0.00395 0.005000	0	79.0	0.003880	1.79	11/17/2015
Benzo(a)pyrene	0.00010		0.00375).005000	0	75.0	0.003690	1.61	11/17/2015
Benzo(b)fluoranthene	0.00010		0.00369 0.005000	0	73.8	0.003620	1.92	11/17/2015
Benzo(g,h,i)perylene	0.00010		0.00393 0.005000	0	78.6	0.003900	0.77	11/17/2015
Benzo(k)fluoranthene	0.00010		0.00368 0.005000	0	73.6	0.003690	0.27	11/17/2015
Chrysene	0.00010		0.00366 0.005000	0	73.2	0.003580	2.21	11/17/2015
Dibenzo(a,h)anthracene	0.00010		0.00397 0.005000	0	79.4	0.003930	1.01	11/17/2015
Fluoranthene	0.00010		0.00352 0.005000	0	70.4	0.003490	0.86	11/17/2015
Fluorene	0.00010		0.00349 0.005000	0	69.8	0.003410	2.32	11/17/2015
Indeno(1,2,3-cd)pyrene	0.00010		0.00395 0.005000	0	79.0	0.003930	0.51	11/17/2015
Naphthalene	0.00010		0.00309 0.005000	0	61.8	0.003010	2.62	11/17/2015
Phenanthrene	0.00010		0.00366 0.005000	0	73.2	0.003510	4.18	11/17/2015
Pyrene	0.00010		0.00359 0.005000	0	71.8	0.003440	4.27	11/17/2015
Surr: 2-Fluorobiphenyl			0.00286 0.005000		57.2			11/17/2015
Surr: Nitrobenzene-d5			0.00296 0.005000		59.2			11/17/2015
Surr: p-Terphenyl-d14			0.00358 0.005000		71.6			11/17/2015

http://www.teklabinc.com/

Client: Trihydro Corporation Work Order: 15110842

SW-846 5030, 8260B, VOLATILE O	RGANIC C	OMPOUNDS	BY GC/MS	3					
Batch 114221 SampType: MBI		Units µg/L							
SampID: MBLK-R151117-1									Date
Analyses	RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
1,1,1,2-Tetrachloroethane	5.0		ND						11/17/2015
1,1,1-Trichloroethane	5.0		ND						11/17/2015
1,1,2,2-Tetrachloroethane	5.0		ND						11/17/2015
1,1,2-Trichloro-1,2,2-trifluoroethane	20.0		ND						11/17/2015
1,1,2-Trichloroethane	5.0		ND						11/17/2015
1,1-Dichloro-2-propanone	50.0		ND						11/17/2015
1,1-Dichloroethane	5.0		ND						11/17/2015
1,1-Dichloroethene	5.0		ND						11/17/2015
1,1-Dichloropropene	5.0		ND						11/17/2015
1,2,3-Trichlorobenzene	5.0		ND						11/17/2015
1,2,3-Trichloropropane	5.0		ND						11/17/2015
1,2,3-Trimethylbenzene	5.0		ND						11/17/2015
1,2,4-Trichlorobenzene	5.0		ND						11/17/2015
1,2,4-Trimethylbenzene	5.0		ND						11/17/2015
1,2-Dibromo-3-chloropropane	5.0		ND						11/17/2015
1,2-Dibromoethane	5.0		ND						11/17/2015
1,2-Dichlorobenzene	5.0		ND						11/17/2015
1,2-Dichloroethane	5.0		ND						11/17/2015
1,2-Dichloropropane	5.0		ND						11/17/2015
1,3,5-Trimethylbenzene	5.0		ND						11/17/2015
1,3-Dichlorobenzene	5.0		ND						11/17/2015
1,3-Dichloropropane	5.0		ND						11/17/2015
1,4-Dichlorobenzene	5.0		ND						11/17/2015
1-Chlorobutane	5.0		ND						11/17/2015
2,2-Dichloropropane	5.0		ND						11/17/2015
2-Butanone	25.0		ND						11/17/2015
2-Chloroethyl vinyl ether	20.0		ND						11/17/2015
2-Chlorotoluene	5.0		ND						11/17/2015
2-Hexanone	25.0		ND						11/17/2015
2-Nitropropane	50.0		ND						11/17/2015
4-Chlorotoluene	5.0		ND						11/17/2015
4-Methyl-2-pentanone	25.0		ND						11/17/2015
Acetone	25.0		ND						11/17/2015
Acetonitrile	50.0		ND						11/17/2015
Acrolein	100		ND						11/17/2015
Acrylonitrile	5.0		ND						11/17/2015
Allyl chloride	5.0		ND						11/17/2015
Benzene	2.0		ND						11/17/2015
Bromobenzene	5.0		ND						11/17/2015
Bromochloromethane	5.0		ND						11/17/2015
Bromodichloromethane	5.0		ND						11/17/2015
Bromoform	5.0		ND						11/17/2015
Bromomethane	10.0		ND						11/17/2015
Carbon disulfide	5.0		ND						11/17/2015
Carbon tetrachloride	5.0		ND						11/17/2015
Chlorobenzene	5.0		ND						11/17/2015
Chloroethane	10.0		ND						11/17/2015

http://www.teklabinc.com/

Client: Trihydro Corporation Work Order: 15110842

W-846 5030, 8260B, VOLAT atch 114221 SampType		Units µg/L						
ampID: MBLK-R151117-1		F9 . -						Date
Analyses	RL	Qual Resu	lt Spike S	SPK Ref Val	%REC	Low Limit	High Limit	Analyz
Chloroform	5.0	NI						11/17/20
Chloromethane	10.0	NI						11/17/20
Chloroprene	20.0	NI						11/17/20
cis-1,2-Dichloroethene	5.0	NI						11/17/20
cis-1,3-Dichloropropene	5.0	NI						11/17/2
cis-1,4-Dichloro-2-butene	5.0	NI						11/17/2
Cyclohexanone	50.0	NI						11/17/2
Dibromochloromethane	5.0	NI						11/17/2
Dibromomethane	5.0	NI						11/17/2
Dichlorodifluoromethane	10.0	NI						11/17/2
Ethyl acetate	10.0	NI						11/17/2
Ethyl ether	5.0	NI NI						11/17/2
Ethyl methacrylate	5.0	NI NI						11/17/2
Ethylbenzene	5.0	NI NI						11/17/2
Hexachlorobutadiene	5.0	NI NI						11/17/2
Hexachloroethane	10.0	NI NI						11/17/2
Iodomethane	5.0	NI NI						11/17/2
Isopropylbenzene	5.0	NI NI						11/17/2
m,p-Xylenes	5.0	NI NI						11/17/2
Methacrylonitrile	10.0	NI NI						11/17/2
Methyl Methacrylate	5.0	NI NI						11/17/2
Methyl tert-butyl ether	2.0	NI NI						11/17/2
Methylacrylate	10.0	NI NI						11/17/2
Methylene chloride	5.0	NI NI						11/17/2
Naphthalene	10.0	NI NI						11/17/2
n-Butyl acetate	25.0	NI NI						11/17/2
·	5.0	NI NI						11/17/2
n-Butylbenzene n-Heptane	20.0	NI NI						11/17/2
•		NI NI						
n-Hexane	20.0							11/17/2
Nitrobenzene	50.0	NI NI						11/17/2
n-Propylbenzene	5.0	NE						11/17/2
o-Xylene	5.0	NE						11/17/2
Pentachloroethane	20.0	NI NI						11/17/2
p-Isopropyltoluene	5.0	NI						11/17/2
Propionitrile	50.0	NI						11/17/2
sec-Butylbenzene	5.0	NI						11/17/2
Styrene	5.0	NI						11/17/2
tert-Butylbenzene	5.0	NI						11/17/2
Tetrachloroethene	5.0	NI						11/17/2
Tetrahydrofuran	20.0	NI						11/17/2
Toluene	5.0	NI						11/17/2
trans-1,2-Dichloroethene	5.0	NI						11/17/2
trans-1,3-Dichloropropene	5.0	NI						11/17/2
trans-1,4-Dichloro-2-butene	10.0	NI						11/17/2
Trichloroethene	5.0	N						11/17/2
Trichlorofluoromethane	5.0	N						11/17/2
Vinyl acetate	10.0	NI)					11/17/2

http://www.teklabinc.com/

Client: Trihydro Corporation Work Order: 15110842
Client Project: Soil Vapor System Report Date: 19-Nov-15

SW-846 5030, 8260B, VOLATI	LE ORGANIC C	OMPOUNDS	BY GC/M	S					
Batch 114221 SampType:	MBLK	Units µg/L							
SampID: MBLK-R151117-1									Date
Analyses	RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Vinyl chloride	2.0		ND						11/17/2015
Surr: 1,2-Dichloroethane-d4			47.4	50.00		94.8	74.7	129	11/17/2015
Surr: 4-Bromofluorobenzene			46.5	50.00		93.1	86	119	11/17/2015
Surr: Dibromofluoromethane			51.9	50.00		103.8	81.7	123	11/17/2015
Surr: Toluene-d8			46.4	50.00		92.9	84.3	114	11/17/2015

http://www.teklabinc.com/

Client: Trihydro CorporationWork Order: 15110842Client Project: Soil Vapor SystemReport Date: 19-Nov-15

tch 114221 SampType: LCSI	D	Units µg/L					RPD	Limit 40	
mpID: LCSD-R151117-1									Date
Analyses	RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref \	al %RPD	Analyz
1,1,1,2-Tetrachloroethane	5.0		53.6	50.00	0	107.3	51.92	3.24	11/17/2
1,1,1-Trichloroethane	5.0		55.2	50.00	0	110.3	53.09	3.84	11/17/2
1,1,2,2-Tetrachloroethane	5.0		45.3	50.00	0	90.5	44.88	0.84	11/17/2
1,1,2-Trichloro-1,2,2-trifluoroethane	20.0		54.5	50.00	0	109.0	51.48	5.66	11/17/2
1,1,2-Trichloroethane	5.0		49.2	50.00	0	98.4	48.69	1.06	11/17/2
1,1-Dichloro-2-propanone	50.0		122	125.0	0	97.8	114.8	6.27	11/17/2
1,1-Dichloroethane	5.0		51.0	50.00	0	102.1	49.03	4.00	11/17/2
1,1-Dichloroethene	5.0		51.1	50.00	0	102.1	48.04	6.11	11/17/2
1,1-Dichloropropene	5.0		54.1	50.00	0	108.1	51.07	5.69	11/17/2
1,2,3-Trichlorobenzene	5.0		52.9	50.00	0	105.8	51.23	3.19	11/17/2
1,2,3-Trichloropropane	5.0		45.0	50.00	0	89.9	44.79	0.38	11/17/2
1,2,3-Trimethylbenzene	5.0		47.0	50.00	0	94.1	45.62	3.06	11/17/2
1,2,4-Trichlorobenzene	5.0		50.6	50.00	0	101.1	48.77	3.58	11/17/2
1,2,4-Trimethylbenzene	5.0		47.4	50.00	0	94.7	46.26	2.33	11/17/2
1,2-Dibromo-3-chloropropane	5.0		44.0	50.00	0	88.1	43.33	1.63	11/17/2
1,2-Dibromoethane	5.0		49.4	50.00	0	98.8	48.11	2.65	11/17/2
1,2-Dichlorobenzene	5.0		48.8	50.00	0	97.6	47.25	3.21	11/17/2
1,2-Dichloroethane	5.0		50.4	50.00	0	100.8	49.17	2.45	11/17/2
1,2-Dichloropropane	5.0		52.8	50.00	0	105.7	50.40	4.71	11/17/2
1,3,5-Trimethylbenzene	5.0		47.6	50.00	0	95.1	46.35	2.56	11/17/2
1,3-Dichlorobenzene	5.0		49.4	50.00	0	98.8	47.98	2.90	11/17/2
1,3-Dichloropropane	5.0		47.3	50.00	0	94.7	46.76	1.21	11/17/2
1,4-Dichlorobenzene	5.0		48.7	50.00	0	97.4	47.52	2.43	11/17/2
1-Chlorobutane	5.0		51.8	50.00	0	103.5	49.14	5.19	11/17/2
2,2-Dichloropropane	5.0		52.7	50.00	0	105.4	50.71	3.85	11/17/2
2-Butanone	25.0		111	125.0	0	89.0	110.7	0.57	11/17/2
2-Chloroethyl vinyl ether	20.0		48.0	50.00	0	96.0	47.39	1.32	11/17/2
2-Chlorotoluene	5.0		46.1	50.00	0	92.2	44.48	3.53	11/17/2
2-Gridotolderie 2-Hexanone	25.0		101	125.0	0	81.1	101.4	0.01	11/17/2
2-Nitropropane	50.0		551	500.0	0	110.1	542.2	1.53	11/17/2
	5.0			50.00					11/17/2
4-Chlorotoluene 4-Methyl-2-pentanone	25.0		47.0	125.0	0 0	94.1 89.1	45.16 109.8	4.08 1.38	11/17/2
					_				
Acetone	25.0		104	125.0	0	83.4	106.2	1.82	11/17/2 11/17/2
Accetonitrile	50.0		488	500.0	0	97.6	456.5	6.62	
Acrolein	100		420	500.0	0	84.0	440.2	4.73	11/17/2
Acrylonitrile	5.0		49.9	50.00	0	99.8	49.04	1.72	11/17/2
Allyl chloride	5.0		53.0	50.00	0	106.1	50.98	3.94	11/17/2
Benzene	2.0		53.3	50.00	0	106.7	51.48	3.55	11/17/2
Bromobenzene	5.0		43.9	50.00	0	87.9	43.22	1.65	11/17/2
Bromochloromethane	5.0		50.5	50.00	0	101.1	49.43	2.22	11/17/2
Bromodichloromethane	5.0		55.3	50.00	0	110.7	52.99	4.32	11/17/2
Bromoform	5.0		58.9	50.00	0	117.9	58.43	0.85	11/17/2
Bromomethane	10.0		73.7	50.00	0	147.4	65.32	12.06	11/17/2
Carbon disulfide	5.0		50.9	50.00	0	101.8	48.79	4.19	11/17/2
Carbon tetrachloride	5.0		58.3	50.00	0	116.5	55.06	5.66	11/17/2
Chlorobenzene	5.0		49.7	50.00	0	99.5	48.70	2.09	11/17/2

http://www.teklabinc.com/

Client: Trihydro CorporationWork Order: 15110842Client Project: Soil Vapor SystemReport Date: 19-Nov-15

ampID: LCSD-R151117-1		Units µg/L					RPD		
impib. Loop Kioiiii									Date
Analyses	RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref \	Val %RPD	Analyze
Chloroform	5.0	-	52.7	50.00	0	105.4	50.48	4.30	11/17/20
Chloromethane	10.0		50.4	50.00	0	100.8	46.88	7.22	11/17/20
Chloroprene	20.0		47.9	50.00	0	95.8	44.62	7.11	11/17/20
cis-1,2-Dichloroethene	5.0		50.7	50.00	0	101.4	48.73	3.94	11/17/20
cis-1,3-Dichloropropene	5.0		56.1	50.00	0	112.1	55.03	1.85	11/17/20
cis-1,4-Dichloro-2-butene	5.0		49.6	50.00	0	99.2	49.60	0.00	11/17/20
Cyclohexanone	50.0		408	500.0	0	81.7	404.9	0.87	11/17/20
Dibromochloromethane	5.0		55.9	50.00	0	111.8	54.93	1.79	11/17/20
Dibromomethane	5.0		54.2	50.00	0	108.3	52.91	2.35	11/17/20
Dichlorodifluoromethane	10.0		53.7	50.00	0	107.4	50.92	5.28	11/17/20
Ethyl acetate	10.0		49.1	50.00	0	98.1	48.17	1.85	11/17/20
Ethyl ether	5.0		49.7	50.00	0	99.5	47.70	4.17	11/17/20
Ethyl methacrylate	5.0		47.3	50.00	0	94.5	45.87	3.01	11/17/20
Ethylbenzene	5.0		49.6	50.00	0	99.2	47.80	3.70	11/17/20
Hexachlorobutadiene	5.0		54.1	50.00	0	108.2	52.11	3.75	11/17/20
Hexachloroethane	10.0		53.1	50.00	0	106.2	51.31	3.43	11/17/20
Iodomethane	5.0	S	77.9	50.00	0	155.8	77.10	1.01	11/17/20
Isopropylbenzene	5.0	· ·	51.2	50.00	0	102.5	49.34	3.80	11/17/20
m,p-Xylenes	5.0		98.8	100.0	0	98.8	95.44	3.43	11/17/20
Methacrylonitrile	10.0		50.7	50.00	0	101.4	49.17	3.10	11/17/20
Methyl Methacrylate	5.0		47.6	50.00	0	95.1	46.60	2.02	11/17/20
Methyl tert-butyl ether	2.0		58.1	50.00	0	116.1	56.24	3.18	11/17/20
Methylacrylate	10.0		53.2	50.00	0	106.5	51.64	3.07	11/17/20
Methylene chloride	5.0		46.9	50.00	0	93.7	45.43	3.10	11/17/20
Naphthalene	10.0		48.4	50.00	0	96.8	47.94	0.98	11/17/20
n-Butyl acetate	25.0		42.2	50.00	0	84.5	42.11	0.33	11/17/20
n-Butylbenzene	5.0		46.7	50.00	0	93.4	44.68	4.44	11/17/2
n-Heptane	20.0		52.6	50.00	0	105.3	49.99	5.16	11/17/2
n-Hexane	20.0		49.3	50.00	0	98.7	47.47	3.86	11/17/2
Nitrobenzene	50.0		728	500.0	0	145.7	718.6	1.36	11/17/2
n-Propylbenzene	5.0		46.6	50.00	0	93.2	44.81	3.92	11/17/2
o-Xylene	5.0		48.3	50.00	0	96.6	47.06	2.58	11/17/20
Pentachloroethane	20.0		51.7	50.00	0	103.3	50.67	1.93	11/17/20
p-Isopropyltoluene	5.0		49.3	50.00	0	98.6	47.75	3.19	11/17/20
Propionitrile	50.0		509	500.0	0	101.8	504.6	0.90	11/17/20
sec-Butylbenzene	5.0			50.00	0	96.7	46.64	3.62	11/17/20
•	5.0		48.4 50.2	50.00		100.4	48.75	2.91	11/17/20
Styrene					0				11/17/20
tert-Butylbenzene	5.0		45.5	50.00	0	91.0	43.73	3.99	
Tetrachloroethene	5.0		51.2	50.00	0	102.5	49.49	3.46	11/17/20
Tetrahydrofuran	20.0		44.9	50.00	0	89.8	44.89	0.02	11/17/20
Toluene	5.0		49.0	50.00	0	98.1	46.82	4.61	11/17/20
trans-1,2-Dichloroethene	5.0		52.0	50.00	0	104.0	48.96	6.00	11/17/20
trans-1,3-Dichloropropene	5.0		48.8	50.00	0	97.6	47.51	2.72	11/17/2
trans-1,4-Dichloro-2-butene	10.0		42.8	50.00	0	85.5	42.53	0.52	11/17/2
Trichloroethene	5.0		54.1	50.00	0	108.3	52.50	3.08	11/17/20
Trichlorofluoromethane Vinyl acetate	5.0 10.0		52.2 53.9	50.00 50.00	0 0	104.3 107.8	48.92 50.53	6.39 6.49	11/17/20 11/17/20

http://www.teklabinc.com/

Client: Trihydro Corporation Work Order: 15110842
Client Project: Soil Vapor System Report Date: 19-Nov-15

SW-846 5030, 8260B, VOLAT	ILE ORG	SANIC C	OMPOUNDS	BY GC/M	S					
Batch 114221 SampType:	LCSD		Units µg/L					RPD Li	mit 40	
SampID: LCSD-R151117-1										Date
Analyses		RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref Val	%RPD	Analyzed
Vinyl chloride		2.0		50.4	50.00	0	100.9	47.32	6.36	11/17/2015
Surr: 1,2-Dichloroethane-d4				47.5	50.00		95.0			11/17/2015
Surr: 4-Bromofluorobenzene				46.3	50.00		92.6			11/17/2015
Surr: Dibromofluoromethane				53.3	50.00		106.5			11/17/2015
Surr: Toluene-d8				47.2	50.00		94.5			11/17/2015

http://www.teklabinc.com/

Client: Trihydro Corporation Work Order: 15110842

SW-846 5030, 8260B, VOLATILE O	RGANIC C	OMPOUNDS BY GC/N	IS					
Satch 114221 SampType: LCS	6	Units µg/L						
SampID: LCS-R151117-1								Date
Analyses	RL	Qual Resul	t Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
1,1,1,2-Tetrachloroethane	5.0	51.9	50.00	0	103.8	81.9	115	11/17/201
1,1,1-Trichloroethane	5.0	53.1	50.00	0	106.2	79.4	124	11/17/201
1,1,2,2-Tetrachloroethane	5.0	44.9	50.00	0	89.8	74.7	116	11/17/201
1,1,2-Trichloro-1,2,2-trifluoroethane	20.0	51.5	50.00	0	103.0	72.9	121	11/17/201
1,1,2-Trichloroethane	5.0	48.7	50.00	0	97.4	80.8	111	11/17/201
1,1-Dichloro-2-propanone	50.0	115	125.0	0	91.8	66.3	130	11/17/201
1,1-Dichloroethane	5.0	49.0	50.00	0	98.1	79.4	114	11/17/201
1,1-Dichloroethene	5.0	48.0	50.00	0	96.1	74.1	117	11/17/201
1,1-Dichloropropene	5.0	51.1	50.00	0	102.1	81.7	116	11/17/201
1,2,3-Trichlorobenzene	5.0	51.2	50.00	0	102.5	79.7	118	11/17/201
1,2,3-Trichloropropane	5.0	44.8	50.00	0	89.6	77.3	112	11/17/201
1,2,3-Trimethylbenzene	5.0	45.6	50.00	0	91.2	79.9	119	11/17/201
1,2,4-Trichlorobenzene	5.0	48.8	50.00	0	97.5	79.3	118	11/17/201
1,2,4-Trimethylbenzene	5.0	46.3	50.00	0	92.5	78.7	115	11/17/201
1,2-Dibromo-3-chloropropane	5.0	43.3	50.00	0	86.7	76	122	11/17/201
1,2-Dibromoethane	5.0	48.1	50.00	0	96.2	80.8	114	11/17/201
1,2-Dichlorobenzene	5.0	47.2	50.00	0	94.5	78.3	112	11/17/201
1,2-Dichloroethane	5.0	49.2		0	98.3	70.6	118	11/17/201
1,2-Dichloropropane	5.0	50.4		0	100.8	79.6	113	11/17/201
1,3,5-Trimethylbenzene	5.0	46.4		0	92.7	77.5	115	11/17/201
1,3-Dichlorobenzene	5.0	48.0		0	96.0	78.6	117	11/17/201
1,3-Dichloropropane	5.0	46.8		0	93.5	78.8	112	11/17/201
1,4-Dichlorobenzene	5.0	47.5		0	95.0	77.8	114	11/17/201
1-Chlorobutane	5.0	49.1		0	98.3	78.6	115	11/17/201
2,2-Dichloropropane	5.0	50.7		0	101.4	74.9	130	11/17/201
2-Butanone	25.0	111	125.0	0	88.5	70.7	136	11/17/201
2-Chloroethyl vinyl ether	20.0	47.4		0	94.8	52.5	145	11/17/201
2-Chlorotoluene	5.0	44.5		0	89.0	77.4	114	11/17/201
2-Hexanone	25.0	101	125.0	0	81.1	73.3	125	11/17/201
2-Nitropropane	50.0	542		0	108.4	67.3	139	11/17/201
4-Chlorotoluene	5.0	45.2		0	90.3	78.3	115	11/17/201
4-Methyl-2-pentanone	25.0		125.0	0	87.8	76.3	122	11/17/201
Acetone	25.0	106	125.0	0	84.9	56.4	147	11/17/201
Acetonitrile	50.0	457		0	91.3	59.3	129	11/17/201
Acrolein	100	440		0	88.0	1	201	11/17/201
Acrylonitrile	5.0	49.0		0	98.1	74.1	128	11/17/201
Allyl chloride	5.0	51.0		0	102.0	71.5	123	11/17/201
Benzene	2.0		50.00	0	103.0	80	114	11/17/201
Bromobenzene	5.0		50.00	0	86.4	73.2	118	11/17/201
Bromochloromethane	5.0		50.00	0	98.9	73.2	121	11/17/201
Bromodichloromethane	5.0	53.0		0	106.0	81.6	121	11/17/201
Bromoform Bromomethane	5.0 10.0	58.4		0	116.9	83.1	127 154	11/17/201
	10.0		50.00	0	130.6	44.4	154	11/17/201
Carbon disulfide	5.0	48.8		0	97.6	73.2	118	11/17/201
Carbon tetrachloride	5.0	55.1		0	110.1	79.4	130	11/17/201
Chlorophenzene	5.0		50.00	0	97.4	81.4	110	11/17/201
Chloroethane	10.0	51.2	50.00	0	102.3	52.1	137	11/17/201

http://www.teklabinc.com/

Client: Trihydro Corporation Work Order: 15110842

SW-846 5030, 8260B, VOLAT	ILE ORGANIC C	OMPOUNDS	BY GC/M	S					
Batch 114221 SampType:	LCS	Units µg/L							
SampID: LCS-R151117-1									Date
Analyses	RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Chloroform	5.0	Q 0.002		50.00	0	101.0	82.7	116	11/17/2015
Chloromethane	10.0		46.9	50.00	0	93.8	48.2	144	11/17/2015
Chloroprene	20.0		44.6	50.00	0	89.2	80.6	126	11/17/2015
cis-1,2-Dichloroethene	5.0		48.7	50.00	0	97.5	78.2	116	11/17/2015
cis-1,3-Dichloropropene	5.0		55.0	50.00	0	110.1	83	119	11/17/2015
cis-1,4-Dichloro-2-butene	5.0		49.6	50.00	0	99.2	60.7	137	11/17/2015
Cyclohexanone	50.0		405	500.0	0	81.0	54.2	145	11/17/2015
Dibromochloromethane	5.0		54.9	50.00	0	109.9	81.2	121	11/17/2015
Dibromomethane	5.0		52.9	50.00	0	105.8	78.3	118	11/17/2015
Dichlorodifluoromethane	10.0		50.9	50.00	0	101.8	20.6	154	11/17/2015
Ethyl acetate	10.0				0	96.3	73.1	116	11/17/2015
Ethyl ether	5.0		47.7	50.00	0	95.4	75.2	109	11/17/2015
Ethyl methacrylate	5.0		45.9	50.00	0	91.7	80.1	113	11/17/2015
Ethylbenzene	5.0		47.8	50.00	0	95.6	77.2	113	11/17/2015
Hexachlorobutadiene	5.0		52.1	50.00	0	104.2	77.3	123	11/17/2015
Hexachloroethane	10.0		51.3	50.00	0	102.6	74.6	117	11/17/2015
Iodomethane	5.0	S	77.1	50.00	0	154.2	61.3	140	11/17/2015
Isopropylbenzene	5.0		49.3	50.00	0	98.7	81.3	114	11/17/2015
m,p-Xylenes	5.0		95.4	100.0	0	95.4	79.6	113	11/17/2015
Methacrylonitrile	10.0			50.00	0	98.3	77.2	125	11/17/2015
Methyl Methacrylate	5.0			50.00	0	93.2	74.2	121	11/17/2015
Methyl tert-butyl ether	2.0			50.00	0	112.5	76.8	117	11/17/2015
Methylacrylate	10.0		51.6	50.00	0	103.3	78	124	11/17/2015
Methylene chloride	5.0		45.4	50.00	0	90.9	74.1	114	11/17/2015
Naphthalene	10.0		47.9	50.00	0	95.9	77.9	122	11/17/2015
n-Butyl acetate	25.0		42.1	50.00	0	84.2	74	120	11/17/2015
n-Butylbenzene	5.0		44.7	50.00	0	89.4	71.1	120	11/17/2015
n-Heptane	20.0		50.0	50.00	0	100.0	67.4	129	11/17/2015
n-Hexane	20.0			50.00	0	94.9	68.4	126	11/17/2015
Nitrobenzene	50.0		719	500.0	0	143.7	37.9	181	11/17/2015
n-Propylbenzene	5.0		44.8	50.00	0	89.6	74.6	118	11/17/2015
o-Xylene	5.0			50.00	0	94.1	80.1	111	11/17/2015
Pentachloroethane	20.0			50.00	0	101.3	78.8	117	11/17/2015
p-Isopropyltoluene	5.0			50.00	0	95.5	77.6	118	11/17/2015
Propionitrile	50.0			500.0	0	100.9	72.9	137	11/17/2015
sec-Butylbenzene	5.0			50.00	0	93.3	74.5	119	11/17/2015
Styrene	5.0			50.00	0	97.5	83.4	113	11/17/2015
tert-Butylbenzene	5.0		43.7	50.00	0	87.5	75.9	114	11/17/2015
Tetrachloroethene	5.0			50.00	0	99.0	73.5 72.5	125	11/17/2015
Tetrahydrofuran	20.0		44.9	50.00	0	89.8	69.6	125	11/17/2015
Toluene	5.0		46.8	50.00	0	93.6	77.5	113	11/17/2015
trans-1,2-Dichloroethene	5.0			50.00	0	97.9	77.5 79	113	11/17/2015
trans-1,3-Dichloropropene	5.0			50.00	0	95.0	79 78	115	11/17/2015
trans-1,4-Dichloro-2-butene	10.0			50.00	0	95.0 85.1	63.3	115	11/17/2015
•									
Trichloroethene Trichlorofluoromethane	5.0			50.00 50.00	0	105.0	84.4	114	11/17/2015
	5.0		48.9		0	97.8	75.2	132	11/17/2015
Vinyl acetate	10.0		50.5	50.00	0	101.1	64.5	127	11/17/2015

http://www.teklabinc.com/

Client: Trihydro Corporation Work Order: 15110842

Client Project: Soil Vapor System Report Date: 19-Nov-15

Client Project: Soil Vapor Syst	em						Report D	ate: 19-Nov	/-15
SW-846 5030, 8260B, VOLATILE	ORGANIC C	OMPOUNDS	BY GC/M	S					
Batch 114221 SampType: l	_CS	Units µg/L							
SampID: LCS-R151117-1 Analyses	RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Date Analyzed
Vinyl chloride	2.0	•		50.00	0	94.6	58	134	11/17/201
Surr: 1,2-Dichloroethane-d4			47.2	50.00		94.4	74.7	129	11/17/201
Surr: 4-Bromofluorobenzene				50.00		92.3	86	119	11/17/201
Surr: Dibromofluoromethane				50.00		106.3	81.7	123	11/17/201
Surr: Toluene-d8			46.6	50.00		93.2	84.1	114	11/17/201
Batch 114221 SampType:	MS	Units mg/L							
SampID: 15110847-001BMS									Date Analyze
Analyses	RL	Qual			SPK Ref Val			High Limit	
1,1-Dichloroethene	0.500			5.000	0	99.8	61.3	123	11/17/20
1,2-Dichloroethane	0.500			5.000	0	98.1	71.5	116	11/17/20
1,4-Dichlorobenzene	0.500			5.000	0	94.6	76.9	113	11/17/20
2-Butanone	2.50			5.000	0	88.5	64.1	132	11/17/20
Benzene	0.200			5.000	0	105.2	81.5	113	11/17/20
Carbon tetrachloride	0.500			5.000	0	110.6	55.5	125	11/17/20
Chlorobenzene	0.500			5.000	0	98.9	81.8	111	11/17/20
Chloroform	0.500			5.000	0	99.3	81	115	11/17/20
Tetrachloroethene	0.500		4.99	5.000	0	99.8	61.7	114	11/17/20
Trichloroethene	0.500		5.40	5.000	0	108.0	74.4	117	11/17/20
Vinyl chloride	0.200		4.99	5.000	0	99.8	45.7	130	11/17/20
Surr: 1,2-Dichloroethane-d4				5.000		96.4	74.7	129	11/17/20
Surr: 4-Bromofluorobenzene			4.59			91.9	86	119	11/17/20
Surr: Dibromofluoromethane Surr: Toluene-d8			5.31 4.67	5.000 5.000		106.3 93.4	81.7 84.3	123 114	11/17/20 11/17/20
									,,_0
Batch 114221 SampType: I	MSD	Units mg/L					RPD	Limit 20	_
SampID: 15110847-001BMSD Analyses	RL	Qual	Result	Snike	SPK Ref Val	%REC	RPD Ref \	/al %RPD	Date Analyze
1,1-Dichloroethene	0.500	Quui		5.000	0	104.4	4.989	4.51	11/17/20
1,2-Dichloroethane	0.500			5.000	0	103.6	4.905	5.43	11/17/20
1,4-Dichlorobenzene	0.500			5.000	0	96.8	4.732	2.30	11/17/20
2-Butanone	2.50			5.000	0	90.6	4.425	2.32	11/17/20
Benzene	0.200			5.000	0	109.2	5.261	3.75	11/17/20
Carbon tetrachloride	0.500			5.000	0	116.1	5.530	4.87	11/17/20
Chlorobenzene	0.500			5.000	0	101.9	4.945	2.97	11/17/20
Chloroform	0.500			5.000	0	103.5	4.966	4.08	11/17/20
Tetrachloroethene	0.500			5.000	0	103.3	4.989	2.51	11/17/20
Trichloroethene	0.500			5.000	0	112.5	5.402	4.03	11/17/20
Vinyl chloride	0.200			5.000	0	104.9	4.991	4.96	11/17/20
Surr: 1,2-Dichloroethane-d4	0.200			5.000	3	98.5	7.001	-1.50	11/17/20
Surr: 4-Bromofluorobenzene				5.000		92.0			11/17/20
Surr: Dibromofluoromethane				5.000		107.8			11/17/20
									11/17/20
Surr: Toluene-d8			4.59	5.000		91.8			11/17/

http://www.teklabinc.com/

Client: Trihydro Corporation Work Order: 15110842

Batch 114221 SampType: M	1S	Units µg/L							
SampID: 15110959-002AMS									Date
Analyses	RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
1,1-Dichloroethene	5.0		47.2	50.00	0	94.4	35.7	136	11/17/2015
Benzene	2.0		53.7	50.00	0	107.4	62.5	121	11/17/2015
Chlorobenzene	5.0		49.2	50.00	0	98.4	78.6	114	11/17/2015
Ethylbenzene	5.0		49.9	50.00	0	99.8	74.4	130	11/17/2015
m,p-Xylenes	5.0		49.0	50.00	0	98.1	70.5	126	11/17/2015
o-Xylene	5.0		46.8	50.00	0	93.5	71.2	124	11/17/2015
Toluene	5.0		47.0	50.00	0	93.9	69.5	118	11/17/2015
Trichloroethene	5.0		56.5	50.00	0	113.1	69.4	117	11/17/2015
Surr: 1,2-Dichloroethane-d4			48.9	50.00		97.8	74.7	129	11/17/2015
Surr: 4-Bromofluorobenzene			46.6	50.00		93.2	86	119	11/17/2015
Surr: Dibromofluoromethane			52.1	50.00		104.2	81.7	123	11/17/2015
Surr: Toluene-d8			45.9	50.00		91.9	84.3	114	11/17/2015

Batch 114221 SampType: M	SD	Units µg/L					RPD	Limit 20	
SampID: 15110959-002AMSD									Date
Analyses	RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref V	al %RPD	Analyzed
1,1-Dichloroethene	5.0		43.8	50.00	0	87.6	47.22	7.49	11/17/2015
Benzene	2.0		49.5	50.00	0	98.9	53.72	8.24	11/17/2015
Chlorobenzene	5.0		46.5	50.00	0	93.1	49.19	5.56	11/17/2015
Ethylbenzene	5.0		47.5	50.00	0	95.0	49.92	4.97	11/17/2015
m,p-Xylenes	5.0		46.5	50.00	0	93.1	49.05	5.27	11/17/2015
o-Xylene	5.0		44.4	50.00	0	88.7	46.75	5.27	11/17/2015
Toluene	5.0		44.6	50.00	0	89.1	46.95	5.22	11/17/2015
Trichloroethene	5.0		53.0	50.00	0	106.0	56.53	6.45	11/17/2015
Surr: 1,2-Dichloroethane-d4			48.8	50.00		97.6			11/17/2015
Surr: 4-Bromofluorobenzene			46.6	50.00		93.2			11/17/2015
Surr: Dibromofluoromethane			53.2	50.00		106.4			11/17/2015
Surr: Toluene-d8			46.3	50.00		92.6			11/17/2015

Client: Trihydro Corporation

Receiving Check List

http://www.teklabinc.com/

Work Order: 15110842

Client Project: Soil Vapor System Report Date: 19-Nov-15 Carrier: Nick Harvey Received By: KF Elizabeth a thurley Kalyn Foecke Reviewed by: Completed by: On: On: 16-Nov-15 16-Nov-15 Kalyn Foecke Elizabeth A. Hurley Extra pages included 0 Pages to follow: Chain of custody Shipping container/cooler in good condition? Yes 🗸 No Not Present Temp °C 9.62 Type of thermal preservation? Ice 🗹 Blue Ice None Dry Ice Yes 🗹 No 🗀 Chain of custody present? Yes 🗹 Chain of custody signed when relinquished and received? No __ Yes 🗹 Chain of custody agrees with sample labels? No __ Yes 🗹 Samples in proper container/bottle? No 🗀 Yes 🗹 No 🗌 Sample containers intact? Sufficient sample volume for indicated test? Yes 🗸 No Yes 🗹 All samples received within holding time? No NA 🗸 Field _ Lab 🗌 Reported field parameters measured: Yes 🗹 No 🗌 Container/Temp Blank temperature in compliance? When thermal preservation is required, samples are compliant with a temperature between 0.1°C - 6.0°C, or when samples are received on ice the same day as collected. Yes 🗸 No VOA vials Water - at least one vial per sample has zero headspace? No 🗀 Yes No 🗌 No TOX containers Water - TOX containers have zero headspace? No 🗌 Yes 🗹 Water - pH acceptable upon receipt? NA 🗸 NPDES/CWA TCN interferences checked/treated in the field? Yes No 🗌 Any No responses must be detailed below or on the COC.

CHAIN OF CUSTODY

pg. ___ of ___ Work Order # <u>\\\$\10842</u>

TEKLAB, INC. 5445 Horseshoe Lake Road ~ Collinsville, IL 62234 ~ Phone: (618) 344-1004 ~ Fax: (618) 344-1005

Client:	Triby	dro								1	sam	ple	s or	1. (φı	ce	□ B	lue l	ce		lo Ic	e	<u>9.(</u>	لاه	_°C			
Address:	1252	Comme	cal	2	<u>. د</u>	-e				F	³res	erv	ed	in:		Lab		SEF I	eld `u#		FOR	LAB	USE	ONL	Y			
City / State / Zi	p: Larami	e, h	14	B	24	27	0		1		_ab	Not	es:					œ	r with	10								
Contact: Ja	dd agelty	ne Phor	ne: <u>5</u> _	13	4	29	74	170	7		12/	N	Lek	LS	<u>γu</u>	<u> </u>	€26	WW	16				Λ	<u>V</u>				
E-Mail: Tasa	p: Laram; odd aselty olyne@ Tril	Com Fax:								(Con	me	nts	. 4														
 Are these sample Are there any req	s known to be involved in s known to be hazardous? uired reporting limits to be t section. □ Yes □ No	? □Yes □N	lo	•	•														C_{0l}	ek Iri	lat er#),[1 }id	IC.					
Project	Name / Number	Sa	imple Col	lecto	r's	Nan	ne _					MΑ	TRI	X					IDIC	ATE	ANA	LÝS	iŝ Ri	QUE	STE	<u>D</u>		
Soil	Vapor 5451	eu -	Tod	1	Ha	! Un	+	` ~	- i	/		ter				Ì			_,									
Results F	Requested	Billing Instru	uctions	# and	d Ty	ype o	f Co	nta	ine	rs		Drinking Water		ı	<u>e</u>		4	0	A									
	Day (100% Surcharge) 2 Day (50% Surcharge)			SES		- 2		_	Š		e	king		lge	Waste	\tilde{Q}	1/4 4	64	2	-								
	Sample Identificatio	n Date/Time	Sampled	UNPRES		H ₂ SO ₄	뒫	le O	aHS	the	Water	Drin	Soil	Sludge	Sp. 1	7	T	/	`									
เรแอรนว	Tank 3	11/16/2	00-20	-	+		 -	-	_	۲		-	\dashv		╣	V	8		5		 	 -	 		-		\dashv	
-001	- JANE J	11/10/19	0830		\dagger	+								\dashv		-	\subset	T			\vdash		+	 			_	
		- 			7	\top													·····									
																							<u> </u>					
																											ł	
																							1					
														Ī		0												
R	elinquished By			Date	e / 1	Γime		,57		,	I					Reca	ived	Ву			·		٤٠.	_e Dat	te / Ti	me		
Lold			1/16	15	_	0	1,1	15	<u> </u>					4		AL.		- A				111	لولل	16	<u> 1711</u>	F		
	XX		141(d(5			LI)_		4	K	(Q	Ur.	<u>~</u>	7	ere		<u>e</u>			Ju,	16	15 1	12e	>		
	<u> </u>										_				<u> </u>							 				,		
<u> </u>				W 200 Fee 127		· · · · · ·			TO SERVICE	7			~~				·											

WorkOrder: 15120758

December 15, 2015

Todd Aseltyne Trihydro Corporation 1252 Commerce Drive Laramie, WY 82070 TEL: (513) 429-7470

FAX:

RE: Soil Vapor System

Dear Todd Aseltyne:

TEKLAB, INC received 1 sample on 12/10/2015 11:00:00 AM for the analysis presented in the following report.

Samples are analyzed on an as received basis unless otherwise requested and documented. The sample results contained in this report relate only to the requested analytes of interest as directed on the chain of custody. NELAP accredited fields of testing are indicated by the letters NELAP under the Certification column. Unless otherwise documented within this report, Teklab Inc. analyzes samples utilizing the most current methods in compliance with 40CFR. All tests are performed in the Collinsville, IL laboratory unless otherwise noted in the Case Narrative.

All quality control criteria applicable to the test methods employed for this project have been satisfactorily met and are in accordance with NELAP except where noted. The following report shall not be reproduced, except in full, without the written approval of Teklab, Inc.

If you have any questions regarding these tests results, please feel free to call.

Sincerely,

Elizabeth A. Hurley Project Manager

Elizabeth a Hurley

(618)344-1004 ex 33

ehurley@teklabinc.com

Client Project: Soil Vapor System

Report Contents

http://www.teklabinc.com/

Work Order: 15120758 Report Date: 15-Dec-15

This reporting package includes the following:

Client: Trihydro Corporation

Cover Letter	1
Report Contents	2
Definitions	3
Case Narrative	4
Laboratory Results	5
Quality Control Results	8
Receiving Check List	16
Chain of Custody	Appended

Definitions

http://www.teklabinc.com/

Client: Trihydro Corporation Work Order: 15120758

Client Project: Soil Vapor System Report Date: 15-Dec-15

Abbr Definition

- CCV Continuing calibration verification is a check of a standard to determine the state of calibration of an instrument between recalibration.
 - DF Dilution factor is the dilution performed during analysis only and does not take into account any dilutions made during sample preparation. The reported result is final and includes all dilutions factors.
- DNI Did not ignite
- DUP Laboratory duplicate is an aliquot of a sample taken from the same container under laboratory conditions for independent processing and analysis independently of the original aliquot.
- ICV Initial calibration verification is a check of a standard to determine the state of calibration of an instrument before sample analysis is initiated.
- IDPH IL Dept. of Public Health
- LCS Laboratory control sample, spiked with verified known amounts of analytes, is analyzed exactly like a sample to establish intra-laboratory or analyst specific precision and bias or to assess the performance of all or a portion of the measurement system. The acceptable recovery range is in the QC Package (provided upon request).
- LCSD Laboratory control sample duplicate is a replicate laboratory control sample that is prepared and analyzed in order to determine the precision of the approved test method. The acceptable recovery range is listed in the QC Package (provided upon request).
- MBLK Method blank is a sample of a matrix similar to the batch of associated sample (when available) that is free from the analytes of interest and is processed simultaneously with and under the same conditions as samples through all steps of the analytical procedures, and in which no target analytes or interferences should present at concentrations that impact the analytical results for sample analyses.
- MDL Method detection limit means the minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero.
- MS Matrix spike is an aliquot of matrix fortified (spiked) with known quantities of specific analytes that is subjected to the entire analytical procedures in order to determine the effect of the matrix on an approved test method's recovery system. The acceptable recovery range is listed in the QC Package (provided upon request).
- MSD Matrix spike duplicate means a replicate matrix spike that is prepared and analyzed in order to determine the precision of the approved test method. The acceptable recovery range is listed in the QC Package (provided upon request).
- MW Molecular weight
- ND Not Detected at the Reporting Limit

NELAP NELAP Accredited

- PQL Practical quantitation limit means the lowest level that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operation conditions. The acceptable recovery range is listed in the QC Package (provided upon request).
- RL The reporting limit the lowest level that the data is displayed in the final report. The reporting limit may vary according to customer request or sample dilution. The reporting limit may not be less than the MDL.
- RPD Relative percent difference is a calculated difference between two recoveries (ie. MS/MSD). The acceptable recovery limit is listed in the QC Package (provided upon request).
- SPK The spike is a known mass of target analyte added to a blank sample or sub-sample; used to determine recovery deficiency or for other quality control purposes.
- Surr Surrogates are compounds which are similar to the analytes of interest in chemical composition and behavior in the analytical process, but which are not normally found in environmental samples.
- TIC Tentatively identified compound: Analytes tentatively identified in the sample by using a library search. Only results not in the calibration standard will be reported as tentatively identified compounds. Results for tentatively identified compounds that are not present in the calibration standard, but are assigned a specific chemical name based upon the library search, are calculated using total peak areas from reconstructed ion chromatograms and a response factor of one. The nearest Internal Standard is used for the calculation. The results of any TICs must be considered estimated, and are flagged with a "T". If the estimated result is above the calibration range it is flagged "ET"
- TNTC Too numerous to count (> 200 CFU)

Qualifiers

- # Unknown hydrocarbon
- E Value above quantitation range
- I Associated internal standard was outside method criteria
- M Manual Integration used to determine area response
- R RPD outside accepted recovery limits
- T TIC(Tentatively identified compound)

- B Analyte detected in associated Method Blank
- H Holding times exceeded
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
 - S Spike Recovery outside recovery limits
 - X Value exceeds Maximum Contaminant Level

Case Narrative

http://www.teklabinc.com/

Client: Trihydro Corporation Work Order: 15120758
Client Project: Soil Vapor System Report Date: 15-Dec-15

Cooler Receipt Temp: 4.22 °C

Collinsville

Missouri

Oklahoma

5445 Horseshoe Lake Road

Address

Locations and Accreditations

Kansas City

8421 Nieman Road

Collinsville Air

5/31/2017

8/31/2016

5445 Horseshoe Lake Road

Collinsville

Collinsville

Springfield

3920 Pintail Dr

MDNR

ODEQ

Phone Fax Email	Collinsville, IL 62234-7425 (618) 344-1004 (618) 344-1005 jhriley@teklabinc.com	Springfield, IL 627 (217) 698-1004 (217) 698-1005 KKlostermann@te		(913) 54 (913) 54			Collinsville, IL 62234-7425 (618) 344-1004 (618) 344-1005 EHurley@teklabinc.com
	State	Dept	Cert #	!	NELAP	Exp Date	e Lab
	Illinois	IEPA	100226		NELAP	1/31/2016	Collinsville
	Kansas	KDHE	E-10374		NELAP	1/31/2016	Collinsville
	Louisiana	LDEQ	166493		NELAP	6/30/2016	Collinsville
	Louisiana	LDEQ	166578		NELAP	6/30/2016	Collinsville
	Texas	TCEQ	T104704515-	12-1	NELAP	7/31/2016	Collinsville
	Arkansas	ADEQ	88-0966			3/14/2016	Collinsville
	Illinois	IDPH	17584			5/31/2017	Collinsville
	Kentucky	KDEP	98006			12/31/2015	Collinsville
	Kentucky	UST	0073			1/31/2016	Collinsville

00930

9978

Laboratory Results

http://www.teklabinc.com/

Client: Trihydro Corporation Work Order: 15120758
Client Project: Soil Vapor System Report Date: 15-Dec-15

Matrix: AQUEOUS Collection Date: 12/10/2015 9:00

Certification	RL	Qual	Result	Units	DF	Date Analyzed	Batch
NELAP	60		>200	°F	1	12/14/2015 9:48	R212634
ALS BY ICP (TOTAL	.)						
NELAP	0.0150		0.0196	mg/L	1	12/14/2015 15:08	114854
S, SEMI-VOLATILE O	RGANIC COM	IPOUNDS	BY GC/MS				
,	0.00050		ND	mg/L	5	12/15/2015 1:56	114830
NELAP	0.00050		ND	_		12/15/2015 1:56	114830
NELAP	0.00050		ND	-		12/15/2015 1:56	114830
NELAP	0.00050		ND	_	5	12/15/2015 1:56	114830
NELAP	0.00050		ND	_	5	12/15/2015 1:56	114830
NELAP	0.00050		ND	_	5	12/15/2015 1:56	114830
NELAP	0.00050		ND	_		12/15/2015 1:56	114830
NELAP	0.00050		ND	_		12/15/2015 1:56	114830
NELAP	0.00050		ND	_		12/15/2015 1:56	114830
NELAP	0.00050		ND	_		12/15/2015 1:56	114830
NELAP	0.00050		ND	_		12/15/2015 1:56	114830
NELAP	0.00050		ND	_		12/15/2015 1:56	114830
NELAP	0.00050		ND	_		12/15/2015 1:56	114830
NELAP	0.00050		ND	_		12/15/2015 1:56	114830
NELAP	0.00050		ND	_		12/15/2015 1:56	114830
NELAP	0.00050			_		12/15/2015 1:56	114830
NELAP	0.00050		0.00140	_		12/15/2015 1:56	114830
	10-143		55.0	%REC		12/15/2015 1:56	114830
	10-166		48.5	%REC	5	12/15/2015 1:56	114830
	10-137		50.0	%REC	5	12/15/2015 1:56	114830
mple extract composition	n.						
TILE ORGANIC COM	IPOUNDS BY	GC/MS					
NELAP	5.0		ND	μg/L	1	12/14/2015 18:01	114912
NELAP	5.0		ND	μg/L	1	12/14/2015 18:01	114912
NELAP	5.0		ND	μg/L	1	12/14/2015 18:01	114912
nane	20.0		ND	μg/L	1	12/14/2015 18:01	114912
NELAP	5.0		ND	μg/L	1	12/14/2015 18:01	114912
	50.0		ND	μg/L	1	12/14/2015 18:01	114912
NELAP	5.0		ND	μg/L	1	12/14/2015 18:01	114912
NELAP	5.0		ND	μg/L	1	12/14/2015 18:01	114912
NELAP	5.0		ND	μg/L	1	12/14/2015 18:01	114912
NELAP	5.0		ND		1	12/14/2015 18:01	114912
NELAP	5.0		ND		1	12/14/2015 18:01	114912
	5.0		ND	μg/L	1	12/14/2015 18:01	114912
NELAP	5.0		ND	μg/L	1	12/14/2015 18:01	114912
NELAP	5.0		ND	μg/L	1	12/14/2015 18:01	114912
NELAP	5.0		ND	μg/L	1	12/14/2015 18:01	114912
NELAP	5.0		ND	μg/L	1	12/14/2015 18:01	114912
NELAP	5.0		ND	μg/L	1	12/14/2015 18:01	114912
NELAP	5.0		ND	μg/L	1	12/14/2015 18:01	114912
NELAP	5.0		ND	μg/L	1	12/14/2015 18:01	114912
NELAP	5.0		ND	μg/L	1	12/14/2015 18:01	
INLLAF	5.0			mg/ =			
	NELAP ALS BY ICP (TOTAL NELAP , SEMI-VOLATILE O NELAP	NELAP 60 ALS BY ICP (TOTAL) NELAP 0.0150 , SEMI-VOLATILE ORGANIC COM 0.00050 NELAP 5.0 NELAP 5.0	NELAP 60 ALS BY ICP (TOTAL) NELAP 0.0150 , SEMI-VOLATILE ORGANIC COMPOUNDS	NELAP 60 >200	NELAP 60 >200 °F	NELAP 60 >200 °F 1	NELAP 60 >200 °F 1 12/14/2015 9:48

Client Project: Soil Vapor System

Laboratory Results

http://www.teklabinc.com/

Report Date: 15-Dec-15

Client: Trihydro Corporation Work Order: 15120758

Matrix: AQUEOUS Collection Date: 12/10/2015 9:00

Matrix, AQUEOUS				Conceilon	Date. 12/	10/2013	9.00	
Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Batch
SW-846 5030, 8260B, VOLA	TILE ORGANIC COMPO	DUNDS BY	GC/MS					
1,3-Dichloropropane	NELAP	5.0		ND	μg/L	1	12/14/2015 18:01	114912
1,4-Dichlorobenzene	NELAP	5.0		ND	μg/L	1	12/14/2015 18:01	114912
1-Chlorobutane	NELAP	5.0		ND	μg/L	1	12/14/2015 18:01	114912
2,2-Dichloropropane	NELAP	5.0		ND	μg/L	1	12/14/2015 18:01	114912
2-Butanone	NELAP	25.0		ND	μg/L	1	12/14/2015 18:01	114912
2-Chloroethyl vinyl ether	NELAP	20.0		ND	μg/L	1	12/14/2015 18:01	114912
2-Chlorotoluene	NELAP	5.0		ND	μg/L	1	12/14/2015 18:01	114912
2-Hexanone	NELAP	25.0		ND	μg/L	1	12/14/2015 18:01	114912
2-Nitropropane	NELAP	50.0		ND	μg/L	1	12/14/2015 18:01	114912
4-Chlorotoluene	NELAP	5.0		ND	μg/L	1	12/14/2015 18:01	114912
4-Methyl-2-pentanone	NELAP	25.0		ND	μg/L	1	12/14/2015 18:01	114912
Acetone	NELAP	25.0	J	5.1	μg/L	1	12/14/2015 18:01	114912
Acetonitrile	NELAP	50.0		ND	μg/L	1	12/14/2015 18:01	114912
Acrolein	NELAP	100		ND	μg/L	1	12/14/2015 18:01	114912
Acrylonitrile	NELAP	5.0		ND	μg/L	1	12/14/2015 18:01	114912
Allyl chloride	NELAP	5.0		ND	μg/L	1	12/14/2015 18:01	114912
Benzene	NELAP	2.0		ND	μg/L	1	12/14/2015 18:01	114912
Bromobenzene	NELAP	5.0		ND	μg/L	1	12/14/2015 18:01	114912
Bromochloromethane	NELAP	5.0		ND	μg/L	1	12/14/2015 18:01	114912
Bromodichloromethane	NELAP	5.0		ND	μg/L	1	12/14/2015 18:01	114912
Bromoform	NELAP	5.0		ND	μg/L	1	12/14/2015 18:01	114912
Bromomethane	NELAP	10.0		ND	μg/L	1	12/14/2015 18:01	114912
Carbon disulfide	NELAP	5.0		ND	μg/L	1	12/14/2015 18:01	114912
Carbon tetrachloride	NELAP	5.0		ND	μg/L	1	12/14/2015 18:01	114912
Chlorobenzene	NELAP	5.0		ND	μg/L	1	12/14/2015 18:01	114912
Chloroethane	NELAP	10.0		ND	μg/L	1	12/14/2015 18:01	114912
Chloroform	NELAP	5.0		ND	μg/L	1	12/14/2015 18:01	114912
Chloromethane	NELAP	10.0		ND	μg/L	1	12/14/2015 18:01	114912
Chloroprene	NELAP	20.0		ND	μg/L	1	12/14/2015 18:01	114912
cis-1,2-Dichloroethene	NELAP	5.0		ND	μg/L	1	12/14/2015 18:01	114912
cis-1,3-Dichloropropene	NELAP	5.0		ND	μg/L	1	12/14/2015 18:01	114912
cis-1,4-Dichloro-2-butene	NELAP	5.0		ND	μg/L	1	12/14/2015 18:01	114912
Cyclohexanone		50.0		ND	μg/L	1	12/14/2015 18:01	114912
Dibromochloromethane	NELAP	5.0		ND	μg/L	1	12/14/2015 18:01	114912
Dibromomethane	NELAP	5.0		ND	μg/L	1	12/14/2015 18:01	114912
Dichlorodifluoromethane	NELAP	10.0		ND	μg/L	1	12/14/2015 18:01	114912
Ethyl acetate	NELAP	10.0		ND	μg/L	1	12/14/2015 18:01	114912
Ethyl ether	NELAP	5.0		ND	μg/L	1	12/14/2015 18:01	114912
Ethyl methacrylate	NELAP	5.0		ND	μg/L	1	12/14/2015 18:01	114912
Ethylbenzene	NELAP	5.0		ND	μg/L	1	12/14/2015 18:01	114912
Hexachlorobutadiene	NELAP	5.0		ND	μg/L	1	12/14/2015 18:01	
Hexachloroethane	NELAP	10.0		ND	μg/L	1	12/14/2015 18:01	
Iodomethane	NELAP	5.0		ND	μg/L	1	12/14/2015 18:01	
Isopropylbenzene	NELAP	5.0		ND	μg/L	1	12/14/2015 18:01	
m,p-Xylenes	NELAP	5.0		ND	μg/L	1	12/14/2015 18:01	
Methacrylonitrile	NELAP	10.0		ND	μg/L	1	12/14/2015 18:01	114912
Methyl Methacrylate	NELAP	5.0		ND	μg/L	1	12/14/2015 18:01	114912

Laboratory Results

http://www.teklabinc.com/

Client: Trihydro Corporation Work Order: 15120758

Client Project: Soil Vapor System Report Date: 15-Dec-15

Matrix: AQUEOUS Collection Date: 12/10/2015 9:00

Maurix. AQUEOUS			Conceion	1 Date. 12/	10/2013	7.00	
Analyses	Certification	RL Qual	Result	Units	DF	Date Analyzed	Batch
SW-846 5030, 8260B, VOLATI	LE ORGANIC COM	POUNDS BY GC/MS					
Methyl tert-butyl ether	NELAP	2.0	ND	μg/L	1	12/14/2015 18:01	114912
Methylacrylate	NELAP	10.0	ND	μg/L	1	12/14/2015 18:01	114912
Methylene chloride	NELAP	5.0	ND	μg/L	1	12/14/2015 18:01	114912
Naphthalene	NELAP	10.0	ND	μg/L	1	12/14/2015 18:01	114912
n-Butyl acetate		25.0	ND	μg/L	1	12/14/2015 18:01	114912
n-Butylbenzene	NELAP	5.0	ND	μg/L	1	12/14/2015 18:01	114912
n-Heptane		20.0	ND	μg/L	1	12/14/2015 18:01	114912
n-Hexane		20.0	ND	μg/L	1	12/14/2015 18:01	114912
Nitrobenzene	NELAP	50.0	ND	μg/L	1	12/14/2015 18:01	114912
n-Propylbenzene	NELAP	5.0	ND	μg/L	1	12/14/2015 18:01	114912
o-Xylene	NELAP	5.0	ND	μg/L	1	12/14/2015 18:01	114912
Pentachloroethane	NELAP	20.0	ND	μg/L	1	12/14/2015 18:01	114912
p-Isopropyltoluene	NELAP	5.0	ND	μg/L	1	12/14/2015 18:01	114912
Propionitrile	NELAP	50.0	ND	μg/L	1	12/14/2015 18:01	114912
sec-Butylbenzene	NELAP	5.0	ND	μg/L	1	12/14/2015 18:01	114912
Styrene	NELAP	5.0	ND	μg/L	1	12/14/2015 18:01	114912
tert-Butylbenzene	NELAP	5.0	ND	μg/L	1	12/14/2015 18:01	114912
Tetrachloroethene	NELAP	5.0	ND	μg/L	1	12/14/2015 18:01	114912
Tetrahydrofuran	NELAP	20.0	ND	μg/L	1	12/14/2015 18:01	114912
Toluene	NELAP	5.0	ND	μg/L	1	12/14/2015 18:01	114912
trans-1,2-Dichloroethene	NELAP	5.0	ND	μg/L	1	12/14/2015 18:01	114912
trans-1,3-Dichloropropene	NELAP	5.0	ND	μg/L	1	12/14/2015 18:01	114912
trans-1,4-Dichloro-2-butene	NELAP	10.0	ND	μg/L	1	12/14/2015 18:01	114912
Trichloroethene	NELAP	5.0	ND	μg/L	1	12/14/2015 18:01	114912
Trichlorofluoromethane	NELAP	5.0	ND	μg/L	1	12/14/2015 18:01	114912
Vinyl acetate	NELAP	10.0	ND	μg/L	1	12/14/2015 18:01	114912
Vinyl chloride	NELAP	2.0	ND	μg/L	1	12/14/2015 18:01	114912
Surr: 1,2-Dichloroethane-d4		74.7-129	95.8	%REC	1	12/14/2015 18:01	114912
Surr: 4-Bromofluorobenzene		86-119	97.0	%REC	1	12/14/2015 18:01	114912
Surr: Dibromofluoromethane		81.7-123	101.8	%REC	1	12/14/2015 18:01	114912
Surr: Toluene-d8		84.3-114	93.0	%REC	1	12/14/2015 18:01	114912

http://www.teklabinc.com/

Client: Trihydro Corporation Work Order: 15120758

Client Project: Soil Vapor System Report Date: 15-Dec-15

SW-846 1020B											
Batch R212634 SampID: LCS-R212	SampType: 2634	LCS		Units °F							Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Ignitability, Closed	d Cup		60		83	81.00	0	102.5	97	103	12/14/2015
Batch R212634	SampType:	DUP		Units °F					RPD	Limit 5	
SampID: 15120774	-001BDUP										Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref	Val %RPD	Analyzed
Ignitability, Closed	d Cup		60		64				66.00	3.08	12/14/2015
SW-846 3005A, 60	010B, METAL	_S BY I	CP (TO	•							
Batch 114854	SampType:	MBLK		Units mg/L							
SampID: MBLK-114	4854										Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Lead			0.0150		< 0.0150	0.01500	0	0	-100	100	12/14/2015
Batch 114854	SampType:	LCS		Units mg/L							
SampID: LCS-1148	354										Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Lead			0.0150		0.508	0.5000	0	101.5	85	115	12/14/2015

atch 114830 SampTyp	e: MBLK	Units mg/L						
ampID: MBLK-114830								Date
Analyses	RL	Qual	Result Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
1-Methylnaphthalene	0.00010		ND					12/14/201
Acenaphthene	0.00010		ND					12/14/201
Acenaphthylene	0.00010		ND					12/14/201
Anthracene	0.00010		ND					12/14/201
Benzo(a)anthracene	0.00010		ND					12/14/201
Benzo(a)pyrene	0.00010		ND					12/14/201
Benzo(b)fluoranthene	0.00010		ND					12/14/201
Benzo(g,h,i)perylene	0.00010		ND					12/14/201
Benzo(k)fluoranthene	0.00010		ND					12/14/201
Chrysene	0.00010		ND					12/14/201
Dibenzo(a,h)anthracene	0.00010		ND					12/14/201
Fluoranthene	0.00010		ND					12/14/201
Fluorene	0.00010		ND					12/14/201
Indeno(1,2,3-cd)pyrene	0.00010		ND					12/14/201
Naphthalene	0.00010		ND					12/14/201
Phenanthrene	0.00010		ND					12/14/201
Pyrene	0.00010		ND					12/14/201
Surr: 2-Fluorobiphenyl			0.00281 0.005000		56.2	44.4	89.6	12/14/201
Surr: Nitrobenzene-d5			0.00260 0.005000		52.0	40.9	81.4	12/14/201
Surr: p-Terphenyl-d14			0.00393 0.005000		78.6	54.3	104	12/14/201

http://www.teklabinc.com/

Client: Trihydro Corporation Work Order: 15120758

SW-846 3510C, 8270C SIMS	•		Cim Contro D	00/11/0				
Batch 114830 SampType	e: LCS	Units mg/L						
SampID: LCS-114830								Date
Analyses	RL	Qual	Result Spike	SPK Ref Va	al %REC	Low Limit	High Limit	Analyzed
1-Methylnaphthalene	0.00010		0.00334 0.00500	СО	66.8	44.3	94.9	12/14/2015
Acenaphthene	0.00010		0.00349 0.00500	С О	69.8	50.1	94.9	12/14/2015
Acenaphthylene	0.00010		0.00345 0.00500	С О	69.0	50.6	96.9	12/14/2015
Anthracene	0.00010		0.00363 0.00500	С О	72.6	53.5	94.3	12/14/2015
Benzo(a)anthracene	0.00010		0.00358 0.00500	С О	71.6	48.3	104	12/14/2015
Benzo(a)pyrene	0.00010		0.00384 0.00500	С О	76.8	52	103	12/14/2015
Benzo(b)fluoranthene	0.00010		0.00384 0.00500	С О	76.8	55.3	98.4	12/14/2015
Benzo(g,h,i)perylene	0.00010		0.00365 0.00500	С О	73.0	51.1	104	12/14/2015
Benzo(k)fluoranthene	0.00010		0.00387 0.00500	С О	77.4	56.1	99.3	12/14/2015
Chrysene	0.00010		0.00370 0.00500	С О	74.0	54.3	99.4	12/14/2015
Dibenzo(a,h)anthracene	0.00010		0.00369 0.00500	C O	73.8	53.7	104	12/14/2015
Fluoranthene	0.00010		0.00390 0.00500	C O	78.0	56.8	96.9	12/14/2015
Fluorene	0.00010		0.00357 0.00500	С О	71.4	53.6	97	12/14/2015
Indeno(1,2,3-cd)pyrene	0.00010		0.00368 0.00500	С О	73.6	53.4	103	12/14/2015
Naphthalene	0.00010		0.00325 0.00500	С О	65.0	43.4	95	12/14/2015
Phenanthrene	0.00010		0.00356 0.00500	С О	71.2	53.8	94.2	12/14/2015
Pyrene	0.00010		0.00387 0.00500	С О	77.4	56.1	97.1	12/14/2015
Surr: 2-Fluorobiphenyl			0.00314 0.00500	С	62.8	44.4	89.6	12/14/2015
Surr: Nitrobenzene-d5			0.00326 0.00500	С	65.2	40.9	81.4	12/14/2015
Surr: p-Terphenyl-d14			0.00418 0.00500	С	83.6	54.3	104	12/14/2015

atch 114830 SampType	e: LCSD	Units mg/L				RPD L	imit 40	
ampID: LCSD-114830								Date
Analyses	RL	Qual	Result Spike	SPK Ref Val	%REC	RPD Ref Va	%RPD	Analyzed
1-Methylnaphthalene	0.00010		0.00299).005000	0	59.8	0.003340	11.06	12/14/201
Acenaphthene	0.00010		0.00325 0.005000	0	65.0	0.003490	7.12	12/14/201
Acenaphthylene	0.00010		0.00325 0.005000	0	65.0	0.003450	5.97	12/14/201
Anthracene	0.00010		0.00349 0.005000	0	69.8	0.003630	3.93	12/14/201
Benzo(a)anthracene	0.00010		0.00349 0.005000	0	69.8	0.003580	2.55	12/14/201
Benzo(a)pyrene	0.00010		0.00375 0.005000	0	75.0	0.003840	2.37	12/14/201
Benzo(b)fluoranthene	0.00010		0.00375 0.005000	0	75.0	0.003840	2.37	12/14/201
Benzo(g,h,i)perylene	0.00010		0.00355).005000	0	71.0	0.003650	2.78	12/14/201
Benzo(k)fluoranthene	0.00010		0.00381 0.005000	0	76.2	0.003870	1.56	12/14/201
Chrysene	0.00010		0.00356 0.005000	0	71.2	0.003700	3.86	12/14/201
Dibenzo(a,h)anthracene	0.00010		0.00363 0.005000	0	72.6	0.003690	1.64	12/14/201
Fluoranthene	0.00010		0.00376 0.005000	0	75.2	0.003900	3.66	12/14/201
Fluorene	0.00010		0.00344).005000	0	68.8	0.003570	3.71	12/14/201
Indeno(1,2,3-cd)pyrene	0.00010		0.00362 0.005000	0	72.4	0.003680	1.64	12/14/201
Naphthalene	0.00010		0.00299 0.005000	0	59.8	0.003250	8.33	12/14/201
Phenanthrene	0.00010		0.00339 0.005000	0	67.8	0.003560	4.89	12/14/201
Pyrene	0.00010		0.00372 0.005000	0	74.4	0.003870	3.95	12/14/201
Surr: 2-Fluorobiphenyl			0.00292).005000		58.4			12/14/201
Surr: Nitrobenzene-d5			0.00300 0.005000		60.0			12/14/201
Surr: p-Terphenyl-d14			0.00416 0.005000		83.2			12/14/201

http://www.teklabinc.com/

Client: Trihydro Corporation Work Order: 15120758

SW-846 5030, 8260B, VOLATILE OF	RGANIC C	OMPOUNDS I	BY GC/MS					
Batch 114912 SampType: MBL		Units µg/L						
SampID: MBLK-N151214-1								Date
Analyses	RL	Qual	Result Spi	ce SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
1,1,1,2-Tetrachloroethane	5.0		ND					12/14/2015
1,1,1-Trichloroethane	5.0		ND					12/14/2015
1,1,2,2-Tetrachloroethane	5.0		ND					12/14/2015
1,1,2-Trichloro-1,2,2-trifluoroethane	20.0		ND					12/14/2015
1,1,2-Trichloroethane	5.0		ND					12/14/2015
1,1-Dichloro-2-propanone	50.0		ND					12/14/2015
1,1-Dichloroethane	5.0		ND					12/14/2015
1,1-Dichloroethene	5.0		ND					12/14/2015
1,1-Dichloropropene	5.0		ND					12/14/2015
1,2,3-Trichlorobenzene	5.0		ND					12/14/2015
1,2,3-Trichloropropane	5.0		ND					12/14/2015
1,2,3-Trimethylbenzene	5.0		ND					12/14/2015
1,2,4-Trichlorobenzene	5.0		ND					12/14/2015
1,2,4-Trimethylbenzene	5.0		ND					12/14/2015
1,2-Dibromo-3-chloropropane	5.0		ND					12/14/2015
1,2-Dibromoethane	5.0		ND					12/14/2015
1,2-Dichlorobenzene	5.0		ND					12/14/2015
1,2-Dichloroethane	5.0		ND					12/14/2015
1,2-Dichloropropane	5.0		ND					12/14/2015
1,3,5-Trimethylbenzene	5.0		ND					12/14/2015
1,3-Dichlorobenzene	5.0		ND					12/14/2015
1,3-Dichloropropane	5.0		ND					12/14/2015
1,4-Dichlorobenzene	5.0		ND					12/14/2015
1-Chlorobutane	5.0		ND					12/14/2015
2,2-Dichloropropane	5.0		ND					12/14/2015
2-Butanone	25.0		ND					12/14/2015
2-Chloroethyl vinyl ether	20.0		ND					12/14/2015
2-Chlorotoluene	5.0		ND					12/14/2015
2-Hexanone	25.0		ND					12/14/2015
2-Nitropropane	50.0		ND					12/14/2015
4-Chlorotoluene	5.0		ND					12/14/2015
4-Methyl-2-pentanone	25.0		ND					12/14/2015
Acetone	25.0		ND					12/14/2015
Acetonitrile	50.0		ND					12/14/2015
Acrolein	100		ND					12/14/2015
Acrylonitrile	5.0		ND					12/14/2015
Allyl chloride	5.0		ND					12/14/2015
Benzene	2.0	J	1.0					12/14/2015
Bromobenzene	5.0	3	ND					12/14/2015
Bromochloromethane	5.0		ND					12/14/2015
Bromodichloromethane	5.0		ND					12/14/2015
Bromoform	5.0 5.0							12/14/2015
Bromomethane	5.0 10.0		ND ND					12/14/2015
Carbon disulfide	5.0		ND ND					12/14/2015
Carbon tetrachloride	5.0		ND ND					12/14/2015
Chlorosthana	5.0		ND ND					12/14/2015
Chloroethane	10.0		ND					12/14/2015

http://www.teklabinc.com/

Client: Trihydro Corporation Work Order: 15120758

SW-846 5030, 8260B, VOLAT	ILE ORGANIC C	OMPOUNDS BY GC/M	S		
Batch 114912 SampType:	MBLK	Units µg/L			
SampID: MBLK-N151214-1					Date
Analyses	RL	Qual Result	Spike SPK Ref Val	%REC Low Limit	High Limit Analyzed
Chloroform	5.0	ND			12/14/2015
Chloromethane	10.0	ND			12/14/2015
Chloroprene	20.0	ND			12/14/2015
cis-1,2-Dichloroethene	5.0	ND			12/14/2015
cis-1,3-Dichloropropene	5.0	ND			12/14/2015
cis-1,4-Dichloro-2-butene	5.0	ND			12/14/2015
Cyclohexanone	50.0	ND			12/14/2015
Dibromochloromethane	5.0	ND			12/14/2015
Dibromomethane	5.0	ND			12/14/2015
Dichlorodifluoromethane	10.0	ND			12/14/2015
Ethyl acetate	10.0	ND			12/14/2015
Ethyl ether	5.0	ND			12/14/2015
Ethyl methacrylate	5.0	ND			12/14/2015
Ethylbenzene	5.0	ND			12/14/2015
Hexachlorobutadiene	5.0	ND			12/14/2015
Hexachloroethane	10.0	ND			12/14/2015
Iodomethane	5.0	ND			12/14/2015
Isopropylbenzene	5.0	ND			12/14/2015
m,p-Xylenes	5.0	ND			12/14/2015
Methacrylonitrile	10.0	ND			12/14/2015
Methyl Methacrylate	5.0	ND			12/14/2015
Methyl tert-butyl ether	2.0	ND			12/14/2015
Methylacrylate	10.0	ND			12/14/2015
Methylene chloride	5.0	ND			12/14/2015
Naphthalene	10.0	ND			12/14/2015
n-Butyl acetate	25.0	ND			12/14/2015
n-Butylbenzene	5.0	ND			12/14/2015
n-Heptane	20.0	ND			12/14/2015
n-Hexane	20.0	ND			12/14/2015
Nitrobenzene	50.0	ND			12/14/2015
n-Propylbenzene	5.0	ND			12/14/2015
o-Xylene	5.0	ND			12/14/2015
Pentachloroethane	20.0	ND ND			12/14/2015
p-Isopropyltoluene	5.0	ND ND			12/14/2015
Propionitrile	50.0	ND ND			12/14/2015
	5.0				12/14/2015
sec-Butylbenzene	5.0	ND			12/14/2015
Styrene		ND			
tert-Butylbenzene	5.0	ND			12/14/2015
Tetrachloroethene	5.0	ND ND			12/14/2015
Tetrahydrofuran	20.0	ND			12/14/2015
Toluene	5.0	ND			12/14/2015
trans-1,2-Dichloroethene	5.0	ND			12/14/2015
trans-1,3-Dichloropropene	5.0	ND			12/14/2015
trans-1,4-Dichloro-2-butene	10.0	ND			12/14/2015
Trichloroethene	5.0	ND			12/14/2015
Trichlorofluoromethane	5.0	ND			12/14/2015
Vinyl acetate	10.0	ND			12/14/2015

http://www.teklabinc.com/

Client: Trihydro Corporation Work Order: 15120758

SW-846 5030, 8260B, VOLATII	LE ORGA	NIC C	OMPOUNDS	BY GC/M	S					
Batch 114912 SampType:	MBLK		Units µg/L							
SampID: MBLK-N151214-1										Date
Analyses	F	RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Vinyl chloride		2.0		ND						12/14/2015
Surr: 1,2-Dichloroethane-d4				48.8	50.00		97.5	74.7	129	12/14/2015
Surr: 4-Bromofluorobenzene				47.3	50.00		94.5	86	119	12/14/2015
Surr: Dibromofluoromethane				52.5	50.00		105.0	81.7	123	12/14/2015
Surr: Toluene-d8				43.6	50.00		87.2	84.3	114	12/14/2015

http://www.teklabinc.com/

Client: Trihydro Corporation Work Order: 15120758

SW-846 5030, 8260B, VOLATILE OR	GANIC C	OMPOUNDS B	Y GC/M	S					
Batch 114912 SampType: LCS		Units µg/L							
SampID: LCS-N151214-1									Date
Analyses	RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
1,1,1,2-Tetrachloroethane	5.0		47.7	50.00	0	95.4	81.9	115	12/14/2015
1,1,1-Trichloroethane	5.0		49.0	50.00	0	97.9	79.4	124	12/14/2015
1,1,2,2-Tetrachloroethane	5.0		41.3	50.00	0	82.6	74.7	116	12/14/2015
1,1,2-Trichloro-1,2,2-trifluoroethane	20.0		48.9	50.00	0	97.7	72.9	121	12/14/2015
1,1,2-Trichloroethane	5.0		44.1	50.00	0	88.2	80.8	111	12/14/2015
1,1-Dichloro-2-propanone	50.0		100	125.0	0	80.1	66.3	130	12/14/2015
1,1-Dichloroethane	5.0		47.4	50.00	0	94.8	79.4	114	12/14/2015
1,1-Dichloroethene	5.0		47.6	50.00	0	95.1	74.1	117	12/14/2015
1,1-Dichloropropene	5.0		49.8	50.00	0	99.5	81.7	116	12/14/2015
1,2,3-Trichlorobenzene	5.0		49.0	50.00	0	98.0	79.7	118	12/14/2015
1,2,3-Trichloropropane	5.0		43.8	50.00	0	87.6	77.3	112	12/14/2015
1,2,3-Trimethylbenzene	5.0		41.3	50.00	0	82.6	79.9	119	12/14/2015
1,2,4-Trichlorobenzene	5.0		48.1	50.00	0	96.2	79.3	118	12/14/2015
1,2,4-Trimethylbenzene	5.0		44.6	50.00	0	89.2	78.7	115	12/14/2015
1,2-Dibromo-3-chloropropane	5.0		42.7	50.00	0	85.4	76	122	12/14/2015
1,2-Dibromoethane	5.0		46.6	50.00	0	93.1	80.8	114	12/14/2015
1,2-Dichlorobenzene	5.0		45.0	50.00	0	90.0	78.3	112	12/14/2015
1,2-Dichloroethane	5.0		45.6	50.00	0	91.2	70.6	118	12/14/2015
1,2-Dichloropropane	5.0		48.5	50.00	0	97.0	79.6	113	12/14/2015
1,3,5-Trimethylbenzene	5.0		44.8	50.00	0	89.5	77.5	115	12/14/2015
1,3-Dichlorobenzene	5.0		45.1	50.00	0	90.2	78.6	117	12/14/2015
1,3-Dichloropropane	5.0		42.7	50.00	0	85.4	78.8	112	12/14/2015
1,4-Dichlorobenzene	5.0		44.1	50.00	0	88.2	77.8	114	12/14/2015
1-Chlorobutane	5.0		46.2	50.00	0	92.5	78.6	115	12/14/2015
2,2-Dichloropropane	5.0		48.6	50.00	0	97.3	74.9	130	12/14/2015
2-Butanone	25.0		145	125.0	0	116.1	70.7	136	12/14/2015
2-Chloroethyl vinyl ether	20.0		55.0	50.00	0	110.0	52.5	145	12/14/2015
2-Chlorotoluene	5.0		41.0	50.00	0	82.1	77.4	114	12/14/2015
2-Hexanone	25.0		108	125.0	0	86.0	73.3	125	12/14/2015
2-Nitropropane	50.0		505	500.0	0	101.1	67.3	139	12/14/2015
4-Chlorotoluene	5.0		41.5	50.00	0	83.0	78.3	115	12/14/2015
4-Methyl-2-pentanone	25.0		109	125.0	0	86.8	76.3	122	12/14/2015
Acetone	25.0		174	125.0	0	138.8	56.4	147	12/14/2015
Acetonitrile	50.0		535	500.0	0	107.0	59.3	129	12/14/2015
Acrolein	100		321	500.0	0	64.2	1	201	12/14/2015
Acrylonitrile	5.0		49.0	50.00	0	98.1	74.1	128	12/14/2015
Allyl chloride	5.0		52.6	50.00	0	105.2	71.5	123	12/14/2015
Benzene	2.0		49.9	50.00	0	99.8	80	114	12/14/2015
Bromobenzene	5.0		40.7	50.00	0	81.5	73.2	118	12/14/2015
Bromochloromethane	5.0		47.2	50.00	0	94.3	73.3	121	12/14/2015
Bromodichloromethane	5.0		50.0	50.00	0	100.0	81.6	121	12/14/2015
Bromoform	5.0		50.9	50.00	0	101.8	83.1	127	12/14/2015
Bromomethane	10.0		43.7	50.00	0	87.4	44.4	154	12/14/2015
Carbon disulfide	5.0		51.8	50.00	0	103.5	73.2	118	12/14/2015
Carbon tetrachloride	5.0		50.6	50.00	0	101.2	79.4	130	12/14/2015
Chlorobenzene	5.0			50.00	0	89.9	81.4	110	12/14/2015
Chloroethane	10.0		46.6	50.00	0	93.2	52.1	137	12/14/2015

http://www.teklabinc.com/

Client: Trihydro Corporation Work Order: 15120758

Client Project: Soil Vapor System Report Date: 15-Dec-15

SW-846 5030, 8260B, VOLATILE	ORGANIC C	OMPOUNDS I	BY GC/MS	<u> </u>					
Batch 114912 SampType: L	_cs	Units µg/L							
SampID: LCS-N151214-1									Date
Analyses	RL	Qual	Result	Snike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Chloroform	5.0	Quai	47.0	50.00	0	93.9	82.7	116	12/14/2015
Chloromethane	10.0			50.00	0	95.2	48.2	144	12/14/2015
Chloroprene	20.0		45.7	50.00	0	91.4	80.6	126	12/14/2015
cis-1,2-Dichloroethene	5.0		47.6	50.00	0	95.1	78.2	116	12/14/2015
cis-1,3-Dichloropropene	5.0		54.0	50.00	0	108.1	83	119	12/14/2015
cis-1,4-Dichloro-2-butene	5.0		39.8	50.00	0	79.6	60.7	137	12/14/2015
Cyclohexanone	50.0		548	500.0	0	109.5	54.2	145	12/14/2015
Dibromochloromethane	5.0		47.5	50.00	0	95.0	81.2	121	12/14/2015
Dibromomethane	5.0		48.8	50.00	0	97.5	78.3	118	12/14/2015
Dichlorodifluoromethane	10.0		59.5	50.00	0	119.0	20.6	154	12/14/2015
Ethyl acetate	10.0		51.8	50.00	0	103.6	73.1	116	12/14/2015
Ethyl ether	5.0		48.9	50.00	0	97.7	75.2	109	12/14/2015
Ethyl methacrylate	5.0		46.4	50.00	0	92.7	80.1	113	12/14/2015
Ethylbenzene	5.0		42.7	50.00	0	85.5	77.2	113	12/14/2015
Hexachlorobutadiene	5.0		50.9	50.00	0	101.9	77.3	123	12/14/2015
Hexachloroethane	10.0			50.00	0	88.3	74.6	117	12/14/2015
Iodomethane	5.0		55.1	50.00	0	110.3	61.3	140	12/14/2015
Isopropylbenzene	5.0		45.6	50.00	0	91.2	81.3	114	12/14/2015
m,p-Xylenes	5.0			100.0	0	87.0	79.6	113	12/14/2015
Methacrylonitrile	10.0		51.0	50.00	0	102.0	77.2	125	12/14/2015
Methyl Methacrylate	5.0		52.1	50.00	0	104.2	74.2	121	12/14/2015
Methyl tert-butyl ether	2.0		53.1	50.00	0	106.2	76.8	117	12/14/2015
Methylacrylate	10.0		53.1	50.00	0	106.3	78	124	12/14/2015
Methylene chloride	5.0		47.5	50.00	0	94.9	74.1	114	12/14/2015
Naphthalene	10.0			50.00	0	96.4	77.9	122	12/14/2015
n-Butyl acetate	25.0			50.00	0	83.5	74	120	12/14/2015
n-Butylbenzene	5.0			50.00	0	88.8	71.1	120	12/14/2015
n-Heptane	20.0		45.1	50.00	0	90.2	67.4	129	12/14/2015
n-Hexane	20.0			50.00	0	93.9	68.4	126	12/14/2015
Nitrobenzene	50.0			500.0	0	86.5	37.9	181	12/14/2015
n-Propylbenzene	5.0			50.00	0	84.8	74.6	118	12/14/2015
o-Xylene	5.0		42.6	50.00	0	85.1	80.1	111	12/14/2015
Pentachloroethane	20.0		46.6	50.00	0	93.3	78.8	117	12/14/2015
p-Isopropyltoluene	5.0		46.3	50.00	0	92.6	77.6	118	12/14/2015
Propionitrile	50.0		551	500.0	0	110.2	72.9	137	12/14/2015
sec-Butylbenzene	5.0			50.00	0	88.4	74.5	119	12/14/2015
Styrene	5.0		46.1	50.00	0	92.1	83.4	113	12/14/2015
tert-Butylbenzene	5.0		40.4	50.00	0	80.7	75.9	114	12/14/2015
Tetrachloroethene	5.0			50.00	0	92.8	72.5	125	12/14/2015
Tetrahydrofuran	20.0		49.6	50.00	0	99.1	69.6	125	12/14/2015
Toluene	5.0		42.9	50.00	0	85.9	77.5	113	12/14/2015
trans-1,2-Dichloroethene	5.0			50.00	0	97.3	79	114	12/14/2015
trans-1,3-Dichloropropene	5.0			50.00	0	92.7	78	115	12/14/2015
trans-1,4-Dichloro-2-butene	10.0			50.00	0	76.9	63.3	128	12/14/2015
Trichloroethene	5.0			50.00	0	96.5	84.4	114	12/14/2015
Trichlorofluoromethane	5.0			50.00	0	99.5	75.2	132	12/14/2015
Vinyl acetate	10.0			50.00	0	103.6	64.5	127	12/14/2015

http://www.teklabinc.com/

Client: Trihydro Corporation Work Order: 15120758

Client Project: Soil Vapor System Report Date: 15-Dec-15

Batch 114912 SampType:	LCS		Units µg/L							
SampID: LCS-N151214-1										Date
Analyses		RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Vinyl chloride		2.0		44.4	50.00	0	88.8	58	134	12/14/2015
Surr: 1,2-Dichloroethane-d4				46.9	50.00		93.9	74.7	129	12/14/2015
Surr: 4-Bromofluorobenzene				46.2	50.00		92.3	86	119	12/14/2015
Surr: Dibromofluoromethane				51.9	50.00		103.8	81.7	123	12/14/2015
Surr: Toluene-d8				45.4	50.00		90.9	84.1	114	12/14/2015

Batch 114912 SampType:	MS	Units µg/L						
SampID: 15120714-006FMS								Date
Analyses	RL	Qual Result	t Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
1,1-Dichloroethene	5.0	54.7	50.00	0	109.4	35.7	136	12/14/2015
Benzene	2.0	56.8	50.00	0	113.6	62.5	121	12/14/2015
Chlorobenzene	5.0	51.6	50.00	0	103.1	78.6	114	12/14/2015
Ethylbenzene	5.0	52.0	50.00	0	104.1	74.4	130	12/14/2015
m,p-Xylenes	5.0	51.7	50.00	0	103.3	70.5	126	12/14/2015
o-Xylene	5.0	49.1	50.00	0	98.1	71.2	124	12/14/2015
Toluene	5.0	50.5	50.00	0	101.1	69.5	118	12/14/2015
Trichloroethene	5.0	58.4	50.00	0	116.9	69.4	117	12/14/2015
Surr: 1,2-Dichloroethane-d4		44.6	50.00		89.3	74.7	129	12/14/2015
Surr: 4-Bromofluorobenzene		46.8	50.00		93.7	86	119	12/14/2015
Surr: Dibromofluoromethane		49.5	50.00		99.0	81.7	123	12/14/2015
Surr: Toluene-d8		46.3	50.00		92.6	84.3	114	12/14/2015

Batch 114912 SampType:	MSD	Units µg/L					RPD Li	mit 20	
SamplD: 15120714-006FMSD					0DI/ D / / /	0/050	555 5 (V)	0/000	Date Analyzed
Analyses	RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref Val	%RPD	Analyzea
1,1-Dichloroethene	5.0		55.1	50.00	0	110.2	54.68	0.78	12/14/2015
Benzene	2.0		55.9	50.00	0	111.7	56.81	1.67	12/14/2015
Chlorobenzene	5.0		50.3	50.00	0	100.6	51.56	2.45	12/14/2015
Ethylbenzene	5.0		51.4	50.00	0	102.8	52.04	1.28	12/14/2015
m,p-Xylenes	5.0		52.1	50.00	0	104.3	51.66	0.91	12/14/2015
o-Xylene	5.0		50.0	50.00	0	100.0	49.07	1.88	12/14/2015
Toluene	5.0		49.5	50.00	0	99.0	50.54	2.06	12/14/2015
Trichloroethene	5.0		57.5	50.00	0	115.1	58.43	1.53	12/14/2015
Surr: 1,2-Dichloroethane-d4			46.8	50.00		93.5			12/14/2015
Surr: 4-Bromofluorobenzene			47.0	50.00		94.0			12/14/2015
Surr: Dibromofluoromethane			50.4	50.00		100.8			12/14/2015
Surr: Toluene-d8			46.1	50.00		92.2			12/14/2015

Client: Trihydro Corporation

Receiving Check List

http://www.teklabinc.com/

Work Order: 15120758

Client Project: Soil Vapor System Report Date: 15-Dec-15 Carrier: Nick Harvey Received By: EEP Elizabeth a Hurley Kalyn Foecke Reviewed by: Completed by: On: On: 10-Dec-15 10-Dec-15 Kalyn Foecke Elizabeth A. Hurley Extra pages included 0 Pages to follow: Chain of custody Shipping container/cooler in good condition? Yes 🗸 No Not Present Temp °C 4.22 Type of thermal preservation? Ice 🗹 Blue Ice None Dry Ice Yes 🗹 No 🗀 Chain of custody present? Yes 🗹 Chain of custody signed when relinquished and received? No __ Yes 🗹 Chain of custody agrees with sample labels? No __ Yes 🗹 Samples in proper container/bottle? No 🗀 Yes 🗹 No 🗌 Sample containers intact? Sufficient sample volume for indicated test? Yes 🗸 No Yes 🗹 All samples received within holding time? No NA 🗸 Field _ Lab 🗌 Reported field parameters measured: Yes 🗹 No 🗌 Container/Temp Blank temperature in compliance? When thermal preservation is required, samples are compliant with a temperature between 0.1°C - 6.0°C, or when samples are received on ice the same day as collected. Yes 🗸 No VOA vials Water - at least one vial per sample has zero headspace? No 🗀 Yes No 🗌 No TOX containers Water - TOX containers have zero headspace? No 🗌 Yes 🗹 Water - pH acceptable upon receipt? NA 🗸 NPDES/CWA TCN interferences checked/treated in the field? Yes No 🗌 Any No responses must be detailed below or on the COC.

CHAIN OF CUSTODY

pd. of work Order # 15100 21	pg	of	Work	Order#	15700	758
------------------------------	----	----	------	--------	-------	-----

TEKLAB, INC. 5445 Horseshoe Lake Road ~ Collinsville, IL 62234 ~ Phone: (618) 344-1004 ~ Fax: (618) 344-1005

Client: Jr. Lyc	1-0		************					Sam	ples	s on	: Ę	Dic	e 🗆	Blue DF SV	lce		lo Ici	3	<u>. u(</u> .	\mathcal{H}	_°C			
Address: 1252 Co. City/State/Zip: Laramie U Contact: Toda asettyne E-Mail: Tasettyne Etnbydog	mm ree De		enegation encoderation en	TO THE OWNER OF THE OWNER	10 10 10 10 10 10 10 10 10 10 10 10 10 1			Pres	erv	ed i	n: I	ll	ab	QF	ield	ا سده د	FOR	LAB	USE	ONL	Y			
City / State / Zip: Laram : e L	~ 4 So	70		v. 1 10				Lab	Not	9 s ;	A			Ħ) YLJU	40			gg#	*	Pin.	333. %	<i>6</i> 9	
Contact: Jodá asettyne	Phone:	134	29	2	170		200433	-14	ω'	ν υ($\chi \backslash \varsigma$	M	1 R_	154 0	12-11	צוןני			- Q	\$			<u> </u>	
E-Mail: TasslTyne CTribydo	La Fax:					name and a second		Con				1			**************************************									
Are these samples known to be involved in liti	Cory	eo will	anal	, n v																8.4				
 Are these samples known to be hazardous? 	□Yes □No																		32.79	1887	Piya		()	
 Are there any required reporting limits to be n limits in comment section. Yes No 	net on the requested ana	lysis?	If yes	, pleas	se pr	ovid	е													* : 21. · · · · · ·	A	0.00.00.00.0		
Project Name / Number	Sample Co	lector	's N	ame	180110720177				MAT	ΓRΙΧ	(NDIC	ATE	ANA	LYS	IS RE	QUE	STE	D		
Goil Vager System Results Requested Bi	Todd	Ha	7+		1				ater						14									
Results Requested Bi Standard 1-2 Day (100% Surcharge)	lling Instructions	# and	Тур	of C	onta				N E		و	2	2	2	2									
☐ Other ☐ 3 Day (50% Surcharge)		RES 3	上	4	F	SO ₄	<u>.</u>	Water	Drinking Water	Soil	dge	482	$\mathcal{I}_{\mathcal{I}}$		1	<u> </u>								
□ Standard □ 1-2 Day (100% Surcharge) □ Other □ 3 Day (50% Surcharge) Lab Use Only Sample Identification	Date/Time Sampled		NaO	H ₂ S	MeOH	NaHSO4	Othe	Wa	直	Soi	<u> </u>	i	\exists										I	
ISIDE 18501 Tank 3	12/16/15 90		\Box	\top	\dagger		Ť		\Box		1	T												
	- fileford 1880		\Box		1				\Box	\top	1	T		1										
			\Box		1					1		T												
			1 1	+	\dagger				\Box	+	\dagger	T	_	1								\neg		
			\Box	\top	\dagger					\dashv	\dagger	\top	+											_
	Control of the Committee of the Control of the Control of the Committee of the Committee of the Control of the		$\dagger \dagger$	-	\dagger				\Box	\dashv	+	T	_	\dashv		 	<u> </u>					\neg		
			TT	\top	1				\Box	十	\top													
	A 4433 - 344 - 144 - 144 - 144 - 144 - 144 - 144 - 144 - 144 - 144 - 144 - 144 - 144 - 144 - 144 - 144 - 144 -		TT	1	\dagger				\Box	\top														
				\dashv	+	\vdash			H	\dashv	\dagger				I	I	\dagger					1		
	Constitution of the Consti			+	1	_				_				\top		 	\vdash					\dashv		
Relinquished By		Date		ne			ALTERNATION AND ADDRESS OF THE PARTY OF THE			B		R	eceiv	ed BV	<u> </u>	<u> </u>				Dat	e / Tji	me l		
lola that	12/16	115	POST TOOMISSON THE	90	Č,	esta esta esta esta esta esta esta esta	. O. S. Sansannino J	+		*************		The state of the state of	#	#3	- Constant	+	T. S. Carrier	1	2/	(D)	15		(0)	30
	17/10	VIC		10	20	7				(32	- (2				12	110,	10-	1100	An	-	
		Marin Marin Marin				-	nu.emimosoum				0		and Communication of Street, in S						1-1					
						and a species side of	WC67410CH				····· ································	e, en el estat de l'annuel	A CONTRACTOR OF THE PARTY OF TH		**************************************									
The individual signing this agreement on behind	alf of client acknowledg	es that	hale	he he	e ror	ad a	nd:	ındo	retan	de #	a to	rme	and	State of the State			1							management of

AP ACCREC

December 29, 2015

Todd Aseltyne
Trihydro Corporation
1252 Commerce Drive
Laramie, WY 82070
TEL: (513) 429-7470

FAX:

RE: Tank 3 **WorkOrder:** 15121693

Dear Todd Aseltyne:

TEKLAB, INC received 1 sample on 12/28/2015 10:25:00 AM for the analysis presented in the following report.

Samples are analyzed on an as received basis unless otherwise requested and documented. The sample results contained in this report relate only to the requested analytes of interest as directed on the chain of custody. NELAP accredited fields of testing are indicated by the letters NELAP under the Certification column. Unless otherwise documented within this report, Teklab Inc. analyzes samples utilizing the most current methods in compliance with 40CFR. All tests are performed in the Collinsville, IL laboratory unless otherwise noted in the Case Narrative.

All quality control criteria applicable to the test methods employed for this project have been satisfactorily met and are in accordance with NELAP except where noted. The following report shall not be reproduced, except in full, without the written approval of Teklab, Inc.

If you have any questions regarding these tests results, please feel free to call.

Sincerely,

Marvin L. Darling

Project Manager

(618)344-1004 ex 41

mdarling@teklabinc.com

Mowin L. Darling II

Client Project: Tank 3

Report Contents

http://www.teklabinc.com/

Work Order: 15121693
Report Date: 29-Dec-15

This reporting package includes the following:

Client: Trihydro Corporation

Cover Letter	1
Report Contents	2
Definitions	3
Case Narrative	4
Laboratory Results	5
Quality Control Results	8
Receiving Check List	20
Chain of Custody	Appended

Definitions

http://www.teklabinc.com/

Client: Trihydro Corporation Work Order: 15121693
Client Project: Tank 3 Report Date: 29-Dec-15

Abbr Definition

- CCV Continuing calibration verification is a check of a standard to determine the state of calibration of an instrument between recalibration.
 - DF Dilution factor is the dilution performed during analysis only and does not take into account any dilutions made during sample preparation. The reported result is final and includes all dilutions factors.
- DNI Did not ignite
- DUP Laboratory duplicate is an aliquot of a sample taken from the same container under laboratory conditions for independent processing and analysis independently of the original aliquot.
- ICV Initial calibration verification is a check of a standard to determine the state of calibration of an instrument before sample analysis is initiated.
- IDPH IL Dept. of Public Health
- LCS Laboratory control sample, spiked with verified known amounts of analytes, is analyzed exactly like a sample to establish intra-laboratory or analyst specific precision and bias or to assess the performance of all or a portion of the measurement system. The acceptable recovery range is in the QC Package (provided upon request).
- LCSD Laboratory control sample duplicate is a replicate laboratory control sample that is prepared and analyzed in order to determine the precision of the approved test method. The acceptable recovery range is listed in the QC Package (provided upon request).
- MBLK Method blank is a sample of a matrix similar to the batch of associated sample (when available) that is free from the analytes of interest and is processed simultaneously with and under the same conditions as samples through all steps of the analytical procedures, and in which no target analytes or interferences should present at concentrations that impact the analytical results for sample analyses.
- MDL Method detection limit means the minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero.
- MS Matrix spike is an aliquot of matrix fortified (spiked) with known quantities of specific analytes that is subjected to the entire analytical procedures in order to determine the effect of the matrix on an approved test method's recovery system. The acceptable recovery range is listed in the QC Package (provided upon request).
- MSD Matrix spike duplicate means a replicate matrix spike that is prepared and analyzed in order to determine the precision of the approved test method. The acceptable recovery range is listed in the QC Package (provided upon request).
- MW Molecular weight
- ND Not Detected at the Reporting Limit

NELAP NELAP Accredited

- PQL Practical quantitation limit means the lowest level that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operation conditions. The acceptable recovery range is listed in the QC Package (provided upon request).
- RL The reporting limit the lowest level that the data is displayed in the final report. The reporting limit may vary according to customer request or sample dilution. The reporting limit may not be less than the MDL.
- RPD Relative percent difference is a calculated difference between two recoveries (ie. MS/MSD). The acceptable recovery limit is listed in the QC Package (provided upon request).
- SPK The spike is a known mass of target analyte added to a blank sample or sub-sample; used to determine recovery deficiency or for other quality control purposes.
- Surr Surrogates are compounds which are similar to the analytes of interest in chemical composition and behavior in the analytical process, but which are not normally found in environmental samples.
- TIC Tentatively identified compound: Analytes tentatively identified in the sample by using a library search. Only results not in the calibration standard will be reported as tentatively identified compounds. Results for tentatively identified compounds that are not present in the calibration standard, but are assigned a specific chemical name based upon the library search, are calculated using total peak areas from reconstructed ion chromatograms and a response factor of one. The nearest Internal Standard is used for the calculation. The results of any TICs must be considered estimated, and are flagged with a "T". If the estimated result is above the calibration range it is flagged "ET"
- TNTC Too numerous to count (> 200 CFU)

Qualifiers

- # Unknown hydrocarbon
- E Value above quantitation range
- I Associated internal standard was outside method criteria
- M Manual Integration used to determine area response
- R RPD outside accepted recovery limits
- T TIC(Tentatively identified compound)

- B Analyte detected in associated Method Blank
- H Holding times exceeded
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
 - S Spike Recovery outside recovery limits
 - X Value exceeds Maximum Contaminant Level

Case Narrative

http://www.teklabinc.com/

Client: Trihydro Corporation Work Order: 15121693
Client Project: Tank 3 Report Date: 29-Dec-15

Cooler Receipt Temp: 8.02 °C

Locations and Accreditations

	Collinsville	Springfield	Kansas City	Collinsville Air
Address	5445 Horseshoe Lake Road	3920 Pintail Dr	8421 Nieman Road	5445 Horseshoe Lake Road
	Collinsville, IL 62234-7425	Springfield, IL 62711-9415	Lenexa, KS 66214	Collinsville, IL 62234-7425
Phone	(618) 344-1004	(217) 698-1004	(913) 541-1998	(618) 344-1004
Fax	(618) 344-1005	(217) 698-1005	(913) 541-1998	(618) 344-1005
Email	jhriley@teklabinc.com	KKlostermann@teklabinc.com	dthompson@teklabinc.com	EHurley@teklabinc.com

State	Dept	Cert #	NELAP	Exp Date	Lab
Illinois	IEPA	100226	NELAP	1/31/2017	Collinsville
Kansas	KDHE	E-10374	NELAP	1/31/2016	Collinsville
Louisiana	LDEQ	166493	NELAP	6/30/2016	Collinsville
Louisiana	LDEQ	166578	NELAP	6/30/2016	Collinsville
Texas	TCEQ	T104704515-12-1	NELAP	7/31/2016	Collinsville
Arkansas	ADEQ	88-0966		3/14/2016	Collinsville
Illinois	IDPH	17584		5/31/2017	Collinsville
Kentucky	KDEP	98006		12/31/2015	Collinsville
Kentucky	UST	0073		1/31/2016	Collinsville
Missouri	MDNR	00930		5/31/2017	Collinsville
Oklahoma	ODEQ	9978		8/31/2016	Collinsville

http://www.teklabinc.com/

Client: Trihydro Corporation Work Order: 15121693

Client Project: Tank 3 Report Date: 29-Dec-15

Matrix: AQUEOUS Collection Date: 12/28/2015 9:30

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Batch
SW-846 1020B								
Ignitability, Closed Cup	NELAP	60		>200	°F	1	12/28/2015 11:21	R213124
SW-846 3005A, 6010B, METAL	LS BY ICP (TOTAL)							
Lead	NELAP	0.0150		0.0676	mg/L	1	12/29/2015 8:35	115240
SW-846 3510C, 8270C SIMS, S	SEMI-VOLATILE ORG	SANIC CON	/POUNDS	BY GC/MS				
1-Methylnaphthalene		0.00050		0.0105	mg/L	5	12/28/2015 16:19	115245
Acenaphthene	NELAP	0.00050		0.00370	mg/L	5	12/28/2015 16:19	115245
Acenaphthylene	NELAP	0.00050		ND	mg/L	5	12/28/2015 16:19	115245
Anthracene	NELAP	0.00050		0.00445	mg/L	5	12/28/2015 16:19	115245
Benzo(a)anthracene	NELAP	0.00050		0.00060	mg/L	5	12/28/2015 16:19	115245
Benzo(a)pyrene	NELAP	0.00050		ND	mg/L	5	12/28/2015 16:19	115245
Benzo(b)fluoranthene	NELAP	0.00050		ND	mg/L	5	12/28/2015 16:19	115245
Benzo(g,h,i)perylene	NELAP	0.00050		ND	mg/L	5	12/28/2015 16:19	115245
Benzo(k)fluoranthene	NELAP	0.00050		ND	mg/L	5	12/28/2015 16:19	115245
Chrysene	NELAP	0.00050		ND	mg/L	5	12/28/2015 16:19	115245
Dibenzo(a,h)anthracene	NELAP	0.00050		ND	mg/L	5	12/28/2015 16:19	115245
Fluoranthene	NELAP	0.00050		0.00110	mg/L	5	12/28/2015 16:19	115245
Fluorene	NELAP	0.00050		0.00605	mg/L	5	12/28/2015 16:19	115245
Indeno(1,2,3-cd)pyrene	NELAP	0.00050		ND	mg/L	5	12/28/2015 16:19	115245
Naphthalene	NELAP	0.00050		ND	mg/L	5	12/28/2015 16:19	115245
Phenanthrene	NELAP	0.00050		0.0109	mg/L	5	12/28/2015 16:19	115245
Pyrene	NELAP	0.00050		0.00395	mg/L	5	12/28/2015 16:19	115245
Surr: 2-Fluorobiphenyl		10-143		63.0	%REC	5	12/28/2015 16:19	115245
Surr: Nitrobenzene-d5		10-166		53.5	%REC	5	12/28/2015 16:19	115245
Surr: p-Terphenyl-d14		10-137		41.0	%REC	5	12/28/2015 16:19	115245
Elevated reporting limit due to samp	ole extract composition.							
SW-846 5030, 8260B, VOLATII	LE ORGANIC COMP	OUNDS BY	GC/MS					
1,1,1,2-Tetrachloroethane	NELAP	5.0		ND	μg/L	1	12/28/2015 17:58	115254
1,1,1-Trichloroethane	NELAP	5.0		ND	μg/L	1	12/28/2015 17:58	115254
1,1,2,2-Tetrachloroethane	NELAP	5.0		ND	μg/L	1	12/28/2015 17:58	115254
1,1,2-Trichloro-1,2,2-trifluoroethan	ne	20.0		ND	μg/L	1	12/28/2015 17:58	115254
1,1,2-Trichloroethane	NELAP	5.0		ND	μg/L	1	12/28/2015 17:58	115254
1,1-Dichloro-2-propanone		50.0		ND	μg/L	1	12/28/2015 17:58	115254
1,1-Dichloroethane	NELAP	5.0		ND	μg/L	1	12/28/2015 17:58	115254
1,1-Dichloroethene	NELAP	5.0		ND	μg/L	1	12/28/2015 17:58	115254
1,1-Dichloropropene	NELAP	5.0		ND	μg/L	1	12/28/2015 17:58	115254
1,2,3-Trichlorobenzene	NELAP	5.0		ND	μg/L	1	12/28/2015 17:58	115254
1,2,3-Trichloropropane	NELAP	5.0		ND	μg/L	1	12/28/2015 17:58	115254
1,2,3-Trimethylbenzene		5.0		22.7	μg/L	1	12/28/2015 17:58	115254
1,2,4-Trichlorobenzene	NELAP	5.0		ND	μg/L	1	12/28/2015 17:58	115254
1,2,4-Trimethylbenzene	NELAP	5.0		ND	μg/L	1	12/28/2015 17:58	115254
1,2-Dibromo-3-chloropropane	NELAP	5.0		ND	μg/L	1	12/28/2015 17:58	115254
1,2-Dibromoethane	NELAP	5.0		ND	μg/L	1	12/28/2015 17:58	115254
1,2-Dichlorobenzene	NELAP	5.0		ND	μg/L	1	12/28/2015 17:58	115254
1,2-Dichloroethane	NELAP	5.0		ND	μg/L	1	12/28/2015 17:58	115254
1,2-Dichloropropane	NELAP	5.0		ND	μg/L	1	12/28/2015 17:58	115254
1,3,5-Trimethylbenzene	NELAP	5.0		14.1	μg/L	1	12/28/2015 17:58	115254
1,3-Dichlorobenzene	NELAP	5.0		ND	μg/L	1	12/28/2015 17:58	115254
					· -			

http://www.teklabinc.com/

Client: Trihydro Corporation Work Order: 15121693

Client Project: Tank 3 Report Date: 29-Dec-15

Matrix: AQUEOUS Collection Date: 12/28/2015 9:30

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Batch
SW-846 5030, 8260B, VOLA	ATILE ORGANIC COMP	OUNDS BY	GC/MS					
1,3-Dichloropropane	NELAP	5.0		ND	μg/L	1	12/28/2015 17:58	115254
1,4-Dichlorobenzene	NELAP	5.0		ND	μg/L	1	12/28/2015 17:58	115254
1-Chlorobutane	NELAP	5.0		ND	μg/L	1	12/28/2015 17:58	115254
2,2-Dichloropropane	NELAP	5.0		ND	μg/L	1	12/28/2015 17:58	115254
2-Butanone	NELAP	25.0		ND	μg/L	1	12/28/2015 17:58	115254
2-Chloroethyl vinyl ether	NELAP	20.0		ND	μg/L	1	12/28/2015 17:58	115254
2-Chlorotoluene	NELAP	5.0		ND	μg/L	1	12/28/2015 17:58	115254
2-Hexanone	NELAP	25.0		ND	μg/L	1	12/28/2015 17:58	115254
2-Nitropropane	NELAP	50.0		ND	μg/L	1	12/28/2015 17:58	115254
4-Chlorotoluene	NELAP	5.0		ND	μg/L	1	12/28/2015 17:58	115254
4-Methyl-2-pentanone	NELAP	25.0		ND	μg/L	1	12/28/2015 17:58	115254
Acetone	NELAP	25.0		ND	μg/L	1	12/28/2015 17:58	115254
Acetonitrile	NELAP	50.0		ND	μg/L	1	12/28/2015 17:58	115254
Acrolein	NELAP	100		ND	μg/L	1	12/28/2015 17:58	115254
Acrylonitrile	NELAP	5.0		ND	μg/L	1	12/28/2015 17:58	115254
Allyl chloride	NELAP	5.0		ND	μg/L	1	12/28/2015 17:58	115254
Benzene	NELAP	2.0		ND	μg/L	1	12/28/2015 17:58	115254
Bromobenzene	NELAP	5.0		ND	μg/L	1	12/28/2015 17:58	115254
Bromochloromethane	NELAP	5.0		ND	μg/L	1	12/28/2015 17:58	115254
Bromodichloromethane	NELAP	5.0		ND	μg/L	1	12/28/2015 17:58	115254
Bromoform	NELAP	5.0		ND	μg/L	1	12/28/2015 17:58	
Bromomethane	NELAP	10.0		ND	μg/L	1	12/28/2015 17:58	
Carbon disulfide	NELAP	5.0		ND	μg/L	1	12/28/2015 17:58	
Carbon tetrachloride	NELAP	5.0		ND	μg/L	1	12/28/2015 17:58	
Chlorobenzene	NELAP	5.0		ND	μg/L	1	12/28/2015 17:58	
Chloroethane	NELAP	10.0		ND	μg/L	1	12/28/2015 17:58	
Chloroform	NELAP	5.0		ND	μg/L	1	12/28/2015 17:58	
Chloromethane	NELAP	10.0		ND	μg/L	1	12/28/2015 17:58	
Chloroprene	NELAP	20.0		ND	μg/L	1	12/28/2015 17:58	
cis-1,2-Dichloroethene	NELAP	5.0		ND	μg/L	1	12/28/2015 17:58	
cis-1,3-Dichloropropene	NELAP	5.0		ND	μg/L	1	12/28/2015 17:58	
cis-1,4-Dichloro-2-butene	NELAP	5.0		ND	μg/L	1	12/28/2015 17:58	
Cyclohexanone		50.0		ND	μg/L	1	12/28/2015 17:58	
Dibromochloromethane	NELAP	5.0		ND	μg/L	1	12/28/2015 17:58	
Dibromomethane	NELAP	5.0		ND	μg/L	1	12/28/2015 17:58	
Dichlorodifluoromethane	NELAP	10.0		ND	μg/L	1	12/28/2015 17:58	
Ethyl acetate	NELAP	10.0		ND	μg/L	1	12/28/2015 17:58	
Ethyl ether	NELAP	5.0		ND	μg/L	1	12/28/2015 17:58	
Ethyl methacrylate	NELAP	5.0		ND	μg/L	1	12/28/2015 17:58	
Ethylbenzene	NELAP	5.0		ND	μg/L	1	12/28/2015 17:58	
Hexachlorobutadiene	NELAP	5.0		ND	μg/L	1	12/28/2015 17:58	
Hexachloroethane	NELAP	10.0		ND	μg/L	1	12/28/2015 17:58	
lodomethane	NELAP	5.0	J	2.7	μg/L	1	12/28/2015 17:58	
Isopropylbenzene	NELAP	5.0	=	ND	μg/L	1	12/28/2015 17:58	
m,p-Xylenes	NELAP	5.0		ND	μg/L	1	12/28/2015 17:58	
Methacrylonitrile	NELAP	10.0		ND	μg/L	1	12/28/2015 17:58	
Methyl Methacrylate	NELAP	5.0		ND	μg/L	1	12/28/2015 17:58	
Monty Woulder yield	ITLLM	5.0		ND	P9′ L	'	12,20,2010 11.00	110204

http://www.teklabinc.com/

Client: Trihydro Corporation Work Order: 15121693

Client Project: Tank 3 Report Date: 29-Dec-15

Lab ID: 15121693-001 Client Sample ID: Tank 3

Matrix: AQUEOUS Collection Date: 12/28/2015 9:30

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Batch
SW-846 5030, 8260B, VOLATI	LE ORGANIC COM	POUNDS BY	GC/MS					
Methyl tert-butyl ether	NELAP	2.0		ND	μg/L	1	12/28/2015 17:58	115254
Methylacrylate	NELAP	10.0		ND	μg/L	1	12/28/2015 17:58	115254
Methylene chloride	NELAP	5.0		ND	μg/L	1	12/28/2015 17:58	115254
Naphthalene	NELAP	10.0		ND	μg/L	1	12/28/2015 17:58	115254
n-Butyl acetate		25.0		ND	μg/L	1	12/28/2015 17:58	115254
n-Butylbenzene	NELAP	5.0	J	4.4	μg/L	1	12/28/2015 17:58	115254
n-Heptane		20.0		ND	μg/L	1	12/28/2015 17:58	115254
n-Hexane		20.0		ND	μg/L	1	12/28/2015 17:58	115254
Nitrobenzene	NELAP	50.0		ND	μg/L	1	12/28/2015 17:58	115254
n-Propylbenzene	NELAP	5.0		ND	μg/L	1	12/28/2015 17:58	115254
o-Xylene	NELAP	5.0	J	2.0	μg/L	1	12/28/2015 17:58	115254
Pentachloroethane	NELAP	20.0		ND	μg/L	1	12/28/2015 17:58	115254
p-Isopropyltoluene	NELAP	5.0		ND	μg/L	1	12/28/2015 17:58	115254
Propionitrile	NELAP	50.0		ND	μg/L	1	12/28/2015 17:58	115254
sec-Butylbenzene	NELAP	5.0		ND	μg/L	1	12/28/2015 17:58	115254
Styrene	NELAP	5.0		ND	μg/L	1	12/28/2015 17:58	115254
tert-Butylbenzene	NELAP	5.0		ND	μg/L	1	12/28/2015 17:58	115254
Tetrachloroethene	NELAP	5.0		ND	μg/L	1	12/28/2015 17:58	115254
Tetrahydrofuran	NELAP	20.0		ND	μg/L	1	12/28/2015 17:58	115254
Toluene	NELAP	5.0		ND	μg/L	1	12/28/2015 17:58	115254
trans-1,2-Dichloroethene	NELAP	5.0		ND	μg/L	1	12/28/2015 17:58	115254
trans-1,3-Dichloropropene	NELAP	5.0		ND	μg/L	1	12/28/2015 17:58	115254
trans-1,4-Dichloro-2-butene	NELAP	10.0		ND	μg/L	1	12/28/2015 17:58	115254
Trichloroethene	NELAP	5.0		ND	μg/L	1	12/28/2015 17:58	115254
Trichlorofluoromethane	NELAP	5.0		ND	μg/L	1	12/28/2015 17:58	115254
Vinyl acetate	NELAP	10.0		ND	μg/L	1	12/28/2015 17:58	115254
Vinyl chloride	NELAP	2.0		ND	μg/L	1	12/28/2015 17:58	115254
Surr: 1,2-Dichloroethane-d4		74.7-129		101.9	%REC	1	12/28/2015 17:58	115254
Surr: 4-Bromofluorobenzene		86-119		97.4	%REC	1	12/28/2015 17:58	115254
Surr: Dibromofluoromethane		81.7-123		100.1	%REC	1	12/28/2015 17:58	115254
Surr: Toluene-d8		84.3-114		99.4	%REC	1	12/28/2015 17:58	115254

Allowable Marginal Exceedance of Iodomethane in the LCS verified per 2009 TNI Standard (Volume 1, Module 4, section 1.7.4.2). Allowable Marginal Exceedance of Allyl chloride in the LCSD verified per 2009 TNI Standard (Volume 1, Module 4, section 1.7.4.2).

http://www.teklabinc.com/

Client: Trihydro Corporation Work Order: 15121693

SW-846 1020B											
Batch R213124	SampType:	LCS		Units °F							
SampID: LCS-R213	3124										Date
Analyses			RL	Qual	Result S	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Ignitability, Closed	l Cup		60		82 8	31.00	0	101.2	97	103	12/28/2015
Batch R213124	SampType:	DUP		Units °F					RPD	Limit 5	
SampID: 15121642-	-001ADUP										Date
Analyses			RL	Qual	Result S	Spike	SPK Ref Val	%REC	RPD Ref \	/al %RPD	Analyzed
Ignitability, Closed	d Cup		60		76				76.00	0.00	12/28/2015
SW-846 3005A, 60)10B, METAL	S BY I	CP (TO1	ΓAL)							
SW-846 3005A, 60 Batch 115240	010B, METAL SampType:		•	Γ AL) Units mg/L							
•	SampType:		•	•							Date
Batch 115240 SampID: MBLK-115	SampType:		•	Units mg/L	Result S	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Date Analyzed
Batch 115240	SampType:			•	Result 5		SPK Ref Val	%REC	Low Limit -100	High Limit	
Batch 115240 SampID: MBLK-115 Analyses	SampType:		RL	Units mg/L							Analyzed
Batch 115240 SampID: MBLK-115 Analyses	SampType:	MBLK	RL	Units mg/L							Analyzed
Batch 115240 SampID: MBLK-115 Analyses Lead	SampType: 5240 SampType:	MBLK	RL	Units mg/L Qual							Analyzed
Batch 115240 SampID: MBLK-115 Analyses Lead Batch 115240	SampType: 5240 SampType:	MBLK	RL	Units mg/L Qual	< 0.0150 0.0	01500	0	0	-100		Analyzed 12/29/2015
Batch 115240 SampID: MBLK-115 Analyses Lead Batch 115240 SampID: LCS-11524	SampType: 5240 SampType:	MBLK	RL 0.0150	Units mg/L Qual Units mg/L	< 0.0150 0.0	01500 Spike		0	-100	100	Analyzed 12/29/2015 Date

atch 115245 SampTyp	e: MBLK	Units mg/L						
ampID: MBLK-115245								Date
Analyses	RL	Qual	Result Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyze
1-Methylnaphthalene	0.00010		ND					12/28/201
Acenaphthene	0.00010		ND					12/28/20
Acenaphthylene	0.00010		ND					12/28/201
Anthracene	0.00010		ND					12/28/201
Benzo(a)anthracene	0.00010		ND					12/28/201
Benzo(a)pyrene	0.00010		ND					12/28/20
Benzo(b)fluoranthene	0.00010		ND					12/28/20
Benzo(g,h,i)perylene	0.00010		ND					12/28/20
Benzo(k)fluoranthene	0.00010		ND					12/28/20
Chrysene	0.00010		ND					12/28/20
Dibenzo(a,h)anthracene	0.00010		ND					12/28/20
Fluoranthene	0.00010		ND					12/28/20
Fluorene	0.00010		ND					12/28/20
Indeno(1,2,3-cd)pyrene	0.00010		ND					12/28/20
Naphthalene	0.00010		ND					12/28/20
Phenanthrene	0.00010		ND					12/28/20
Pyrene	0.00010		ND					12/28/20
Surr: 2-Fluorobiphenyl			0.00387 0.00500	С	77.4	44.4	89.6	12/28/20
Surr: Nitrobenzene-d5			0.00321 0.00500	С	64.2	40.9	81.4	12/28/20
Surr: p-Terphenyl-d14			0.00465 0.00500	С	93.0	54.3	104	12/28/20 ⁻

http://www.teklabinc.com/

Client: Trihydro Corporation Work Order: 15121693

SW-846 3510C, 8270C SIMS,	SEMI-VOLATILE	ORGANIC C	OMPOUNDS BY	GC/MS				
Batch 115245 SampType:		Units mg/L						
SampID: LCS-115245								Date
Analyses	RL	Qual	Result Spike	SPK Ref Val	%REC	Low Limit	High Limit	t Analyzed
1-Methylnaphthalene	0.00010		0.00389).005000	0	77.8	38.8	96.6	12/28/2015
Acenaphthene	0.00010		0.00389 0.005000	0	77.8	46.6	96.4	12/28/2015
Acenaphthylene	0.00010		0.00379 0.005000	0	75.8	48.1	95.6	12/28/2015
Anthracene	0.00010		0.00378).005000	0	75.6	53.2	95.9	12/28/2015
Benzo(a)anthracene	0.00010		0.00356 0.005000	0	71.2	52.5	102	12/28/2015
Benzo(a)pyrene	0.00010		0.00372).005000	0	74.4	55.1	103	12/28/2015
Benzo(b)fluoranthene	0.00010		0.00367).005000	0	73.4	53.6	105	12/28/2015
Benzo(g,h,i)perylene	0.00010		0.00356 0.005000	0	71.2	46.3	110	12/28/2015
Benzo(k)fluoranthene	0.00010		0.00385).005000	0	77.0	53.8	104	12/28/2015
Chrysene	0.00010		0.00370).005000	0	74.0	51	101	12/28/2015
Dibenzo(a,h)anthracene	0.00010		0.00360 0.005000	0	72.0	49.4	110	12/28/2015
Fluoranthene	0.00010		0.00394 0.005000	0	78.8	54.5	99.5	12/28/2015
Fluorene	0.00010		0.00397 0.005000	0	79.4	51.1	97.6	12/28/2015
Indeno(1,2,3-cd)pyrene	0.00010		0.00360 0.005000	0	72.0	48.6	110	12/28/2015
Naphthalene	0.00010		0.00377 0.005000	0	75.4	39.8	93.1	12/28/2015
Phenanthrene	0.00010		0.00367 0.005000	0	73.4	52.2	95.9	12/28/2015
Pyrene	0.00010		0.00392 0.005000	0	78.4	53.4	99.1	12/28/2015
Surr: 2-Fluorobiphenyl			0.00378 0.005000		75.6	44.4	89.6	12/28/2015
Surr: Nitrobenzene-d5			0.00336 0.005000		67.2	40.9	81.4	12/28/2015
Surr: p-Terphenyl-d14			0.00420 0.005000		84.0	54.3	104	12/28/2015

atch 115245 SampType	e: LCSD	Units mg/L				RPD L	imit 40	
ampID: LCSD-115245								Date
Analyses	RL	Qual	Result Spike	SPK Ref Val	%REC	RPD Ref Va	l %RPD	Analyze
1-Methylnaphthalene	0.00010		0.00353 0.005000	0	70.6	0.003890	9.70	12/28/20
Acenaphthene	0.00010		0.00375 0.005000	0	75.0	0.003890	3.66	12/28/20
Acenaphthylene	0.00010		0.00368 0.005000	0	73.6	0.003790	2.95	12/28/20
Anthracene	0.00010		0.00370 0.005000	0	74.0	0.003780	2.14	12/28/20
Benzo(a)anthracene	0.00010		0.00350 0.005000	0	70.0	0.003560	1.70	12/28/20
Benzo(a)pyrene	0.00010		0.00369 0.005000	0	73.8	0.003720	0.81	12/28/20
Benzo(b)fluoranthene	0.00010		0.00366 0.005000	0	73.2	0.003670	0.27	12/28/20
Benzo(g,h,i)perylene	0.00010		0.00350 0.005000	0	70.0	0.003560	1.70	12/28/20
Benzo(k)fluoranthene	0.00010		0.00390 0.005000	0	78.0	0.003850	1.29	12/28/20
Chrysene	0.00010		0.00365 0.005000	0	73.0	0.003700	1.36	12/28/20
Dibenzo(a,h)anthracene	0.00010		0.00356 0.005000	0	71.2	0.003600	1.12	12/28/20
Fluoranthene	0.00010		0.00391 0.005000	0	78.2	0.003940	0.76	12/28/20
Fluorene	0.00010		0.00387).005000	0	77.4	0.003970	2.55	12/28/20
Indeno(1,2,3-cd)pyrene	0.00010		0.00357 0.005000	0	71.4	0.003600	0.84	12/28/20
Naphthalene	0.00010		0.00335 0.005000	0	67.0	0.003770	11.80	12/28/20
Phenanthrene	0.00010		0.00364 0.005000	0	72.8	0.003670	0.82	12/28/20
Pyrene	0.00010		0.00385 0.005000	0	77.0	0.003920	1.80	12/28/20
Surr: 2-Fluorobiphenyl			0.00346 0.005000		69.2			12/28/20
Surr: Nitrobenzene-d5			0.00310 0.005000		62.0			12/28/20
Surr: p-Terphenyl-d14			0.00398 0.005000		79.6			12/28/20

http://www.teklabinc.com/

Client: Trihydro Corporation Work Order: 15121693

SW-846 5030, 8260B, VOLATILE OI			BY GC/MS	5					
Batch 115254 SampType: MBL SampID: MBLK-R151228-1	-K	Units µg/L							Date
Analyses	RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
1,1,1,2-Tetrachloroethane	5.0		ND						12/28/2015
1,1,1-Trichloroethane	5.0		ND						12/28/2015
1,1,2,2-Tetrachloroethane	5.0		ND						12/28/2015
1,1,2-Trichloro-1,2,2-trifluoroethane	20.0		ND						12/28/2015
1,1,2-Trichloroethane	5.0		ND						12/28/2015
1,1-Dichloro-2-propanone	50.0		ND						12/28/2015
1,1-Dichloroethane	5.0		ND						12/28/2015
1,1-Dichloroethene	5.0		ND						12/28/2015
1,1-Dichloropropene	5.0		ND						12/28/2015
1,2,3-Trichlorobenzene	5.0		ND						12/28/2015
1,2,3-Trichloropropane	5.0		ND						12/28/2015
1,2,3-Trimethylbenzene	5.0		ND						12/28/2015
1,2,4-Trichlorobenzene	5.0		ND						12/28/2015
1,2,4-Trimethylbenzene	5.0		ND						12/28/2015
1,2-Dibromo-3-chloropropane	5.0		ND						12/28/2015
1,2-Dibromoethane	5.0		ND						12/28/2015
1,2-Dichlorobenzene	5.0		ND						12/28/2015
1,2-Dichloroethane	5.0		ND						12/28/2015
1,2-Dichloropropane	5.0		ND						12/28/2015
1,3,5-Trimethylbenzene	5.0		ND						12/28/2015
1,3-Dichlorobenzene	5.0		ND						12/28/2015
1,3-Dichloropropane	5.0		ND						12/28/2015
1,4-Dichlorobenzene	5.0		ND						12/28/2015
1-Chlorobutane	5.0		ND						12/28/2015
2,2-Dichloropropane	5.0		ND						12/28/2015
2-Butanone	25.0		ND						12/28/2015
2-Chloroethyl vinyl ether	20.0		ND						12/28/2015
2-Chlorotoluene	5.0		ND						12/28/2015
2-Hexanone	25.0		ND						12/28/2015
2-Nitropropane	50.0		ND						12/28/2015
4-Chlorotoluene	5.0		ND						12/28/2015
4-Methyl-2-pentanone	25.0		ND						12/28/2015
	25.0								12/28/2015
Acetone Acetonitrile	50.0		ND ND						12/28/2015
Acrolein	100		ND ND						12/28/2015
Acrylonitrile	5.0								12/28/2015
Allyl chloride	5.0		ND ND						12/28/2015
Benzene	2.0		ND ND						12/28/2015
			ND						
Bromobenzene	5.0		ND						12/28/2015
Bromochloromethane	5.0		ND						12/28/2015
Bromodichloromethane	5.0		ND						12/28/2015
Bromoform	5.0		ND						12/28/2015
Bromomethane	10.0		ND						12/28/2015
Carbon disulfide	5.0		ND						12/28/2015
Carbon tetrachloride	5.0		ND						12/28/2015
Chlorobenzene	5.0		ND						12/28/2015
Chloroethane	10.0		ND						12/28/2015

http://www.teklabinc.com/

Client: Trihydro Corporation Work Order: 15121693

/-846 5030, 8260B, VOLATI			IS					
tch 115254 SampType: mpID: MBLK-R151228-1	MBLK	Units μg/L						Date
Analyses	RL	Qual Resul	t Spike SPk	K Ref Val	%REC	Low Limit	High Limit	Analyz
Chloroform	5.0	ND	•					12/28/20
Chloromethane	10.0	ND						12/28/20
Chloroprene	20.0	ND						12/28/20
cis-1,2-Dichloroethene	5.0	ND						12/28/20
cis-1,3-Dichloropropene	5.0	ND						12/28/20
cis-1,4-Dichloro-2-butene	5.0	ND						12/28/2
Cyclohexanone	50.0	ND						12/28/2
Dibromochloromethane	5.0	ND						12/28/2
Dibromomethane	5.0	ND						12/28/2
Dichlorodifluoromethane	10.0	ND						12/28/2
Ethyl acetate	10.0	ND						12/28/2
Ethyl ether	5.0	ND						12/28/2
Ethyl methacrylate	5.0	ND						12/28/2
Ethylbenzene	5.0	ND						12/28/2
Hexachlorobutadiene	5.0	ND ND						12/28/2
Hexachloroethane	10.0	ND ND						12/28/2
lodomethane	5.0	ND ND						12/28/2
	5.0							
Isopropylbenzene		ND						12/28/2
m,p-Xylenes	5.0	ND						12/28/2
Methacrylonitrile	10.0	ND						12/28/2
Methyl Methacrylate	5.0	ND						12/28/2
Methyl tert-butyl ether	2.0	ND						12/28/2
Methylacrylate	10.0	ND						12/28/2
Methylene chloride	5.0	ND						12/28/2
Naphthalene	10.0	ND						12/28/2
n-Butyl acetate	25.0	ND						12/28/2
n-Butylbenzene	5.0	ND						12/28/2
n-Heptane	20.0	ND						12/28/2
n-Hexane	20.0	ND						12/28/2
Nitrobenzene	50.0	ND						12/28/2
n-Propylbenzene	5.0	ND						12/28/2
o-Xylene	5.0	ND						12/28/2
Pentachloroethane	20.0	ND						12/28/2
o-Isopropyltoluene	5.0	ND						12/28/2
Propionitrile	50.0	ND						12/28/2
sec-Butylbenzene	5.0	ND						12/28/2
Styrene	5.0	ND						12/28/2
tert-Butylbenzene	5.0	ND						12/28/2
Tetrachloroethene	5.0	ND						12/28/2
Tetrahydrofuran	20.0	ND						12/28/2
Toluene	5.0	ND						12/28/2
trans-1,2-Dichloroethene	5.0	ND						12/28/2
trans-1,3-Dichloropropene	5.0	ND						12/28/2
trans-1,4-Dichloro-2-butene	10.0	ND						12/28/2
Trichloroethene	5.0	ND						12/28/2
Trichlorofluoromethane	5.0	ND ND						12/28/2
Vinyl acetate	10.0	ND ND						12/28/2

http://www.teklabinc.com/

Client: Trihydro Corporation Work Order: 15121693

SW-846 5030, 8260B, VOLATII	SW-846 5030, 8260B, VOLATILE ORGANIC COMPOUNDS BY GC/MS											
Batch 115254 SampType:	MBLK		Units µg/L									
SampID: MBLK-R151228-1										Date		
Analyses	F	RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed		
Vinyl chloride		2.0		ND						12/28/2015		
Surr: 1,2-Dichloroethane-d4				51.5	50.00		103.0	74.7	129	12/28/2015		
Surr: 4-Bromofluorobenzene				49.5	50.00		99.1	86	119	12/28/2015		
Surr: Dibromofluoromethane				48.9	50.00		97.7	81.7	123	12/28/2015		
Surr: Toluene-d8				50.3	50.00		100.5	84.3	114	12/28/2015		

http://www.teklabinc.com/

Client: Trihydro Corporation Work Order: 15121693

SW-846 5030, 8260B, VOLATILE O Batch 115254		Units µg/L	DI GC/IVI	3			RPD Li	mit 40	
SamplD: LCSD-R151228-1	,,,	Onits µg/L					NI D LI	TITE 40	Data
Analyses	RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref Val	%RPD	Date Analyzed
1,1,1,2-Tetrachloroethane	5.0		52.6	50.00	0	105.3	50.06	5.01	12/28/2015
1,1,1-Trichloroethane	5.0		53.5	50.00	0	107.0	47.79	11.29	12/28/2015
1,1,2,2-Tetrachloroethane	5.0		51.2	50.00	0	102.4	51.09	0.22	12/28/2015
1,1,2-Trichloro-1,2,2-trifluoroethane	20.0		53.2	50.00	0	106.4	47.18	11.96	12/28/2015
1,1,2-Trichloroethane	5.0		50.7	50.00	0	101.5	50.17	1.13	12/28/2015
1,1-Dichloro-2-propanone	50.0		128	125.0	0	102.4	135.2	5.50	12/28/2015
1,1-Dichloroethane	5.0		53.2	50.00	0	106.4	49.10	7.98	12/28/2015
1,1-Dichloroethene	5.0		57.2	50.00	0	114.3	49.85	13.64	12/28/2015
1,1-Dichloropropene	5.0		54.7	50.00	0	109.4	47.89	13.31	12/28/2015
1,2,3-Trichlorobenzene	5.0		55.0	50.00	0	109.9	51.33	6.83	12/28/2015
1,2,3-Trichloropropane	5.0		48.3	50.00	0	96.5	47.58	1.44	12/28/2015
1,2,3-Trimethylbenzene	5.0		51.8	50.00	0	103.6	47.75	8.14	12/28/2015
1,2,4-Trichlorobenzene	5.0		54.3	50.00	0	108.6	49.40	9.45	12/28/2015
1,2,4-Trimethylbenzene	5.0		54.8	50.00	0	109.5	50.23	8.61	12/28/2015
1,2-Dibromo-3-chloropropane	5.0		47.9	50.00	0	95.7	48.48	1.29	12/28/2015
1,2-Dibromoethane	5.0		50.9	50.00	0	101.9	50.49	0.87	12/28/2015
1,2-Dichlorobenzene	5.0		51.2	50.00	0	102.5	47.58	7.39	12/28/2015
1,2-Dichloroethane	5.0		51.1	50.00	0	102.2	50.56	1.08	12/28/2015
1,2-Dichloropropane	5.0		52.1	50.00	0	104.2	49.66	4.76	12/28/2015
1,3,5-Trimethylbenzene	5.0		55.5	50.00	0	110.9	50.17	10.03	12/28/2015
1,3-Dichlorobenzene	5.0		52.4	50.00	0	104.9	48.58	7.64	12/28/2015
1,3-Dichloropropane	5.0		50.8	50.00	0	101.7	50.04	1.59	12/28/2015
1,4-Dichlorobenzene	5.0		50.5	50.00	0	101.0	46.44	8.40	12/28/2015
1-Chlorobutane	5.0		53.1	50.00	0	106.1	46.79	12.58	12/28/2015
2,2-Dichloropropane	5.0		55.5	50.00	0	111.0	48.14	14.20	12/28/2015
2-Butanone	25.0		119	125.0	0	95.4	119.6	0.38	12/28/2015
2-Chloroethyl vinyl ether	20.0		45.1	50.00	0	90.2	46.44	2.91	12/28/2015
2-Chlorotoluene	5.0		53.8	50.00	0	107.6	49.34	8.67	12/28/2015
2-Hexanone	25.0		132	125.0	0	105.8	132.8	0.41	12/28/2015
2-Nitropropane	50.0		574	500.0	0	114.7	584.3	1.85	12/28/2015
4-Chlorotoluene	5.0		52.7	50.00	0	105.3	48.47	8.29	12/28/2015
4-Methyl-2-pentanone	25.0			125.0	0	102.0	129.0	1.15	12/28/2015
Acetone	25.0		126	125.0	0	101.0	124.4	1.45	12/28/2015
Acetonic	50.0		521	500.0	0	104.3	529.5	1.53	12/28/2015
Acrolein	100		524	500.0	0	104.9	530.4	1.16	12/28/2015
Acrylonitrile	5.0		52.5	50.00	0	105.0	53.28	1.47	12/28/2015
Allyl chloride	5.0	S	62.0	50.00	0	124.1	56.34	9.65	12/28/2015
Benzene	2.0	3	52.1	50.00	0	104.2	47.75	8.75	12/28/2015
Bromobenzene	5.0		56.6	50.00	0	113.2	46.76	19.06	12/28/2015
Bromochloromethane Bromodichloromethane	5.0 5.0		49.7	50.00	0	99.5	49.58	0.32	12/28/2015
	5.0		49.9	50.00	0	99.8	48.34	3.18	12/28/2015
Bromoform	5.0		51.2	50.00	0	102.5	51.01	0.47	12/28/2015
Bromomethane	10.0		44.3	50.00	0	88.6	39.56	11.28	12/28/2015
Carbon disulfide	5.0		55.6	50.00	0	111.2	47.42	15.88	12/28/2015
Carbon tetrachloride	5.0		54.7		0	109.4	48.11	12.82	12/28/2015
Chlorosthana	5.0		51.6		0	103.1	47.96	7.22	12/28/2015
Chloroethane	10.0		51.8	50.00	0	103.6	47.05	9.61	12/28/2015

http://www.teklabinc.com/

Client: Trihydro Corporation Work Order: 15121693

SW-846 5030, 8260B, VOLAT Batch 115254 SampType:		Units µg/L				RPD Lir	mit 40	
SampID: LCSD-R151228-1		F 9/-						Date
Analyses	RL (Qual Result	Spike	SPK Ref Val	%REC	RPD Ref Val	%RPD	Analyzed
Chloroform	5.0	50.8	50.00	0	101.6	47.58	6.51	12/28/2015
Chloromethane	10.0	48.5	50.00	0	97.0	44.55	8.47	12/28/201
Chloroprene	20.0	52.3	50.00	0	104.6	46.95	10.82	12/28/201
cis-1,2-Dichloroethene	5.0	53.2	50.00	0	106.5	49.00	8.29	12/28/201
cis-1,3-Dichloropropene	5.0	54.0	50.00	0	108.0	51.80	4.20	12/28/201
cis-1,4-Dichloro-2-butene	5.0	55.7	50.00	0	111.4	54.07	2.95	12/28/201
Cyclohexanone	50.0	455	500.0	0	91.0	419.6	8.12	12/28/201
Dibromochloromethane	5.0	51.6	50.00	0	103.3	50.83	1.58	12/28/201
Dibromomethane	5.0	49.1	50.00	0	98.3	48.14	2.06	12/28/201
Dichlorodifluoromethane	10.0	65.1	50.00	0	130.2	56.56	14.01	12/28/201
Ethyl acetate	10.0	52.3	50.00	0	104.7	52.72	0.74	12/28/201
Ethyl ether	5.0	49.1	50.00	0	98.2	48.48	1.25	12/28/201
Ethyl methacrylate	5.0	54.5	50.00	0	109.0	55.03	0.95	12/28/201
Ethylbenzene	5.0	55.4	50.00	0	110.8	49.96	10.34	12/28/201
Hexachlorobutadiene	5.0	58.5	50.00	0	117.0	49.25	17.14	12/28/201
Hexachloroethane	10.0	56.9	50.00	0	113.7	50.36	12.12	12/28/201
Iodomethane	5.0	34.1	50.00	0	68.3	28.08	19.48	12/28/201
Isopropylbenzene	5.0	55.8	50.00	0	111.6	49.78	11.37	12/28/201
m,p-Xylenes	5.0	111	100.0	0	111.0	100.8	9.64	12/28/201
Methacrylonitrile	10.0	50.7	50.00	0	101.4	51.06	0.67	12/28/201
Methyl Methacrylate	5.0	54.4	50.00	0	108.8	55.13	1.31	12/28/201
Methyl tert-butyl ether	2.0	54.4 51.0	50.00	0	102.0	51.18	0.31	12/28/201
Methylacrylate	10.0	55.4	50.00	0	110.9	55.40	0.07	12/28/201
Methylene chloride	5.0	49.9	50.00	0	99.8	48.40	3.01	12/28/201
Naphthalene	10.0	56.4	50.00	0	112.9	54.14	4.18	12/28/201
n-Butyl acetate	25.0	54.8	50.00	0	109.5	55.05	0.53	12/28/201
n-Butylbenzene	5.0	55.5	50.00	0	111.0	48.89	12.63	12/28/201
•	20.0	57.5	50.00		115.1	48.81	16.42	12/28/201
n-Heptane			50.00	0				12/28/201
n-Hexane	20.0	57.8		0	115.5	49.40	15.59	
Nitrobenzene	50.0	472	500.0	0	94.4	438.8	7.29	12/28/201
n-Propylbenzene	5.0	55.4	50.00	0	110.9	49.76	10.78	12/28/201 12/28/201
o-Xylene Pentachloroethane	5.0	54.5		0	109.1	49.77	9.13	
	20.0	56.2	50.00	0	112.5	53.35	5.29	12/28/201
p-Isopropyltoluene	5.0	56.8	50.00	0	113.5	50.22	12.23	12/28/201
Propionitrile	50.0	517	500.0	0	103.3	513.4	0.60	12/28/201
sec-Butylbenzene	5.0	55.5	50.00	0	111.1	49.29	11.92	12/28/201
Styrene	5.0	55.4	50.00	0	110.7	51.00	8.18	12/28/201
tert-Butylbenzene	5.0	53.7	50.00	0	107.5	48.09	11.08	12/28/201
Tetrachloroethene	5.0	53.8	50.00	0	107.7	48.41	10.60	12/28/201
Tetrahydrofuran	20.0	47.7	50.00	0	95.5	48.75	2.09	12/28/201
Toluene	5.0	53.2	50.00	0	106.5	49.31	7.68	12/28/201
trans-1,2-Dichloroethene	5.0	55.6	50.00	0	111.2	50.31	10.01	12/28/201
trans-1,3-Dichloropropene	5.0	54.4	50.00	0	108.9	52.66	3.31	12/28/201
trans-1,4-Dichloro-2-butene	10.0	53.6	50.00	0	107.3	51.93	3.22	12/28/201
Trichloroethene	5.0	51.3	50.00	0	102.6	46.25	10.35	12/28/201
Trichlorofluoromethane	5.0	49.0	50.00	0	98.0	43.22	12.49	12/28/201
Vinyl acetate	10.0	55.1	50.00	0	110.1	52.27	5.20	12/28/201

http://www.teklabinc.com/

Client: Trihydro Corporation Work Order: 15121693

SW-846 5030, 8260B, VOLATILE ORGANIC COMPOUNDS BY GC/MS										
Batch 115254 SampType:	E LCSD Units μg/L RPD Limit 40									
SampID: LCSD-R151228-1										Date
Analyses		RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref Val	%RPD	Analyzed
Vinyl chloride		2.0		52.1	50.00	0	104.2	44.38	16.00	12/28/2015
Surr: 1,2-Dichloroethane-d4				50.3	50.00		100.6			12/28/2015
Surr: 4-Bromofluorobenzene				49.2	50.00		98.4			12/28/2015
Surr: Dibromofluoromethane				49.2	50.00		98.5			12/28/2015
Surr: Toluene-d8				49.9	50.00		99.8			12/28/2015

http://www.teklabinc.com/

Client: Trihydro Corporation Work Order: 15121693

tch 115254 SampType: LCS		Units µg/L							
mpID: LCS-R151228-1		. •							Date
Analyses	RL	Qual	Result	Snike	SPK Ref Val	%REC	Low Limit	High Limit	Analy
1,1,1,2-Tetrachloroethane	5.0	Quui	50.1	50.00	0	100.1	81.9	115	12/28/2
1,1,1-Trichloroethane	5.0		47.8	50.00	0	95.6	79.4	124	12/28/2
1,1,2,2-Tetrachloroethane	5.0		51.1	50.00	0	102.2	74.7	116	12/28/2
1,1,2-Trichloro-1,2,2-trifluoroethane	20.0		47.2	50.00	0	94.4	72.9	121	12/28/2
1,1,2-Trichloroethane	5.0		50.2	50.00	0	100.3	80.8	111	12/28/2
1,1-Dichloro-2-propanone	50.0		135	125.0	0	108.2	66.3	130	12/28/2
1,1-Dichloroethane	5.0		49.1	50.00	0	98.2	79.4	114	12/28/2
1,1-Dichloroethene	5.0		49.8	50.00	0	99.7	74.1	117	12/28/2
1,1-Dichloropropene	5.0		47.9	50.00	0	95.8	81.7	116	12/28/2
1,2,3-Trichlorobenzene	5.0		51.3	50.00	0	102.7	79.7	118	12/28/2
1,2,3-Trichloropropane	5.0		47.6	50.00	0	95.2	77.3	112	12/28/2
1,2,3-Trimethylbenzene	5.0		47.8	50.00	0	95.5	79.9	119	12/28/2
1,2,4-Trichlorobenzene	5.0		49.4	50.00	0	98.8	79.3	118	12/28/2
1,2,4-Trimethylbenzene	5.0		50.2	50.00	0	100.5	78.7	115	12/28/2
1,2-Dibromo-3-chloropropane	5.0		48.5	50.00	0	97.0	76	122	12/28/
1,2-Dibromoethane	5.0		50.5	50.00	0	101.0	80.8	114	12/28/
1,2-Dichlorobenzene	5.0		47.6	50.00	0	95.2	78.3	112	12/28/
1,2-Dichloroethane	5.0		50.6	50.00	0	101.1	70.6	118	12/28/
1,2-Dichloropropane	5.0		49.7	50.00	0	99.3	79.6	113	12/28/
1,3,5-Trimethylbenzene	5.0		50.2	50.00	0	100.3	77.5	115	12/28/
1,3-Dichlorobenzene	5.0		48.6	50.00	0	97.2	78.6	117	12/28/
1,3-Dichloropropane	5.0		50.0	50.00	0	100.1	78.8	112	12/28/
1,4-Dichlorobenzene	5.0		46.4	50.00	0	92.9	77.8	114	12/28/
1-Chlorobutane	5.0		46.8	50.00	0	93.6	77.6 78.6	115	12/28/
2,2-Dichloropropane	5.0		48.1	50.00	0	96.3	74.9	130	12/28/
2-Butanone	25.0		120	125.0	0	95.7	70.7	136	12/28/
2-Chloroethyl vinyl ether	20.0		46.4	50.00	0	92.9	52.5	145	12/28/
2-Chlorotoluene	5.0		49.3	50.00	0	98.7	77.4	114	12/28/
2-Hexanone	25.0		133	125.0	0	106.3	73.3	125	12/28/
2-Nitropropane	50.0		584	500.0	0	116.9	67.3	139	12/28/
4-Chlorotoluene	5.0		48.5	50.00	0	96.9	78.3	115	12/28/
4-Chlorotoluene 4-Methyl-2-pentanone	25.0		129	125.0	0	103.2	76.3	122	12/28/
					0			147	
Acetone Acetonitrile	25.0 50.0		124 529	125.0 500.0		99.5 105.9	56.4 59.3	129	12/28/3 12/28/3
	100			500.0	0	105.9	59.5 1	201	
Acrolein			530		0				12/28/
Acrylonitrile	5.0		53.3	50.00	0	106.6	74.1	128	12/28/
Allyl chloride	5.0		56.3	50.00	0	112.7	71.5	123	12/28/2
Benzene	2.0		47.8	50.00	0	95.5	80	114	12/28/
Bromobenzene	5.0		46.8	50.00	0	93.5	73.2	118	12/28/2
Bromochloromethane	5.0		49.6	50.00	0	99.2	73.3	121	12/28/2
Bromodichloromethane	5.0		48.3	50.00	0	96.7	81.6	121	12/28/2
Bromoform	5.0		51.0	50.00	0	102.0	83.1	127	12/28/2
Bromomethane	10.0		39.6	50.00	0	79.1	44.4	154	12/28/
Carbon disulfide	5.0		47.4	50.00	0	94.8	73.2	118	12/28/2
Carbon tetrachloride	5.0		48.1	50.00	0	96.2	79.4	130	12/28/2
Chlorobenzene Chloroethane	5.0 10.0		48.0 47.0	50.00 50.00	0 0	95.9 94.1	81.4 52.1	110 137	12/28/2 12/28/2

http://www.teklabinc.com/

Client: Trihydro Corporation Work Order: 15121693

SW-846 5030, 8260B, VOLATIL	LE ORGANIC C	OMPOUNDS	BY GC/M	S					
Batch 115254 SampType:	LCS	Units µg/L							
SampID: LCS-R151228-1									Date
Analyses	RL	Qual	Result	Snike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Chloroform	5.0	Quui	47.6	50.00	0	95.2	82.7	116	12/28/2015
Chloromethane	10.0		44.6	50.00	0	89.1	48.2	144	12/28/2015
Chloroprene	20.0		47.0	50.00	0	93.9	80.6	126	12/28/2015
cis-1,2-Dichloroethene	5.0		49.0	50.00	0	98.0	78.2	116	12/28/2015
cis-1,3-Dichloropropene	5.0		51.8	50.00	0	103.6	83	119	12/28/2015
cis-1,4-Dichloro-2-butene	5.0		54.1	50.00	0	108.1	60.7	137	12/28/2015
Cyclohexanone	50.0		420	500.0	0	83.9	54.2	145	12/28/2015
Dibromochloromethane	5.0		50.8	50.00	0	101.7	81.2	121	12/28/2015
Dibromomethane	5.0		48.1	50.00	0	96.3	78.3	118	12/28/2015
Dichlorodifluoromethane	10.0		56.6	50.00	0	113.1	20.6	154	12/28/2015
Ethyl acetate	10.0		52.7	50.00	0	105.4	73.1	116	12/28/2015
Ethyl ether	5.0		48.5	50.00	0	97.0	75.2	109	12/28/2015
Ethyl methacrylate	5.0		55.0	50.00	0	110.1	80.1	113	12/28/2015
Ethylbenzene	5.0		50.0	50.00	0	99.9	77.2	113	12/28/2015
Hexachlorobutadiene	5.0		49.2	50.00	0	98.5	77.3	123	12/28/2015
Hexachloroethane	10.0		50.4	50.00	0	100.7	74.6	117	12/28/2015
Iodomethane	5.0	S	28.1	50.00	0	56.2	61.3	140	12/28/2015
Isopropylbenzene	5.0		49.8	50.00	0	99.6	81.3	114	12/28/2015
m,p-Xylenes	5.0		101	100.0	0	100.8	79.6	113	12/28/2015
Methacrylonitrile	10.0		51.1	50.00	0	102.1	77.2	125	12/28/2015
Methyl Methacrylate	5.0		55.1	50.00	0	110.3	74.2	121	12/28/2015
Methyl tert-butyl ether	2.0		51.2	50.00	0	102.4	76.8	117	12/28/2015
Methylacrylate	10.0		55.4	50.00	0	110.8	78	124	12/28/2015
Methylene chloride	5.0		48.4	50.00	0	96.8	74.1	114	12/28/2015
Naphthalene	10.0		54.1	50.00	0	108.3	77.9	122	12/28/2015
n-Butyl acetate	25.0		55.0	50.00	0	110.1	74	120	12/28/2015
n-Butylbenzene	5.0		48.9	50.00	0	97.8	71.1	120	12/28/2015
n-Heptane	20.0		48.8	50.00	0	97.6	67.4	129	12/28/2015
n-Hexane	20.0		49.4	50.00	0	98.8	68.4	126	12/28/2015
Nitrobenzene	50.0		439	500.0	0	87.8	37.9	181	12/28/2015
n-Propylbenzene	5.0		49.8	50.00	0	99.5	74.6	118	12/28/2015
o-Xylene	5.0		49.8	50.00	0	99.5	80.1	111	12/28/2015
Pentachloroethane	20.0		53.4	50.00	0	106.7	78.8	117	12/28/2015
p-Isopropyltoluene	5.0		50.2	50.00	0	100.4	77.6	118	12/28/2015
Propionitrile	50.0		513	500.0	0	102.7	72.9	137	12/28/2015
sec-Butylbenzene	5.0		49.3	50.00	0	98.6	74.5	119	12/28/2015
Styrene	5.0		51.0	50.00	0	102.0	83.4	113	12/28/2015
tert-Butylbenzene	5.0		48.1	50.00	0	96.2	75.9	114	12/28/2015
Tetrachloroethene	5.0		48.4	50.00	0	96.8	72.5	125	12/28/2015
Tetrahydrofuran	20.0		48.8	50.00	0	97.5	69.6	125	12/28/2015
Toluene	5.0		49.3	50.00	0	98.6	77.5	113	12/28/2015
trans-1,2-Dichloroethene	5.0		50.3	50.00	0	100.6	79	114	12/28/2015
trans-1,3-Dichloropropene	5.0		52.7	50.00	0	105.3	78	115	12/28/2015
trans-1,4-Dichloro-2-butene	10.0		51.9	50.00	0	103.9	63.3	128	12/28/2015
Trichloroethene	5.0		46.2	50.00	0	92.5	84.4	114	12/28/2015
Trichlorofluoromethane	5.0		43.2	50.00	0	86.4	75.2	132	12/28/2015
Vinyl acetate	10.0		52.3	50.00	0	104.5	64.5	127	12/28/2015

http://www.teklabinc.com/

Client: Trihydro Corporation Work Order: 15121693

SW-846 5030, 8260B, VOLA	TILE OR	GANIC C	OMPOUNDS	BY GC/MS	S					
Batch 115254 SampTyp	e: LCS		Units µg/L							
SampID: LCS-R151228-1										Date
Analyses		RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Vinyl chloride		2.0		44.4	50.00	0	88.8	58	134	12/28/2015
Surr: 1,2-Dichloroethane-de	4			50.2	50.00		100.5	74.7	129	12/28/2015
Surr: 4-Bromofluorobenzen	е			49.7	50.00		99.3	86	119	12/28/2015
Surr: Dibromofluoromethan	e			49.3	50.00		98.6	81.7	123	12/28/2015
Surr: Toluene-d8				50.6	50.00		101.1	84.1	114	12/28/2015
Batch 115254 SampTyp SampID: 15121574-002AMS	e: MS		Units µg/L							Date
Analyses		RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Date Analyzed

Batch 115254	Samp i ype:	IVIS	Units µg/L							
SampID: 15121574-00	02AMS									Date
Analyses		RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
1,1-Dichloroethene		100		1020	1000	0	101.9	35.7	136	12/28/2015
Benzene		40.0		1020	1000	0	101.9	62.5	121	12/28/2015
Chlorobenzene		100		976	1000	0	97.6	78.6	114	12/28/2015
Ethylbenzene		100		1090	1000	0	108.7	74.4	130	12/28/2015
m,p-Xylenes		100		1070	1000	0	107.5	70.5	126	12/28/2015
o-Xylene		100		1020	1000	0	102.3	71.2	124	12/28/2015
Toluene		100		1000	1000	44.40	95.6	69.5	118	12/28/2015
Trichloroethene		100		1040	1000	0	104.1	69.4	117	12/28/2015
Surr: 1,2-Dichloro	ethane-d4			1010	1000		101.2	74.7	129	12/28/2015
Surr: 4-Bromofluo	robenzene			974	1000		97.4	86	119	12/28/2015
Surr: Dibromofluo	romethane			984	1000		98.4	81.7	123	12/28/2015
Surr: Toluene-d8				997	1000		99.7	84.3	114	12/28/2015

Batch 115254 SampType:	MSD		Units µg/L	L RPD Limit 20						
SampID: 15121574-002AMSD										Date
Analyses		RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref Val	%RPD	Analyzed
1,1-Dichloroethene		100		997	1000	0	99.7	1019	2.22	12/28/2015
Benzene		40.0		996	1000	0	99.6	1019	2.28	12/28/2015
Chlorobenzene		100		956	1000	0	95.6	975.6	2.03	12/28/2015
Ethylbenzene		100		1050	1000	0	104.9	1087	3.56	12/28/2015
m,p-Xylenes		100		1050	1000	0	105.0	1075	2.30	12/28/2015
o-Xylene		100		998	1000	0	99.8	1023	2.47	12/28/2015
Toluene		100		976	1000	44.40	93.2	1000	2.39	12/28/2015
Trichloroethene		100		1010	1000	0	101.5	1041	2.55	12/28/2015
Surr: 1,2-Dichloroethane-d4				1030	1000		102.8			12/28/2015
Surr: 4-Bromofluorobenzene				981	1000		98.1			12/28/2015
Surr: Dibromofluoromethane				1010	1000		100.6			12/28/2015
Surr: Toluene-d8				987	1000		98.7			12/28/2015

http://www.teklabinc.com/

Client: Trihydro Corporation Work Order: 15121693

Batch 115254	SampType:	MS		Units µg/L							
SampID: 15121690	-001AMS										Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Benzene			20.0		563	500.0	70.80	98.4	62.5	121	12/28/2015
Ethylbenzene			50.0		562	500.0	22.70	107.8	74.4	130	12/28/2015
m,p-Xylenes			50.0		649	500.0	109.6	107.8	70.5	126	12/28/2015
o-Xylene			50.0		555	500.0	45.10	102.0	71.2	124	12/28/2015
Toluene			50.0		631	500.0	134.3	99.4	69.5	118	12/28/2015
Surr: 1,2-Dichlo	roethane-d4				508	500.0		101.5	74.7	129	12/28/2015
Surr: 4-Bromofl	uorobenzene				494	500.0		98.8	86	119	12/28/2015
Surr: Dibromofl	uoromethane				486	500.0		97.1	81.7	123	12/28/2015
Surr: Toluene-d	18				502	500.0		100.3	84.3	114	12/28/2015

Batch 115254 SampType:	MSD	Units µg/L				RPD Limit 20					
SampID: 15121690-001AMSD										Date	
Analyses		RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref V	al %RPD	Analyzed	
Benzene		20.0		556	500.0	70.80	97.0	562.7	1.25	12/28/2015	
Ethylbenzene		50.0		543	500.0	22.70	104.0	561.6	3.39	12/28/2015	
m,p-Xylenes		50.0		628	500.0	109.6	103.8	648.6	3.16	12/28/2015	
o-Xylene		50.0		542	500.0	45.10	99.4	555.0	2.39	12/28/2015	
Toluene		50.0		621	500.0	134.3	97.4	631.4	1.61	12/28/2015	
Surr: 1,2-Dichloroethane-d4				515	500.0		102.9			12/28/2015	
Surr: 4-Bromofluorobenzene				488	500.0		97.6			12/28/2015	
Surr: Dibromofluoromethane				494	500.0		98.9			12/28/2015	
Surr: Toluene-d8				499	500.0		99.9			12/28/2015	

Receiving Check List

http://www.teklabinc.com/

Work Order: 15121693 Client: Trihydro Corporation Client Project: Tank 3 Report Date: 29-Dec-15 Carrier: Employee Received By: AMD Elizabeth a thurley M. Kaminski Reviewed by: Completed by: On: On: 28-Dec-15 28-Dec-15 Elizabeth A. Hurley 0 Chain of custody Extra pages included Pages to follow: Shipping container/cooler in good condition? Yes 🗸 No Not Present Temp °C 8.02 Type of thermal preservation? **✓** Blue Ice None Ice Dry Ice **~** Chain of custody present? Yes No Yes 🗹 Chain of custody signed when relinquished and received? No __ Yes 🗹 Chain of custody agrees with sample labels? No __ Yes 🗹 Samples in proper container/bottle? No Yes 🗹 No 🗌 Sample containers intact? Sufficient sample volume for indicated test? Yes 🗸 Yes 🗹 All samples received within holding time? No NA 🗸 Field _ Lab _ Reported field parameters measured: No 🗸 Yes 🗌 Container/Temp Blank temperature in compliance? When thermal preservation is required, samples are compliant with a temperature between 0.1°C - 6.0°C, or when samples are received on ice the same day as collected. Yes 🗸 No VOA vials Water – at least one vial per sample has zero headspace? No 🗀 Yes No 🗌 No TOX containers Water - TOX containers have zero headspace? Yes 🗸 No 🗌 Water - pH acceptable upon receipt? Yes NA 🗸 NPDES/CWA TCN interferences checked/treated in the field? No 🗌

Any No responses must be detailed below or on the COC.

The sample was out of temperature compliance upon receipt. Per Todd Aseltyne proceed with analyze. MAK 12/28/15

CHAIN OF CUSTODY

pg. ___ of ___ Work Order #\512100

TEKLAB, INC. 5445 Horseshoe Lake Road ~ Collinsville, IL 62234 ~ Phone: (618) 344-1004 ~ Fax: (618) 344-1005

Client: TRI HYDRO						Blueice Moice	
Address: 1252 COMMER	CCE ACIU	2		reserved in	ı: 🗆 Lab	図Field <u>FORL</u>	AB USE ONLY
City / State / Zip: LARAMIE, WY	82070			.ab Notes:	Ø	138 15	
Contact: TODD ASELTYNE	Phons <u>473</u>	-429-7470	_ 2	7 <u>C</u> 1'C)1691, 2	POCE OTH	10 10-28-15 Wy miost 12/24/15
E-Mail: TASELTYNE @ TRIHYDRO.COM	M Fax:		_ C	Comments:	Analysis 6	jer project his	My mio# 12/28/15
• Are these samples known to be involved in litigatio • Are these samples known to be hazardous? □ Ye • Are there any required reporting limits to be met or limits in comment excelor. □ Yes □ No.	es — El No n the requisite d an a	lyals? If yes, please				ONE DAY	/ TAT
Project Nume / Humber	San ble Col	lector's Name	, mar	WATRIX		Provided State of the company of the first state of the control of	YSIS REQUESTED
				Water	1001W	ELIZARIA SELLATION ASSESSED.	
Results Requested Billing □ Standard 🕱 1-2 Day (100% Surcharge)	g instructions	# and Type of Con	The state of the s	l sal l	0 47		
☐ Other ☐ 3 Day (50% Surcharge)		HZSON CHES	MeOH NaHSO, Other	Water Drinking Soil	Sp. Waste Vol. FLASH FLOSH	EAD 6×4	
Lab Use Only Sample Identification Dat	ie/Time & mpled		S Z S			7	
15121493 TANK 3 12	L-28-15 0930		Transition of the state of the		XX	XX	
• • • • • • • • • • • • • • • • • • • •							
	CONTROL OF THE PROPERTY OF T		100000000000000000000000000000000000000				
	CONTRACTOR	The state of the s				40.00	
	Accommon common and accommon of the common o		The Court				
	AND THE PROPERTY OF THE PROPER		200				
			CHARACTER				
			es posterio		200		
	Company (necessary construction of the constru		COMM				
	and the second s		The same				
Relinquished-By		Date / Time			Received	Ву	Date / Time
Walu V=	19/8	18/15 10:	<i>∂</i> 5	Om	D1 070	CULO	12:28:15 10:25
-	00						
		AND TAKE I TO PROTECTION OF THE PROTECTION OF THE	ENGLICEN D' THE MANAGEMENT			and the second s	

January 13, 2016

Todd Aseltyne
Trihydro Corporation
1252 Commerce Drive
Laramie, WY 82070
TEL: (513) 429-7470

FAX:

RE: Water from Soil Vapor System

Dear Todd Aseltyne:

TEKLAB, INC received 1 sample on 1/8/2016 11:10:00 AM for the analysis presented in the following report.

Samples are analyzed on an as received basis unless otherwise requested and documented. The sample results contained in this report relate only to the requested analytes of interest as directed on the chain of custody. NELAP accredited fields of testing are indicated by the letters NELAP under the Certification column. Unless otherwise documented within this report, Teklab Inc. analyzes samples utilizing the most current methods in compliance with 40CFR. All tests are performed in the Collinsville, IL laboratory unless otherwise noted in the Case Narrative.

All quality control criteria applicable to the test methods employed for this project have been satisfactorily met and are in accordance with NELAP except where noted. The following report shall not be reproduced, except in full, without the written approval of Teklab, Inc.

If you have any questions regarding these tests results, please feel free to call.

Sincerely,

Marvin L. Darling

Project Manager (618)344-1004 ex 41

mdarling@teklabinc.com

Mowin L. Darling II

AP ACCREC

Report Contents

http://www.teklabinc.com/

Client: Trihydro Corporation Work Order: 16010422
Client Project: Water from Soil Vapor System Report Date: 13-Jan-16

This reporting package includes the following:

Cover Letter	1
Report Contents	2
Definitions	3
Case Narrative	4
Laboratory Results	5
Quality Control Results	8
Receiving Check List	24
Chain of Custody	Appended

Definitions

http://www.teklabinc.com/

Client: Trihydro Corporation Work Order: 16010422
Client Project: Water from Soil Vapor System Report Date: 13-Jan-16

Abbr Definition

- CCV Continuing calibration verification is a check of a standard to determine the state of calibration of an instrument between recalibration.
- DF Dilution factor is the dilution performed during analysis only and does not take into account any dilutions made during sample preparation. The reported result is final and includes all dilutions factors.
- DNI Did not ignite
- DUP Laboratory duplicate is an aliquot of a sample taken from the same container under laboratory conditions for independent processing and analysis independently of the original aliquot.
- ICV Initial calibration verification is a check of a standard to determine the state of calibration of an instrument before sample analysis is initiated.
- IDPH IL Dept. of Public Health
- LCS Laboratory control sample, spiked with verified known amounts of analytes, is analyzed exactly like a sample to establish intra-laboratory or analyst specific precision and bias or to assess the performance of all or a portion of the measurement system. The acceptable recovery range is in the QC Package (provided upon request).
- LCSD Laboratory control sample duplicate is a replicate laboratory control sample that is prepared and analyzed in order to determine the precision of the approved test method. The acceptable recovery range is listed in the QC Package (provided upon request).
- MBLK Method blank is a sample of a matrix similar to the batch of associated sample (when available) that is free from the analytes of interest and is processed simultaneously with and under the same conditions as samples through all steps of the analytical procedures, and in which no target analytes or interferences should present at concentrations that impact the analytical results for sample analyses.
- MDL Method detection limit means the minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero.
- MS Matrix spike is an aliquot of matrix fortified (spiked) with known quantities of specific analytes that is subjected to the entire analytical procedures in order to determine the effect of the matrix on an approved test method's recovery system. The acceptable recovery range is listed in the QC Package (provided upon request).
- MSD Matrix spike duplicate means a replicate matrix spike that is prepared and analyzed in order to determine the precision of the approved test method. The acceptable recovery range is listed in the QC Package (provided upon request).
- MW Molecular weight
- ND Not Detected at the Reporting Limit

NELAP NELAP Accredited

- PQL Practical quantitation limit means the lowest level that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operation conditions. The acceptable recovery range is listed in the QC Package (provided upon request).
- RL The reporting limit the lowest level that the data is displayed in the final report. The reporting limit may vary according to customer request or sample dilution. The reporting limit may not be less than the MDL.
- RPD Relative percent difference is a calculated difference between two recoveries (ie. MS/MSD). The acceptable recovery limit is listed in the QC Package (provided upon request).
- SPK The spike is a known mass of target analyte added to a blank sample or sub-sample; used to determine recovery deficiency or for other quality control purposes.
- Surr Surrogates are compounds which are similar to the analytes of interest in chemical composition and behavior in the analytical process, but which are not normally found in environmental samples.
- TIC Tentatively identified compound: Analytes tentatively identified in the sample by using a library search. Only results not in the calibration standard will be reported as tentatively identified compounds. Results for tentatively identified compounds that are not present in the calibration standard, but are assigned a specific chemical name based upon the library search, are calculated using total peak areas from reconstructed ion chromatograms and a response factor of one. The nearest Internal Standard is used for the calculation. The results of any TICs must be considered estimated, and are flagged with a "T". If the estimated result is above the calibration range it is flagged "ET"
- TNTC Too numerous to count (> 200 CFU)

Qualifiers

- # Unknown hydrocarbon
- E Value above quantitation range
- I Associated internal standard was outside method criteria
- M Manual Integration used to determine area response
- R RPD outside accepted recovery limits
- T TIC(Tentatively identified compound)

- B Analyte detected in associated Method Blank
- H Holding times exceeded
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
 - S Spike Recovery outside recovery limits
 - X Value exceeds Maximum Contaminant Level

Case Narrative

http://www.teklabinc.com/

Client: Trihydro Corporation Work Order: 16010422
Client Project: Water from Soil Vapor System Report Date: 13-Jan-16

Cooler Receipt Temp: 2.22 °C

Locations and Accreditations

	Collinsville	Springfield		Kansas City		Colli	Collinsville Air		
Address	5445 Horseshoe Lake Road	3920 Pintail Dr		8421 Nieman R	oad	5445	5445 Horseshoe Lake Road		
	Collinsville, IL 62234-7425	Springfield, IL 62711-	Lenexa, KS 662	14	Collin	Collinsville, IL 62234-7425			
Phone	(618) 344-1004	(217) 698-1004		(913) 541-1998			344-1004		
Fax	(618) 344-1005	(217) 698-1005		(913) 541-1998		(618)	344-1005		
Email	jhriley@teklabinc.com	KKlostermann@teklal	oinc.com	dthompson@tel	clabinc.co	om EHur	ley@teklabinc.com		
	State	Dept	Cert #	NEI	LAP	Exp Date	Lab		
	Illinois	IEPA	100226	NEI	LAP	1/31/2017	Collinsville	_	

State	Dept	Cert #	NELAP	Exp Date	Lab	
Illinois	IEPA	100226	NELAP	1/31/2017	Collinsville	
Kansas	KDHE	E-10374	NELAP	1/31/2016	Collinsville	
Louisiana	LDEQ	166493	NELAP	6/30/2016	Collinsville	
Louisiana	LDEQ	166578	NELAP	6/30/2016	Collinsville	
Texas	TCEQ	T104704515-12-1	NELAP	7/31/2016	Collinsville	
Arkansas	ADEQ	88-0966		3/14/2016	Collinsville	
Illinois	IDPH	17584		5/31/2017	Collinsville	
Kentucky	KDEP	98006		12/31/2016	Collinsville	
Kentucky	UST	0073		1/31/2016	Collinsville	
Missouri	MDNR	00930		5/31/2017	Collinsville	
Oklahoma	ODEQ	9978		8/31/2016	Collinsville	

http://www.teklabinc.com/

Client: Trihydro Corporation Work Order: 16010422
Client Project: Water from Soil Vapor System Report Date: 13-Jan-16

Matrix: AQUEOUS Collection Date: 01/08/2016 7:30

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Batch
SW-846 1020B								
Ignitability, Closed Cup	NELAP	60		>200	°F	1	01/08/2016 13:24	R213565
SW-846 3005A, 6010B, MET.	ALS BY ICP (TOTAL)							
Lead	NELAP	0.0150		0.0510	mg/L	1	01/11/2016 14:49	115510
SW-846 3510C, 8270C SIMS	, SEMI-VOLATILE OF	GANIC COM	/POUNDS	S BY GC/MS				
1-Methylnaphthalene		0.00050		0.0102	mg/L	5	01/13/2016 10:56	115455
Acenaphthene	NELAP	0.00050		0.00150	mg/L	5	01/13/2016 10:56	115455
Acenaphthylene	NELAP	0.00050		ND	mg/L	5	01/13/2016 10:56	115455
Anthracene	NELAP	0.00050		0.00210	mg/L	5	01/13/2016 10:56	115455
Benzo(a)anthracene	NELAP	0.00050		0.00050	mg/L	5	01/13/2016 10:56	115455
Benzo(a)pyrene	NELAP	0.00050		ND	mg/L	5	01/13/2016 10:56	115455
Benzo(b)fluoranthene	NELAP	0.00050		ND	mg/L	5	01/13/2016 10:56	115455
Benzo(g,h,i)perylene	NELAP	0.00050		ND	mg/L	5	01/13/2016 10:56	115455
Benzo(k)fluoranthene	NELAP	0.00050		ND	mg/L	5	01/13/2016 10:56	115455
Chrysene	NELAP	0.00050		ND	mg/L	5	01/13/2016 10:56	115455
Dibenzo(a,h)anthracene	NELAP	0.00050		ND	mg/L	5	01/13/2016 10:56	115455
Fluoranthene	NELAP	0.00050		0.00065	mg/L	5	01/13/2016 10:56	115455
Fluorene	NELAP	0.00050		0.00215	mg/L	5	01/13/2016 10:56	115455
Indeno(1,2,3-cd)pyrene	NELAP	0.00050		ND	mg/L	5	01/13/2016 10:56	115455
Naphthalene	NELAP	0.00050		0.00065	mg/L	5	01/13/2016 10:56	115455
Phenanthrene	NELAP	0.00050		0.00330	mg/L	5	01/13/2016 10:56	115455
Pyrene	NELAP	0.00050		0.00255	mg/L	5	01/13/2016 10:56	115455
Surr: 2-Fluorobiphenyl		10-143		42.5	%REC	5	01/13/2016 10:56	115455
Surr: Nitrobenzene-d5		10-166		38.0	%REC	5	01/13/2016 10:56	115455
Surr: p-Terphenyl-d14		10-137		45.0	%REC	5	01/13/2016 10:56	115455
Elevated reporting limit due to sal	mple extract composition							
SW-846 5030, 8260B, VOLA	TILE ORGANIC COM	POUNDS BY	GC/MS					
1,1,1,2-Tetrachloroethane	NELAP	5.0		ND	μg/L	1	01/08/2016 15:29	115516
1,1,1-Trichloroethane	NELAP	5.0		ND	μg/L	1	01/08/2016 15:29	115516
1,1,2,2-Tetrachloroethane	NELAP	5.0		ND	μg/L	1	01/08/2016 15:29	115516
1,1,2-Trichloro-1,2,2-trifluoroeth	nane	20.0		ND	μg/L	1	01/08/2016 15:29	115516
1,1,2-Trichloroethane	NELAP	5.0		ND	μg/L	1	01/08/2016 15:29	115516
1,1-Dichloro-2-propanone		50.0		ND	μg/L	1	01/08/2016 15:29	115516
1,1-Dichloroethane	NELAP	5.0		ND	μg/L	1	01/08/2016 15:29	115516
1,1-Dichloroethene	NELAP	5.0		ND	μg/L	1	01/08/2016 15:29	115516
1,1-Dichloropropene	NELAP	5.0		ND	μg/L	1	01/08/2016 15:29	115516
1,2,3-Trichlorobenzene	NELAP	5.0		ND	μg/L	1	01/08/2016 15:29	115516
1,2,3-Trichloropropane	NELAP	5.0		ND	μg/L	1	01/08/2016 15:29	115516
1,2,3-Trimethylbenzene		5.0		25.1	μg/L	1	01/08/2016 15:29	115516
1,2,4-Trichlorobenzene	NELAP	5.0		ND	μg/L	1	01/08/2016 15:29	115516
1,2,4-Trimethylbenzene	NELAP	5.0		ND	μg/L	1	01/08/2016 15:29	115516
1,2-Dibromo-3-chloropropane	NELAP	5.0		ND	μg/L	1	01/08/2016 15:29	115516
1,2-Dibromoethane	NELAP	5.0		ND	μg/L	1	01/08/2016 15:29	115516
1,2-Dichlorobenzene	NELAP	5.0		ND	μg/L	1	01/08/2016 15:29	115516
1,2-Dichloroethane	NELAP	5.0		ND	μg/L	1	01/08/2016 15:29	115516
1,2-Dichloropropane	NELAP	5.0		ND	μg/L	1	01/08/2016 15:29	115516
1,3,5-Trimethylbenzene	NELAP	5.0		19.0	μg/L	1	01/08/2016 15:29	115516
1,3-Dichlorobenzene	NELAP	5.0		ND	μg/L	1	01/08/2016 15:29	115516

http://www.teklabinc.com/

Client: Trihydro Corporation Work Order: 16010422 t Project: Water from Soil Vapor System Report Date: 13-Jan-16

Client Project: Water from Soil Vapor System

Lab ID: 16010422-001

Client Sample ID: Tank 3

Matrix: AQUEOUS Collection Date: 01/08/2016 7:30

Wattix: AQULOUS Conection Date: 01/00/2010 7.30								
Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Batch
SW-846 5030, 8260B, VOLA	TILE ORGANIC COMP	OUNDS BY	GC/MS					
1,3-Dichloropropane	NELAP	5.0		ND	μg/L	1	01/08/2016 15:29	115516
1,4-Dichlorobenzene	NELAP	5.0		ND	μg/L	1	01/08/2016 15:29	115516
1-Chlorobutane	NELAP	5.0		ND	μg/L	1	01/08/2016 15:29	115516
2,2-Dichloropropane	NELAP	5.0		ND	μg/L	1	01/08/2016 15:29	115516
2-Butanone	NELAP	25.0		ND	μg/L	1	01/08/2016 15:29	115516
2-Chloroethyl vinyl ether	NELAP	20.0		ND	μg/L	1	01/08/2016 15:29	115516
2-Chlorotoluene	NELAP	5.0		ND	μg/L	1	01/08/2016 15:29	115516
2-Hexanone	NELAP	25.0		ND	μg/L	1	01/08/2016 15:29	115516
2-Nitropropane	NELAP	50.0		ND	μg/L	1	01/08/2016 15:29	115516
4-Chlorotoluene	NELAP	5.0		ND	μg/L	1	01/08/2016 15:29	115516
4-Methyl-2-pentanone	NELAP	25.0		ND	μg/L	1	01/08/2016 15:29	115516
Acetone	NELAP	25.0		132	μg/L	1	01/08/2016 15:29	115516
Acetonitrile	NELAP	50.0		ND	μg/L	1	01/08/2016 15:29	115516
Acrolein	NELAP	100		ND	μg/L	1	01/08/2016 15:29	115516
Acrylonitrile	NELAP	5.0		ND	μg/L	1	01/08/2016 15:29	115516
Allyl chloride	NELAP	5.0		ND	μg/L	1	01/08/2016 15:29	115516
Benzene	NELAP	2.0		ND	μg/L	1	01/08/2016 15:29	115516
Bromobenzene	NELAP	5.0		ND	μg/L	1	01/08/2016 15:29	115516
Bromochloromethane	NELAP	5.0		ND	μg/L	1	01/08/2016 15:29	115516
Bromodichloromethane	NELAP	5.0		ND	μg/L	1	01/08/2016 15:29	115516
Bromoform	NELAP	5.0		ND	μg/L	1	01/08/2016 15:29	115516
Bromomethane	NELAP	10.0		ND	μg/L	1	01/08/2016 15:29	115516
Carbon disulfide	NELAP	5.0		ND	μg/L	1	01/08/2016 15:29	115516
Carbon tetrachloride	NELAP	5.0		ND	μg/L	1	01/08/2016 15:29	115516
Chlorobenzene	NELAP	5.0		ND	μg/L	1	01/08/2016 15:29	115516
Chloroethane	NELAP	10.0		ND	μg/L	1	01/08/2016 15:29	115516
Chloroform	NELAP	5.0		ND	μg/L	1	01/08/2016 15:29	115516
Chloromethane	NELAP	10.0		ND	μg/L	1	01/08/2016 15:29	115516
Chloroprene	NELAP	20.0		ND	μg/L	1	01/08/2016 15:29	115516
cis-1,2-Dichloroethene	NELAP	5.0		ND	μg/L	1	01/08/2016 15:29	115516
cis-1,3-Dichloropropene	NELAP	5.0		ND	μg/L	1	01/08/2016 15:29	115516
cis-1,4-Dichloro-2-butene	NELAP	5.0		ND	μg/L	1	01/08/2016 15:29	115516
Cyclohexanone		50.0		ND	μg/L	1	01/08/2016 15:29	115516
Dibromochloromethane	NELAP	5.0		ND	μg/L	1	01/08/2016 15:29	115516
Dibromomethane	NELAP	5.0		ND	μg/L	1	01/08/2016 15:29	115516
Dichlorodifluoromethane	NELAP	10.0		ND	μg/L	1	01/08/2016 15:29	115516
Ethyl acetate	NELAP	10.0		ND	μg/L	1	01/08/2016 15:29	115516
Ethyl ether	NELAP	5.0		ND	μg/L	1	01/08/2016 15:29	115516
Ethyl methacrylate	NELAP	5.0		ND	μg/L	1	01/08/2016 15:29	115516
Ethylbenzene	NELAP	5.0		ND	μg/L	1	01/08/2016 15:29	115516
Hexachlorobutadiene	NELAP	5.0		ND	μg/L	1	01/08/2016 15:29	115516
Hexachloroethane	NELAP	10.0		ND	μg/L	1	01/08/2016 15:29	115516
Iodomethane	NELAP	5.0		ND	μg/L	1	01/08/2016 15:29	115516
Isopropylbenzene	NELAP	5.0		ND	μg/L	1	01/08/2016 15:29	115516
m,p-Xylenes	NELAP	5.0		ND	μg/L	1	01/08/2016 15:29	115516
Methacrylonitrile	NELAP	10.0		ND	μg/L	1	01/08/2016 15:29	115516
Methyl Methacrylate	NELAP	5.0		ND	μg/L	1	01/08/2016 15:29	115516

http://www.teklabinc.com/

Client: Trihydro Corporation

Work Order: 16010422

Project: Water from Soil Vapor System

Report Date: 13-Jan-16

Client Project: Water from Soil Vapor System
Lab ID: 16010422-001
Client Sample ID: Tank 3

Matrix: AQUEOUS Collection Date: 01/08/2016 7:30

1/14/12/17 / NQOLOOS					= 1	00,2010		
Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Batch
SW-846 5030, 8260B, VOLAT	ILE ORGANIC COM	POUNDS BY	GC/MS					
Methyl tert-butyl ether	NELAP	2.0		ND	μg/L	1	01/08/2016 15:29	115516
Methylacrylate	NELAP	10.0		ND	μg/L	1	01/08/2016 15:29	115516
Methylene chloride	NELAP	5.0		ND	μg/L	1	01/08/2016 15:29	115516
Naphthalene	NELAP	10.0		ND	μg/L	1	01/08/2016 15:29	115516
n-Butyl acetate		25.0		ND	μg/L	1	01/08/2016 15:29	115516
n-Butylbenzene	NELAP	5.0		ND	μg/L	1	01/08/2016 15:29	115516
n-Heptane		20.0		ND	μg/L	1	01/08/2016 15:29	115516
n-Hexane		20.0		ND	μg/L	1	01/08/2016 15:29	115516
Nitrobenzene	NELAP	50.0		ND	μg/L	1	01/08/2016 15:29	115516
n-Propylbenzene	NELAP	5.0		ND	μg/L	1	01/08/2016 15:29	115516
o-Xylene	NELAP	5.0	J	2.3	μg/L	1	01/08/2016 15:29	115516
Pentachloroethane	NELAP	20.0		ND	μg/L	1	01/08/2016 15:29	115516
p-Isopropyltoluene	NELAP	5.0	J	1.4	μg/L	1	01/08/2016 15:29	115516
Propionitrile	NELAP	50.0		ND	μg/L	1	01/08/2016 15:29	115516
sec-Butylbenzene	NELAP	5.0		ND	μg/L	1	01/08/2016 15:29	115516
Styrene	NELAP	5.0		ND	μg/L	1	01/08/2016 15:29	115516
tert-Butylbenzene	NELAP	5.0		ND	μg/L	1	01/08/2016 15:29	115516
Tetrachloroethene	NELAP	5.0		ND	μg/L	1	01/08/2016 15:29	115516
Tetrahydrofuran	NELAP	20.0		ND	μg/L	1	01/08/2016 15:29	115516
Toluene	NELAP	5.0		ND	μg/L	1	01/08/2016 15:29	115516
trans-1,2-Dichloroethene	NELAP	5.0		ND	μg/L	1	01/08/2016 15:29	115516
trans-1,3-Dichloropropene	NELAP	5.0		ND	μg/L	1	01/08/2016 15:29	115516
trans-1,4-Dichloro-2-butene	NELAP	10.0		ND	μg/L	1	01/08/2016 15:29	115516
Trichloroethene	NELAP	5.0		ND	μg/L	1	01/08/2016 15:29	115516
Trichlorofluoromethane	NELAP	5.0		ND	μg/L	1	01/08/2016 15:29	115516
Vinyl acetate	NELAP	10.0		ND	μg/L	1	01/08/2016 15:29	115516
Vinyl chloride	NELAP	2.0		ND	μg/L	1	01/08/2016 15:29	115516
Surr: 1,2-Dichloroethane-d4		74.7-129		96.3	%REC	1	01/08/2016 15:29	115516
Surr: 4-Bromofluorobenzene		86-119		96.2	%REC	1	01/08/2016 15:29	115516
Surr: Dibromofluoromethane		81.7-123		94.6	%REC	1	01/08/2016 15:29	115516
Surr: Toluene-d8		84.3-114		96.6	%REC	1	01/08/2016 15:29	115516

http://www.teklabinc.com/

Client: Trihydro Corporation Work Order: 16010422

Client Project: Water from Soil Vapor System Report Date: 13-Jan-16

SW-846 1020B											
Batch R213565	SampType:	LCS		Units °F							
SampID: LCS-R21	3565										Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Ignitability, Close	d Cup		60		81	81.00	0	100.0	97	103	01/08/2016
Batch R213565	SampType:	DUP		Units °F					RPD	Limit 5	
SampID: 16010422	2-001BDUP										Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref \	/al %RPD	Analyzed
Ignitability, Close	d Cup		60		>200				0	0.00	01/08/2016
SW-846 3005A, 6	010B, METAL	_S BY IC	CP (TO	ΓAL)							
Batch 115510	SampType:	MBLK		Units mg/L							
SampID: MBLK-11	5510										Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Lead			0.0150		< 0.0150		0	0	-100	100	01/11/2016
Batch 115510	SampType:	LCS		Units mg/L							
SampID: LCS-115	510										Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Lead			0.0150		0.546	0.5000	0	109.3	85	115	01/11/2016

http://www.teklabinc.com/

	e: MBLK	Units mg/L						
mpID: MBLK-115455								Date
Analyses	RL	Qual	Result Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyz
1-Methylnaphthalene	0.00010		ND					01/08/2
Acenaphthene	0.00010		ND					01/07/2
Acenaphthene	0.00010		ND					01/08/2
Acenaphthylene	0.00010		ND					01/08/2
Anthracene	0.00010		ND					01/07/2
Anthracene	0.00010		ND					01/08/2
Benzo(a)anthracene	0.00010		ND					01/08/2
Benzo(a)pyrene	0.00010		ND					01/08/2
Benzo(b)fluoranthene	0.00010		ND					01/08/2
Benzo(g,h,i)perylene	0.00010		ND					01/08/2
Benzo(k)fluoranthene	0.00010		ND					01/08/2
Chrysene	0.00010		ND					01/08/2
Dibenzo(a,h)anthracene	0.00010		ND					01/08/2
Fluoranthene	0.00010		ND					01/07/2
Fluoranthene	0.00010		ND					01/08/2
Fluorene	0.00010		ND					01/07/2
Fluorene	0.00010		ND					01/08/2
Indeno(1,2,3-cd)pyrene	0.00010		ND					01/08/2
Naphthalene	0.00010		ND					01/07/2
Naphthalene	0.00010		ND					01/08/2
Phenanthrene	0.00010		ND					01/07/2
Phenanthrene	0.00010		ND					01/08/2
Pyrene	0.00010		ND					01/08/2
Pyrene	0.00010		ND					01/07/2
Surr: 2-Fluorobiphenyl			0.00370 0.005000	•	74.0	30.2	114	01/07/2
Surr: 2-Fluorobiphenyl			0.00405 0.005000	•	81.0	44.4	89.6	01/08/2
Surr: Nitrobenzene-d5			0.00286 0.005000	•	57.2	40.9	81.4	01/08/2
Surr: Nitrobenzene-d5			0.00337 0.005000	•	67.4	27.2	106	01/07/2
Surr: p-Terphenyl-d14			0.00456 0.005000	•	91.2	35.2	135	01/07/2
Surr: p-Terphenyl-d14			0.00476 0.005000	,	95.2	54.3	104	01/08/2

http://www.teklabinc.com/

atch 115455 SampTyp	e: LCS	Units mg/L						
ampID: LCS-115455								Date
Analyses	RL	Qual	Result Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyz
1-Methylnaphthalene	0.00010		0.00431 0.005000	0	86.2	38.8	96.6	01/08/20
Acenaphthene	0.00010		0.00378 0.005000	0	75.6	53.5	111	01/07/20
Acenaphthene	0.00010		0.00369 0.005000	0	73.8	46.6	96.4	01/08/20
Acenaphthylene	0.00010		0.00358 0.005000	0	71.6	48.1	95.6	01/08/20
Anthracene	0.00010		0.00363).005000	0	72.6	53.2	95.9	01/08/20
Anthracene	0.00010		0.00427).005000	0	85.4	49.4	119	01/07/20
Benzo(a)anthracene	0.00010		0.00337).005000	0	67.4	52.5	102	01/08/20
Benzo(a)pyrene	0.00010		0.00364 0.005000	0	72.8	55.1	103	01/08/2
Benzo(b)fluoranthene	0.00010		0.00364 0.005000	0	72.8	53.6	105	01/08/2
Benzo(g,h,i)perylene	0.00010		0.00350 0.005000	0	70.0	46.3	110	01/08/2
Benzo(k)fluoranthene	0.00010		0.00388 0.005000	0	77.6	53.8	104	01/08/2
Chrysene	0.00010		0.00358 0.005000	0	71.6	51	101	01/08/2
Dibenzo(a,h)anthracene	0.00010		0.00357 0.005000	0	71.4	49.4	110	01/08/2
Fluoranthene	0.00010		0.00414 0.005000	0	82.8	54.5	99.5	01/08/2
Fluoranthene	0.00010		0.00434 0.005000	0	86.8	57.1	121	01/07/2
Fluorene	0.00010		0.00381 0.005000	0	76.2	51.1	97.6	01/08/2
Fluorene	0.00010		0.00385 0.005000	0	77.0	53.3	117	01/07/2
Indeno(1,2,3-cd)pyrene	0.00010		0.00334 0.005000	0	66.8	48.6	110	01/08/2
Naphthalene	0.00010		0.00371 0.005000	0	74.2	47.8	109	01/07/2
Naphthalene	0.00010		0.00380 0.005000	0	76.0	39.8	93.1	01/08/2
Phenanthrene	0.00010		0.00343 0.005000	0	68.6	52.2	95.9	01/08/2
Phenanthrene	0.00010		0.00392 0.005000	0	78.4	51.9	119	01/07/2
Pyrene	0.00010		0.00443 0.005000	0	88.6	52.5	124	01/07/2
Pyrene	0.00010		0.00394 0.005000	0	78.8	53.4	99.1	01/08/2
Surr: 2-Fluorobiphenyl			0.00368 0.005000		73.6	44.4	89.6	01/08/2
Surr: 2-Fluorobiphenyl			0.00376 0.005000		75.2	45.5	101	01/07/2
Surr: Nitrobenzene-d5			0.00364 0.005000		72.8	47.2	102	01/07/2
Surr: Nitrobenzene-d5			0.00352 0.005000		70.4	40.9	81.4	01/08/2
Surr: p-Terphenyl-d14			0.00413 0.005000		82.6	54.3	104	01/08/2
Surr: p-Terphenyl-d14			0.00444 0.005000		88.8	54.9	115	01/07/2

http://www.teklabinc.com/

Satch 115455 SampType	e: LCSD	Units mg/L				RPD Lir	mit 40	
SampID: LCSD-115455 Analyses	RL	Qual	Result Spike	SPK Ref Val	%REC	RPD Ref Val	%RPD	Date Analyze
1-Methylnaphthalene	0.00010	Quai	0.00347).00500C	0	69.4	0.004310	21.59	01/08/201
Acenaphthene	0.00010		0.00377 0.005000	0	75.4	0.003690	2.14	01/08/201
Acenaphthene	0.00010		0.00351 0.005000	0	70.2	0.003780	7.41	01/07/20
Acenaphthylene	0.00010		0.00316 0.005000	0	63.2	0.003580	12.46	01/08/20
Anthracene	0.00010		0.00349 0.005000	0	69.8	0.003630	3.93	01/08/20
Anthracene	0.00010		0.00413).005000	0	82.6	0.004270	3.33	01/07/20
Benzo(a)anthracene	0.00010		0.00324).005000	0	64.8	0.003370	3.93	01/08/20
Benzo(a)pyrene	0.00010		0.00342).005000	0	68.4	0.003640	6.23	01/08/20
Benzo(b)fluoranthene	0.00010		0.00347).005000	0	69.4	0.003640	4.78	01/08/20
Benzo(g,h,i)perylene	0.00010		0.00328 0.005000	0	65.6	0.003500	6.49	01/08/20
Benzo(k)fluoranthene	0.00010		0.00358 0.005000	0	71.6	0.003880	8.04	01/08/20
Chrysene	0.00010		0.00345 0.005000	0	69.0	0.003580	3.70	01/08/20
Dibenzo(a,h)anthracene	0.00010		0.00335 0.005000	0	67.0	0.003570	6.36	01/08/20
Fluoranthene	0.00010		0.00423 0.005000	0	84.6	0.004340	2.57	01/07/20
Fluoranthene	0.00010		0.00403 0.005000	0	80.6	0.004140	2.69	01/08/20
Fluorene	0.00010		0.00366 0.005000	0	73.2	0.003850	5.06	01/07/20
Fluorene	0.00010		0.00343 0.005000	0	68.6	0.003810	10.50	01/08/20
Indeno(1,2,3-cd)pyrene	0.00010		0.00335 0.005000	0	67.0	0.003340	0.30	01/08/20
Naphthalene	0.00010		0.00340 0.005000	0	68.0	0.003710	8.72	01/07/20
Naphthalene	0.00010		0.00309 0.005000	0	61.8	0.003800	20.61	01/08/20
Phenanthrene	0.00010		0.00380 0.005000	0	76.0	0.003920	3.11	01/07/20
Phenanthrene	0.00010		0.00336 0.005000	0	67.2	0.003430	2.06	01/08/20
Pyrene	0.00010		0.00432 0.005000	0	86.4	0.004430	2.51	01/07/20
Pyrene	0.00010		0.00358 0.005000	0	71.6	0.003940	9.57	01/08/20
Surr: 2-Fluorobiphenyl			0.00350 0.005000		70.0			01/07/20
Surr: 2-Fluorobiphenyl			0.00305).005000		61.0			01/08/20
Surr: Nitrobenzene-d5			0.00344).005000		68.8			01/07/20
Surr: Nitrobenzene-d5			0.00281 0.005000		56.2			01/08/20
Surr: p-Terphenyl-d14			0.00397).005000		79.4			01/08/20
Surr: p-Terphenyl-d14			0.00442).005000		88.4			01/07/2

http://www.teklabinc.com/

SW-846 3510C, 8270C SIMS, S	SW-846 3510C, 8270C SIMS, SEMI-VOLATILE ORGANIC COMPOUNDS BY GC/MS											
Batch 115455 SampType:	MS	Units mg/L	00.1.202									
SampID: 16010331-003AMS		J						Date				
Analyses	RL	Qual	Result Spik	SPK Ref Va	%REC	Low Limit	High Limit	A I				
1-Methylnaphthalene	0.00010		0.00374 0.00500		74.8	50	150	01/08/2016				
Acenaphthene	0.00010		0.00404 0.00500	OC O	80.8	42.4	117	01/08/2016				
Acenaphthylene	0.00010		0.00340 0.00500	OC 0	68.0	48.4	133	01/08/2016				
Anthracene	0.00010		0.00356 0.00500	OC O	71.2	52.4	115	01/08/2016				
Benzo(a)anthracene	0.00010		0.00334 0.00500	OC O	66.8	50.8	105	01/08/2016				
Benzo(a)pyrene	0.00010		0.00349 0.00500	OC O	69.8	53.3	126	01/08/2016				
Benzo(b)fluoranthene	0.00010		0.00352 0.00500	OC O	70.4	53.5	131	01/08/2016				
Benzo(g,h,i)perylene	0.00010		0.00335 0.00500	OC O	67.0	54.6	127	01/08/2016				
Benzo(k)fluoranthene	0.00010		0.00372).00500	OC O	74.4	56.2	128	01/08/2016				
Chrysene	0.00010		0.00357).00500	OC O	71.4	54.4	122	01/08/2016				
Dibenzo(a,h)anthracene	0.00010		0.00342 0.00500	OC O	68.4	54.8	127	01/08/2016				
Fluoranthene	0.00010		0.00416 0.00500	OC O	83.2	54.5	122	01/08/2016				
Fluorene	0.00010		0.00358 0.00500	OC O	71.6	47.7	119	01/08/2016				
Indeno(1,2,3-cd)pyrene	0.00010		0.00346 0.00500	OC O	69.2	53.2	125	01/08/2016				
Naphthalene	0.00010		0.00332 0.00500	OC O	66.4	36.3	107	01/08/2016				
Phenanthrene	0.00010		0.00352 0.00500	OC 0	70.4	51	112	01/08/2016				
Pyrene	0.00010		0.00374 0.00500	OC O	74.8	55.9	121	01/08/2016				
Surr: 2-Fluorobiphenyl			0.00327 0.00500	OC	65.4	10	143	01/08/2016				
Surr: Nitrobenzene-d5			0.00282 0.00500	OC .	56.4	10	166	01/08/2016				
Surr: p-Terphenyl-d14			0.00342 0.00500	OC	68.4	10	137	01/08/2016				

atch 115455 SampType	e: MSD	Units mg/L				RPD Li	mit 40	
ampID: 16010331-003AMSD								Date
Analyses	RL	Qual	Result Spike	SPK Ref Val	%REC	RPD Ref Val	%RPD	Analyzed
1-Methylnaphthalene	0.00010		0.00347).005000	0	69.4	0.003740	7.49	01/08/201
Acenaphthene	0.00010		0.00387 0.005000	0	77.4	0.004040	4.30	01/08/201
Acenaphthylene	0.00010		0.00328 0.005000	0	65.6	0.003400	3.59	01/08/201
Anthracene	0.00010		0.00356 0.005000	0	71.2	0.003560	0.00	01/08/201
Benzo(a)anthracene	0.00010		0.00342 0.005000	0	68.4	0.003340	2.37	01/08/201
Benzo(a)pyrene	0.00010		0.00363 0.005000	0	72.6	0.003490	3.93	01/08/201
Benzo(b)fluoranthene	0.00010		0.00367 0.005000	0	73.4	0.003520	4.17	01/08/201
Benzo(g,h,i)perylene	0.00010		0.00350 0.005000	0	70.0	0.003350	4.38	01/08/201
Benzo(k)fluoranthene	0.00010		0.00380 0.005000	0	76.0	0.003720	2.13	01/08/201
Chrysene	0.00010		0.00367).005000	0	73.4	0.003570	2.76	01/08/201
Dibenzo(a,h)anthracene	0.00010		0.00353).005000	0	70.6	0.003420	3.17	01/08/201
Fluoranthene	0.00010		0.00424).005000	0	84.8	0.004160	1.90	01/08/201
Fluorene	0.00010		0.00355).005000	0	71.0	0.003580	0.84	01/08/201
Indeno(1,2,3-cd)pyrene	0.00010		0.00355).005000	0	71.0	0.003460	2.57	01/08/201
Naphthalene	0.00010		0.00307 0.005000	0	61.4	0.003320	7.82	01/08/201
Phenanthrene	0.00010		0.00348 0.005000	0	69.6	0.003520	1.14	01/08/201
Pyrene	0.00010		0.00383 0.005000	0	76.6	0.003740	2.38	01/08/201
Surr: 2-Fluorobiphenyl			0.00308 0.005000		61.6			01/08/201
Surr: Nitrobenzene-d5			0.00281 0.005000		56.2			01/08/201
Surr: p-Terphenyl-d14			0.00378 0.005000		75.6			01/08/201

http://www.teklabinc.com/

SW-846 5030, 8260B, VOLATILE OI Batch 115516		Units µg/L	or GC/IVIC	•					
SampID: MBLK-T160108-1	-11	Office pg/L							Date
Analyses	RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
1,1,1,2-Tetrachloroethane	5.0	-	ND	•					01/08/2016
1,1,1-Trichloroethane	5.0		ND						01/08/2016
1,1,2,2-Tetrachloroethane	5.0		ND						01/08/2016
1,1,2-Trichloro-1,2,2-trifluoroethane	20.0		ND						01/08/2016
1,1,2-Trichloroethane	5.0		ND						01/08/2016
1,1-Dichloro-2-propanone	50.0		ND						01/08/2016
1,1-Dichloroethane	5.0		ND						01/08/2016
1,1-Dichloroethene	5.0		ND						01/08/2016
1,1-Dichloropropene	5.0		ND						01/08/2016
1,2,3-Trichlorobenzene	5.0		ND						01/08/2016
1,2,3-Trichloropropane	5.0		ND						01/08/2016
1,2,3-Trimethylbenzene	5.0		ND						01/08/2016
1,2,4-Trichlorobenzene	5.0		ND						01/08/2016
1,2,4-Trimethylbenzene	5.0		ND						01/08/2016
1,2-Dibromo-3-chloropropane	5.0		ND						01/08/2016
1,2-Dibromoethane	5.0		ND						01/08/2016
1,2-Dichlorobenzene	5.0		ND						01/08/2016
1,2-Dichloroethane	5.0		ND						01/08/2016
1,2-Dichloropropane	5.0		ND						01/08/2016
1,3,5-Trimethylbenzene	5.0		ND						01/08/2016
1,3-Dichlorobenzene	5.0		ND						01/08/2016
1,3-Dichloropropane	5.0		ND						01/08/2016
1,4-Dichlorobenzene	5.0		ND						01/08/2016
1-Chlorobutane	5.0		ND						01/08/2016
2,2-Dichloropropane	5.0		ND						01/08/2016
2-Butanone	25.0		ND						01/08/2016
2-Chloroethyl vinyl ether	20.0		ND						01/08/2016
2-Chlorotoluene	5.0		ND						01/08/2016
2-Hexanone	25.0		ND						01/08/2016
2-Nitropropane	50.0		ND						01/08/2016
4-Chlorotoluene	5.0 25.0		ND						01/08/2016 01/08/2016
4-Methyl-2-pentanone			ND						01/08/2016
Acetone	25.0 50.0		ND						01/08/2016
Acetonitrile Acrolein			ND						
	100		ND						01/08/2016
Acrylonitrile	5.0		ND						01/08/2016
Allyl chloride	5.0		ND						01/08/2016
Benzene	2.0		ND						01/08/2016
Bromobenzene	5.0		ND						01/08/2016
Bromochloromethane	5.0		ND						01/08/2016
Bromodichloromethane	5.0		ND						01/08/2016
Bromoform	5.0		ND						01/08/2016
Bromomethane	10.0		ND						01/08/2016
Carbon disulfide	5.0		ND						01/08/2016
Carbon tetrachloride	5.0		ND						01/08/2016
Chlorobenzene	5.0		ND						01/08/2016
Chloroethane	10.0		ND						01/08/2016

http://www.teklabinc.com/

SW-846 5030, 8260B, VOLATI	LE ORGANIC C	OMPOUNDS	BY GC/MS	i					
Batch 115516 SampType:	MBLK	Units µg/L							
SampID: MBLK-T160108-1									Date
Analyses	RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Chloroform	5.0	Q uui	ND	Spine					01/08/2016
Chloromethane	10.0		ND						01/08/2016
Chloroprene	20.0		ND						01/08/2016
cis-1,2-Dichloroethene	5.0		ND						01/08/2016
cis-1,3-Dichloropropene	5.0		ND						01/08/2016
cis-1,4-Dichloro-2-butene	5.0		ND						01/08/2016
Cyclohexanone	50.0		ND						01/08/2016
Dibromochloromethane	5.0		ND						01/08/2016
Dibromomethane	5.0		ND						01/08/2016
Dichlorodifluoromethane	10.0		ND						01/08/2016
Ethyl acetate	10.0		ND						01/08/2016
Ethyl ether	5.0		ND						01/08/2016
Ethyl methacrylate	5.0		ND						01/08/2016
Ethylbenzene	5.0		ND						01/08/2016
Hexachlorobutadiene	5.0		ND						01/08/2016
Hexachloroethane	10.0		ND						01/08/2016
Iodomethane	5.0		ND						01/08/2016
Isopropylbenzene	5.0		ND						01/08/2016
m,p-Xylenes	5.0		ND						01/08/2016
Methacrylonitrile	10.0		ND						01/08/2016
Methyl Methacrylate	5.0		ND						01/08/2016
Methyl tert-butyl ether	2.0		ND						01/08/2016
Methylacrylate	10.0		ND						01/08/2016
Methylene chloride	5.0		ND						01/08/2016
Naphthalene	10.0		ND						01/08/2016
n-Butyl acetate	25.0		ND						01/08/2016
n-Butylbenzene	5.0		ND						01/08/2016
n-Heptane	20.0		ND						01/08/2016
n-Hexane	20.0		ND						01/08/2016
Nitrobenzene	50.0		ND						01/08/2016
n-Propylbenzene	5.0		ND						01/08/2016
o-Xylene	5.0		ND						01/08/2016
Pentachloroethane	20.0		ND						01/08/2016
p-Isopropyltoluene	5.0		ND						01/08/2016
Propionitrile	50.0		ND						01/08/2016
sec-Butylbenzene	5.0		ND						01/08/2016
Styrene	5.0		ND						01/08/2016
tert-Butylbenzene	5.0		ND						01/08/2016
Tetrachloroethene	5.0		ND						01/08/2016
Tetrahydrofuran	20.0		ND						01/08/2016
Toluene	5.0		ND						01/08/2016
trans-1,2-Dichloroethene	5.0		ND						01/08/2016
trans-1,3-Dichloropropene	5.0		ND						01/08/2016
trans-1,4-Dichloro-2-butene	10.0		ND						01/08/2016
Trichloroethene	5.0		ND						01/08/2016
Trichlorofluoromethane	5.0		ND						01/08/2016
Vinyl acetate	10.0		ND						01/08/2016
viiiyi acciaic	10.0		ND						01/00/2010

http://www.teklabinc.com/

SW-846 5030, 8260B, VOLATI	LE ORGANIC (OMPOUND	S BY GC/MS	;					
Batch 115516 SampType:	MBLK	Units µg/L							
SampID: MBLK-T160108-1									Date
Analyses	RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Vinyl chloride	2.0		ND						01/08/2016
Surr: 1,2-Dichloroethane-d4			49.9	50.00		99.9	74.7	129	01/08/2016
Surr: 4-Bromofluorobenzene			51.2	50.00		102.4	86	119	01/08/2016
Surr: Dibromofluoromethane			48.7	50.00		97.5	81.7	123	01/08/2016
Surr: Toluene-d8			49.8	50.00		99.5	84.3	114	01/08/2016

http://www.teklabinc.com/

SW-846 5030, 8260B, VOLATILE O Batch 115516 SampType: LCS		Units µg/L	COMM	•			RPD Lii	mit 40	
SampID: LCSD-T160108-1	,,,	ome µg/L					Doto		
Analyses	RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref Val	%RPD	Date Analyzed
1,1,1,2-Tetrachloroethane	5.0		51.7	50.00	0	103.4	55.06	6.33	01/08/2016
1,1,1-Trichloroethane	5.0		49.4	50.00	0	98.8	53.32	7.67	01/08/2016
1,1,2,2-Tetrachloroethane	5.0		50.0	50.00	0	100.0	53.15	6.09	01/08/2016
1,1,2-Trichloro-1,2,2-trifluoroethane	20.0		47.4	50.00	0	94.9	50.02	5.32	01/08/2016
1,1,2-Trichloroethane	5.0		49.6	50.00	0	99.3	52.75	6.05	01/08/2016
1,1-Dichloro-2-propanone	50.0		127	125.0	0	101.9	132.6	3.96	01/08/2016
1,1-Dichloroethane	5.0		53.0	50.00	0	106.0	56.17	5.85	01/08/2016
1,1-Dichloroethene	5.0		49.4	50.00	0	98.9	52.44	5.91	01/08/2016
1,1-Dichloropropene	5.0		49.4	50.00	0	98.9	52.29	5.60	01/08/2016
1,2,3-Trichlorobenzene	5.0		49.1	50.00	0	98.3	52.42	6.48	01/08/2016
1,2,3-Trichloropropane	5.0		47.3	50.00	0	94.6	50.02	5.61	01/08/2016
1,2,3-Trimethylbenzene	5.0		49.7	50.00	0	99.4	52.84	6.10	01/08/2016
1,2,4-Trichlorobenzene	5.0		49.2	50.00	0	98.4	52.33	6.13	01/08/2016
1,2,4-Trimethylbenzene	5.0		50.6	50.00	0	101.1	54.23	7.00	01/08/2016
1,2-Dibromo-3-chloropropane	5.0		48.6	50.00	0	97.3	51.75	6.18	01/08/2016
1,2-Dibromoethane	5.0		50.0	50.00	0	99.9	52.83	5.58	01/08/2016
1,2-Dichlorobenzene	5.0		46.9	50.00	0	93.8	49.77	5.98	01/08/2016
1,2-Dichloroethane	5.0		48.6	50.00	0	97.3	52.18	7.02	01/08/2016
1,2-Dichloropropane	5.0		48.7	50.00	0	97.5	52.07	6.63	01/08/2016
1,3,5-Trimethylbenzene	5.0		50.6	50.00	0	101.1	54.11	6.80	01/08/2016
1,3-Dichlorobenzene	5.0		48.6	50.00	0	97.3	52.05	6.77	01/08/2016
1,3-Dichloropropane	5.0		49.2	50.00	0	98.4	52.02	5.59	01/08/2016
1,4-Dichlorobenzene	5.0		47.7	50.00	0	95.4	50.80	6.27	01/08/2016
1-Chlorobutane	5.0		48.8	50.00	0	97.5	52.46	7.29	01/08/2016
2,2-Dichloropropane	5.0		53.9	50.00	0	107.9	57.85	7.01	01/08/2016
2-Butanone	25.0		125	125.0	0	100.1	135.9	8.21	01/08/2016
2-Chloroethyl vinyl ether	20.0		53.9	50.00	0	107.8	57.36	6.20	01/08/2016
2-Chlorotoluene	5.0		49.2	50.00	0	98.5	52.76	6.92	01/08/2016
2-Hexanone	25.0		129	125.0	0	103.1	138.9	7.53	01/08/2016
2-Nitropropane	50.0		549	500.0	0	109.7	584.1	6.26	01/08/2016
4-Chlorotoluene	5.0		49.9	50.00	0	99.8	53.00	6.05	01/08/2016
4-Methyl-2-pentanone	25.0			125.0	0	100.2	132.9	5.86	01/08/2016
Acetone	25.0		133	125.0	0	106.7	147.9	10.29	01/08/2016
Acetonitrile	50.0		502	500.0	0	100.7	521.9	3.85	01/08/2016
Acrolein	100		480	500.0	0	96.0	497.4	3.60	01/08/2016
Acrylonitrile	5.0		54.0	50.00	0	107.9	57.22	5.85	01/08/2016
Allyl chloride	5.0		54.7	50.00	0	107.9	59.14	7.84	01/08/2016
Benzene	2.0		48.3	50.00	0	96.5	51.35	6.20	01/08/2016
Bromobenzene	5.0		46.3 49.4	50.00	0	98.9	53.47	7.83	01/08/2016
Bromochloromethane	5.0			50.00		97.2	51.92		01/08/2016
			48.6		0			6.63	01/08/2016
Bromodichloromethane	5.0 5.0		50.5	50.00	0	101.0	54.39 55.39	7.38	01/08/2016
Bromoform	5.0		52.6	50.00	0	105.1	55.38	5.23	
Bromomethane	10.0		49.3	50.00	0	98.5	49.84	1.17	01/08/2016
Carbon disulfide	5.0		48.5	50.00	0	97.1	51.05	5.06	01/08/2016
Carbon tetrachloride	5.0		51.1	50.00	0	102.2	54.30	6.05	01/08/2016
Chlorobenzene	5.0		47.8	50.00	0	95.5	50.68	5.93	01/08/2016
Chloroethane	10.0		46.2	50.00	0	92.3	49.37	6.74	01/08/2016

http://www.teklabinc.com/

atch 115516 S	ampType:	LCSD	Units µg/L					RPD	Limit 40	
ampID: LCSD-T16010	08-1									Date Analyz
Analyses		RL	Qual			SPK Ref Val		RPD Ref V		•
Chloroform		5.0		48.4	50.00	0	96.9	51.97	7.03	01/08/20
Chloromethane		10.0		47.9	50.00	0	95.8	51.48	7.18	01/08/20
Chloroprene		20.0		48.8	50.00	0	97.6	51.85	6.10	01/08/2
cis-1,2-Dichloroethen		5.0		50.4	50.00	0	100.7	53.66	6.34	01/08/2
cis-1,3-Dichloroprope		5.0		51.8	50.00	0	103.6	55.60	7.04	01/08/2
cis-1,4-Dichloro-2-but	ene	5.0		57.5	50.00	0	114.9	60.56	5.25	01/08/2
Cyclohexanone		50.0		509	500.0	0	101.9	511.5	0.42	01/08/2
Dibromochlorometha	ne	5.0		52.3	50.00	0	104.6	55.69	6.32	01/08/2
Dibromomethane		5.0		47.2	50.00	0	94.5	50.53	6.73	01/08/2
Dichlorodifluorometha	ane	10.0		41.7	50.00	0	83.3	43.63	4.62	01/08/2
Ethyl acetate		10.0		48.0	50.00	0	96.1	51.99	7.92	01/08/2
Ethyl ether		5.0		47.5	50.00	0	94.9	50.36	5.91	01/08/2
Ethyl methacrylate		5.0		52.0	50.00	0	103.9	55.08	5.81	01/08/2
Ethylbenzene		5.0		47.9	50.00	0	95.9	51.38	6.95	01/08/2
Hexachlorobutadiene		5.0		49.7	50.00	0	99.4	52.47	5.44	01/08/2
Hexachloroethane		10.0		50.8	50.00	0	101.5	54.84	7.73	01/08/2
lodomethane		5.0		38.7	50.00	0	77.3	39.08	1.05	01/08/2
Isopropylbenzene		5.0		52.1	50.00	0	104.3	55.76	6.73	01/08/2
m,p-Xylenes		5.0		99.7	100.0	0	99.7	106.4	6.50	01/08/2
Methacrylonitrile		10.0		49.7	50.00	0	99.4	52.49	5.44	01/08/2
Methyl Methacrylate		5.0		52.5	50.00	0	105.0	56.23	6.88	01/08/2
Methyl tert-butyl ether	r	2.0		49.6	50.00	0	99.3	53.83	8.12	01/08/2
Methylacrylate		10.0		52.5	50.00	0	105.0	54.61	3.94	01/08/2
Methylene chloride		5.0		48.6	50.00	0	97.2	51.89	6.53	01/08/2
Naphthalene		10.0		51.8	50.00	0	103.5	54.29	4.75	01/08/2
n-Butyl acetate		25.0		51.3	50.00	0	102.6	55.33	7.52	01/08/2
n-Butylbenzene		5.0		49.7	50.00	0	99.4	52.89	6.18	01/08/2
n-Heptane		20.0		55.4	50.00	0	110.9	59.45	6.98	01/08/2
n-Hexane		20.0		52.4	50.00	0	104.8	55.85	6.39	01/08/2
Nitrobenzene		50.0		503	500.0	0	100.7	540.1	7.05	01/08/2
n-Propylbenzene		5.0		50.4	50.00	0	100.8	53.60	6.19	01/08/2
o-Xylene		5.0		47.8	50.00	0	95.7	51.39	7.16	01/08/2
Pentachloroethane		20.0		51.3	50.00	0	102.6	54.92	6.82	01/08/2
p-Isopropyltoluene		5.0		51.8	50.00	0	103.5	55.11	6.29	01/08/2
Propionitrile		50.0		499	500.0	0	99.9	527.5	5.46	01/08/2
sec-Butylbenzene		5.0		51.0	50.00	0	102.1	54.49	6.56	01/08/2
Styrene		5.0		52.7	50.00	0	105.4	56.42	6.84	01/08/2
tert-Butylbenzene		5.0		50.2	50.00	0	100.3	53.50	6.44	01/08/2
Tetrachloroethene		5.0		49.7	50.00	0	99.4	52.46	5.42	01/08/2
Tetrahydrofuran		20.0		48.0	50.00	0	96.0	51.13	6.29	01/08/2
Toluene		5.0		47.2	50.00	0	94.5	50.85	7.34	01/08/2
trans-1,2-Dichloroeth	ene	5.0		49.6	50.00	0	99.3	53.32	7.17	01/08/2
trans-1,3-Dichloropro	pene	5.0		53.4	50.00	0	106.8	56.84	6.24	01/08/2
trans-1,4-Dichloro-2-b	outene	10.0		52.1	50.00	0	104.2	56.58	8.23	01/08/2
Trichloroethene		5.0		47.6	50.00	0	95.1	50.81	6.59	01/08/2
Trichlorofluoromethar	ne	5.0		49.5	50.00	0	99.0	52.96	6.73	01/08/2
Vinyl acetate		10.0		54.5	50.00	0	108.9	60.93	11.20	01/08/2

http://www.teklabinc.com/

SW-846 5030, 8260B, VOLATILE ORGANIC COMPOUNDS BY GC/MS												
Batch 115516 SampType:	LCSD		Units µg/L		RPD Limit 40							
SampID: LCSD-T160108-1										Date		
Analyses		RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref Val	%RPD	Analyzed		
Vinyl chloride		2.0		49.3	50.00	0	98.5	52.57	6.48	01/08/2016		
Surr: 1,2-Dichloroethane-d4				50.4	50.00		100.7			01/08/2016		
Surr: 4-Bromofluorobenzene				50.4	50.00		100.8			01/08/2016		
Surr: Dibromofluoromethane				49.7	50.00		99.3			01/08/2016		
Surr: Toluene-d8				49.7	50.00		99.3			01/08/2016		

http://www.teklabinc.com/

SW-846 5030, 8260B, VOLATILE OF	RGANIC C		BY GC/M	5					
Batch 115516 SampType: LCS SampID: LCS-T160108-1		Units µg/L							Date
Analyses	RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
1,1,1,2-Tetrachloroethane	5.0	-	55.1	50.00	0	110.1	81.9	115	01/08/2016
1,1,1-Trichloroethane	5.0		53.3	50.00	0	106.6	79.4	124	01/08/2016
1,1,2,2-Tetrachloroethane	5.0		53.2	50.00	0	106.3	74.7	116	01/08/2016
1,1,2-Trichloro-1,2,2-trifluoroethane	20.0		50.0	50.00	0	100.0	72.9	121	01/08/2016
1,1,2-Trichloroethane	5.0		52.8	50.00	0	105.5	80.8	111	01/08/2016
1,1-Dichloro-2-propanone	50.0		133	125.0	0	106.1	66.3	130	01/08/2016
1,1-Dichloroethane	5.0		56.2	50.00	0	112.3	79.4	114	01/08/2016
1,1-Dichloroethene	5.0		52.4	50.00	0	104.9	74.1	117	01/08/2016
1,1-Dichloropropene	5.0		52.3	50.00	0	104.6	81.7	116	01/08/2016
1,2,3-Trichlorobenzene	5.0		52.4	50.00	0	104.8	79.7	118	01/08/2016
1,2,3-Trichloropropane	5.0		50.0	50.00	0	100.0	77.3	112	01/08/2016
1,2,3-Trimethylbenzene	5.0		52.8	50.00	0	105.7	79.9	119	01/08/2016
1,2,4-Trichlorobenzene	5.0		52.3	50.00	0	104.7	79.3	118	01/08/2016
1,2,4-Trimethylbenzene	5.0		54.2	50.00	0	108.5	78.7	115	01/08/2016
1,2-Dibromo-3-chloropropane	5.0		51.8	50.00	0	103.5	76	122	01/08/2016
1,2-Dibromoethane	5.0		52.8	50.00	0	105.7	80.8	114	01/08/2016
1,2-Dichlorobenzene	5.0		49.8	50.00	0	99.5	78.3	112	01/08/2016
1,2-Dichloroethane	5.0		52.2	50.00	0	104.4	70.6	118	01/08/2016
1,2-Dichloropropane	5.0		52.1	50.00	0	104.1	79.6	113	01/08/2016
1,3,5-Trimethylbenzene	5.0		54.1	50.00	0	108.2	77.5	115	01/08/2016
1,3-Dichlorobenzene	5.0		52.0	50.00	0	104.1	78.6	117	01/08/2016
1,3-Dichloropropane	5.0		52.0	50.00	0	104.0	78.8	112	01/08/2016
1,4-Dichlorobenzene	5.0		50.8	50.00	0	101.6	77.8	114	01/08/2016
1-Chlorobutane	5.0		52.5	50.00	0	104.9	78.6	115	01/08/2016
2,2-Dichloropropane	5.0		57.8	50.00	0	115.7	74.9	130	01/08/2016
2-Butanone	25.0		136	125.0	0	108.7	70.7	136	01/08/2016
2-Chloroethyl vinyl ether	20.0		57.4	50.00	0	114.7	52.5	145	01/08/2016
2-Chlorotoluene	5.0		52.8	50.00	0	105.5	77.4	114	01/08/2016
2-Hexanone	25.0		139	125.0	0	111.2	73.3	125	01/08/2016
2-Nitropropane	50.0		584	500.0	0	116.8	67.3	139	01/08/2016
4-Chlorotoluene	5.0		53.0	50.00	0	106.0	78.3	115	01/08/2016
4-Methyl-2-pentanone	25.0			125.0	0	106.3	76.3	122	01/08/2016
	25.0			125.0	0	118.3	76.3 56.4	147	01/08/2016
Acetone Acetonitrile	50.0		148 522	500.0	0	104.4	59.3	129	01/08/2016
Acrolein	100		497	500.0	0	99.5	1	201	01/08/2016
Acrylonitrile	5.0					114.4	74.1	128	01/08/2016
Allyl chloride	5.0			50.00	0	114.4	74.1 71.5	123	01/08/2016
Benzene	2.0		59.1 51.4	50.00	0	102.7		114	01/08/2016
Bromobenzene					0		80		
Bromochloromethane	5.0		53.5	50.00	0	106.9	73.2	118	01/08/2016
	5.0		51.9	50.00	0	103.8	73.3	121	01/08/2016
Bromodichloromethane	5.0		54.4	50.00	0	108.8	81.6	121	01/08/2016
Bromoform	5.0		55.4	50.00	0	110.8	83.1	127	01/08/2016
Bromomethane	10.0		49.8	50.00	0	99.7	44.4	154	01/08/2016
Carbon disulfide	5.0		51.0	50.00	0	102.1	73.2	118	01/08/2016
Carbon tetrachloride	5.0		54.3	50.00	0	108.6	79.4	130	01/08/2016
Chlorobenzene	5.0		50.7	50.00	0	101.4	81.4	110	01/08/2016
Chloroethane	10.0		49.4	50.00	0	98.7	52.1	137	01/08/2016

http://www.teklabinc.com/

Client: Trihydro Corporation Work Order: 16010422

Client Project: Water from Soil Vapor System Report Date: 13-Jan-16

SW-846 5030, 8260B, VOLATI	LE ORGANIC C	OMPOUNDS	BY GC/M	S					
Batch 115516 SampType:		Units µg/L							
SampID: LCS-T160108-1									Date
Analyses	RL	Qual	Result	Snike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Chloroform	5.0	Quui	52.0	50.00	0	103.9	82.7	116	01/08/2016
Chloromethane	10.0		51.5	50.00	0	103.0	48.2	144	01/08/2016
Chloroprene	20.0		51.8	50.00	0	103.7	80.6	126	01/08/2016
cis-1,2-Dichloroethene	5.0		53.7	50.00	0	107.3	78.2	116	01/08/2016
cis-1,3-Dichloropropene	5.0		55.6	50.00	0	111.2	83	119	01/08/2016
cis-1,4-Dichloro-2-butene	5.0		60.6	50.00	0	121.1	60.7	137	01/08/2016
Cyclohexanone	50.0		512		0	102.3	54.2	145	01/08/2016
Dibromochloromethane	5.0		55.7	50.00	0	111.4	81.2	121	01/08/2016
Dibromomethane	5.0		50.5	50.00	0	101.1	78.3	118	01/08/2016
Dichlorodifluoromethane	10.0		43.6	50.00	0	87.3	20.6	154	01/08/2016
Ethyl acetate	10.0		52.0	50.00	0	104.0	73.1	116	01/08/2016
Ethyl ether	5.0		50.4		0	100.7	75.2	109	01/08/2016
Ethyl methacrylate	5.0		55.1	50.00	0	110.2	80.1	113	01/08/2016
Ethylbenzene	5.0		51.4		0	102.8	77.2	113	01/08/2016
Hexachlorobutadiene	5.0		52.5	50.00	0	104.9	77.3	123	01/08/2016
Hexachloroethane	10.0		54.8	50.00	0	109.7	74.6	117	01/08/2016
Iodomethane	5.0		39.1	50.00	0	78.2	61.3	140	01/08/2016
Isopropylbenzene	5.0		55.8	50.00	0	111.5	81.3	114	01/08/2016
m,p-Xylenes	5.0		106	100.0	0	106.4	79.6	113	01/08/2016
Methacrylonitrile	10.0		52.5	50.00	0	105.0	77.2	125	01/08/2016
Methyl Methacrylate	5.0		56.2	50.00	0	112.5	74.2	121	01/08/2016
Methyl tert-butyl ether	2.0		53.8	50.00	0	107.7	76.8	117	01/08/2016
Methylacrylate	10.0		54.6	50.00	0	109.2	78	124	01/08/2016
Methylene chloride	5.0		51.9	50.00	0	103.8	74.1	114	01/08/2016
Naphthalene	10.0		54.3	50.00	0	108.6	77.9	122	01/08/2016
n-Butyl acetate	25.0		55.3	50.00	0	110.7	74	120	01/08/2016
n-Butylbenzene	5.0		52.9	50.00	0	105.8	71.1	120	01/08/2016
n-Heptane	20.0		59.4	50.00	0	118.9	67.4	129	01/08/2016
n-Hexane	20.0		55.8	50.00	0	111.7	68.4	126	01/08/2016
Nitrobenzene	50.0		540	500.0	0	108.0	37.9	181	01/08/2016
n-Propylbenzene	5.0		53.6	50.00	0	107.2	74.6	118	01/08/2016
o-Xylene	5.0			50.00	0	102.8	80.1	111	01/08/2016
Pentachloroethane	20.0			50.00	0	109.8	78.8	117	01/08/2016
p-Isopropyltoluene	5.0		55.1	50.00	0	110.2	77.6	118	01/08/2016
Propionitrile	50.0		528	500.0	0	105.5	72.9	137	01/08/2016
sec-Butylbenzene	5.0		54.5	50.00	0	109.0	74.5	119	01/08/2016
Styrene	5.0		56.4	50.00	0	112.8	83.4	113	01/08/2016
tert-Butylbenzene	5.0		53.5	50.00	0	107.0	75.9	114	01/08/2016
Tetrachloroethene	5.0		52.5	50.00	0	104.9	72.5	125	01/08/2016
Tetrahydrofuran	20.0		51.1	50.00	0	102.3	69.6	125	01/08/2016
Toluene	5.0		50.8	50.00	0	101.7	77.5	113	01/08/2016
trans-1,2-Dichloroethene	5.0		53.3	50.00	0	106.6	79	114	01/08/2016
trans-1,3-Dichloropropene	5.0		56.8	50.00	0	113.7	78	115	01/08/2016
trans-1,4-Dichloro-2-butene	10.0		56.6	50.00	0	113.2	63.3	128	01/08/2016
Trichloroethene	5.0		50.8	50.00	0	101.6	84.4	114	01/08/2016
Trichlorofluoromethane	5.0		53.0	50.00	0	105.9	75.2	132	01/08/2016
Vinyl acetate	10.0		60.9		0	121.9	64.5	127	01/08/2016
villyi doctate	10.0		00.3	50.00	J	121.3	04.0	121	01/00/2010

http://www.teklabinc.com/

Client: Trihydro Corporation Work Order: 16010422
Client Project: Water from Soil Vapor System Report Date: 13-Jan-16

vace nome	ion var	po: 5,50	CIII					Tioport 2	15 541	. 10
SW-846 5030, 8260B, VOLATI	LE OR	GANIC C	OMPOUNDS	BY GC/M	S					
Batch 115516 SampType:		_	Units µg/L							
SampID: LCS-T160108-1										Date
Analyses		RL	Qual	Pacult	Snika	SPK Ref Val	%RFC	I ow I imit	High Limit	Analyze
Vinyl chloride		2.0	Quai	52.6	50.00	0	105.1	58	134	01/08/20
Surr: 1,2-Dichloroethane-d4		2.0			50.00	U	103.1	74.7	129	01/08/20
Surr: 4-Bromofluorobenzene				50.6	50.00		101.2	86	119	01/08/20
Surr: Dibromofluoromethane				50.0	50.00		100.0	81.7	123	01/08/20
Surr: Toluene-d8					50.00		100.1	84.1	114	01/08/20
Sun. Toldene-do				30.0	30.00		100.0	04.1	114	01/00/20
Batch 115516 SampType:	MS		Units mg/L							
SampID: 16010254-001AMS										Date
Analyses		RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyze
1,1-Dichloroethene		0.500	Q uui		5.000	0	91.5	61.3	123	01/08/20
1,2-Dichloroethane		0.500			5.000	0	96.4	71.5	116	01/08/20
1,4-Dichlorobenzene		0.500			5.000	0	94.8	76.9	113	01/08/20
2-Butanone		2.50			5.000	0	96.0	64.1	132	01/08/20
Benzene		0.200				0	96.1	81.5	113	01/08/20
Carbon tetrachloride		0.500		4.89	5.000	0	97.8	55.5	125	01/08/20
Chlorobenzene		0.500			5.000	0	98.4	81.8	111	01/08/20
Chloroform		0.500			5.000	0	92.3	81	115	01/08/20
Tetrachloroethene		0.500			5.000	0	97.0	61.7	114	01/08/20
Trichloroethene		0.500			5.000	0	96.8	74.4	117	01/08/20
Vinyl chloride		0.200			5.000	0	83.4	45.7	130	01/08/20
Surr: 1,2-Dichloroethane-d4		0.200			5.000	· ·	99.8	74.7	129	01/08/20
Surr: 4-Bromofluorobenzene					5.000		100.8	86	119	01/08/20
Surr: Dibromofluoromethane					5.000		97.6	81.7	123	01/08/20
Surr: Toluene-d8					5.000		99.0	84.3	114	01/08/20
Batch 115516 SampType:	MS		Units mg/L							
SampID: 16010301-001AMS Analyses		RL	Qual	Recult	Snike	SPK Ref Val	%REC	Low Limit	High Limit	Date Analyze
1,1-Dichloroethene		0.500	Quai		5.000	0	95.1	61.3	123	01/08/20
1,2-Dichloroethane		0.500			5.000	0	96.2	71.5	116	01/08/20
1,4-Dichlorobenzene		0.500			5.000	0	95.2	76.9	113	01/08/20
2-Butanone		2.50			5.000	0	96.3	64.1	132	01/08/20
Benzene		0.200			5.000	0	96.8	81.5	113	01/08/20
Carbon tetrachloride		0.500			5.000	0	97.6	55.5	125	01/08/20
Chlorobenzene		0.500			5.000	0	99.2	81.8	111	01/08/20
Chloroform		0.500			5.000	0	93.0	81	115	01/08/20
Tetrachloroethene		0.500			5.000	0	97.8	61.7	114	01/08/20
Trichloroethene		0.500			5.000	0	96.5	74.4	114	01/08/20
Vinyl chloride		0.200			5.000	0	86.7	45.7	130	01/08/20
Surr: 1,2-Dichloroethane-d4		0.200			5.000	U	100.9	45.7 74.7	129	01/08/20
Surr: 4-Bromofluorobenzene							99.2		119	
					5.000			86 94.7		01/08/20
Surr: Dibromofluoromethane					5.000		97.6	81.7	123	01/08/20
Surr: Toluene-d8				4.95	5.000		99.0	84.3	114	01/08/20

http://www.teklabinc.com/

Client: Trihydro Corporation Work Order: 16010422
Client Project: Water from Soil Vapor System Report Date: 13-Jan-16

SW-846 5030, 8260B, VOLATILE OR Batch 115516 SampType: MS		Units mg/L							
SampID: 16010303-001AMS									Date
Analyses	RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
1,1-Dichloroethene	0.500	-	4.53	5.000	0	90.7	61.3	123	01/08/2016
1,2-Dichloroethane	0.500		4.69	5.000	0	93.8	71.5	116	01/08/2016
1,4-Dichlorobenzene	0.500		4.76	5.000	0	95.1	76.9	113	01/08/2016
2-Butanone	2.50		4.79	5.000	0	95.8	64.1	132	01/08/2016
Benzene	0.200		4.69	5.000	0	93.8	81.5	113	01/08/2016
Carbon tetrachloride	0.500		4.70	5.000	0	94.0	55.5	125	01/08/2016
Chlorobenzene	0.500		4.88	5.000	0	97.5	81.8	111	01/08/2016
Chloroform	0.500		4.50	5.000	0	90.1	81	115	01/08/2016
Tetrachloroethene	0.500		4.77	5.000	0	95.4	61.7	114	01/08/2016
Trichloroethene	0.500		4.72	5.000	0	94.5	74.4	117	01/08/2016
Vinyl chloride	0.200		4.19	5.000	0	83.8	45.7	130	01/08/2016
Surr: 1,2-Dichloroethane-d4			4.94	5.000		98.8	74.7	129	01/08/2016
Surr: 4-Bromofluorobenzene			4.99	5.000		99.7	86	119	01/08/2016
Surr: Dibromofluoromethane			4.83	5.000		96.7	81.7	123	01/08/2016
Surr: Toluene-d8			4.92	5.000		98.3	84.3	114	01/08/2016
Batch 115516 SampType: MS	3	Units mg/L							
SampID: 16010307-001AMS									Date
Analyses	RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
1,1-Dichloroethene	0.500		4.36	5.000	0	87.2	61.3	123	01/08/2016
1,2-Dichloroethane	0.500		4.70	5.000	0	94.0	71.5	116	01/08/2016

atch 115516 SampType: MS ampID: 16010307-001AMS	5	Units mg/L							Data
Analyses	RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Date Analyze
1,1-Dichloroethene	0.500		4.36	5.000	0	87.2	61.3	123	01/08/201
1,2-Dichloroethane	0.500		4.70	5.000	0	94.0	71.5	116	01/08/201
1,4-Dichlorobenzene	0.500		4.67	5.000	0	93.4	76.9	113	01/08/201
2-Butanone	2.50		4.71	5.000	0	94.2	64.1	132	01/08/201
Benzene	0.200		4.63	5.000	0	92.6	81.5	113	01/08/20
Carbon tetrachloride	0.500		4.54	5.000	0	90.8	55.5	125	01/08/20
Chlorobenzene	0.500		4.75	5.000	0	94.9	81.8	111	01/08/20
Chloroform	0.500		4.46	5.000	0	89.1	81	115	01/08/20
Tetrachloroethene	0.500		4.56	5.000	0	91.2	61.7	114	01/08/20
Trichloroethene	0.500		4.55	5.000	0	91.0	74.4	117	01/08/20
Vinyl chloride	0.200		3.99	5.000	0	79.8	45.7	130	01/08/20
Surr: 1,2-Dichloroethane-d4			5.00	5.000		99.9	74.7	129	01/08/20
Surr: 4-Bromofluorobenzene			5.00	5.000		99.9	86	119	01/08/20
Surr: Dibromofluoromethane			4.84	5.000		96.7	81.7	123	01/08/20
Surr: Toluene-d8			4.93	5.000		98.6	84.3	114	01/08/20

http://www.teklabinc.com/

Client: Trihydro Corporation Work Order: 16010422
Client Project: Water from Soil Vapor System Report Date: 13-Jan-16

SW-846 5030, 8260B, VOLATILE	SW-846 5030, 8260B, VOLATILE ORGANIC COMPOUNDS BY GC/MS											
Batch 115516 SampType:	MS	Units µg/L										
SampID: 16010376-002AMS									Date			
Analyses	RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed			
1,1-Dichloroethene	5.0		41.9	50.00	0	83.8	35.7	136	01/08/2016			
Benzene	2.0		45.1	50.00	0	90.3	62.5	121	01/08/2016			
Chlorobenzene	5.0		45.4	50.00	0	90.9	78.6	114	01/08/2016			
Ethylbenzene	5.0		45.8	50.00	0	91.7	74.4	130	01/08/2016			
m,p-Xylenes	5.0		45.7	50.00	0	91.4	70.5	126	01/08/2016			
o-Xylene	5.0		43.6	50.00	0	87.3	71.2	124	01/08/2016			
Toluene	5.0		43.8	50.00	0	87.5	69.5	118	01/08/2016			
Trichloroethene	5.0		45.5	50.00	0	91.0	69.4	117	01/08/2016			
Surr: 1,2-Dichloroethane-d4			49.4	50.00		98.7	74.7	129	01/08/2016			
Surr: 4-Bromofluorobenzene			51.7	50.00		103.4	86	119	01/08/2016			
Surr: Dibromofluoromethane			47.8	50.00		95.5	81.7	123	01/08/2016			
Surr: Toluene-d8			49.4	50.00		98.7	84.3	114	01/08/2016			

Batch 115516 SampType: M	SD	Units µg/L					RPD Lir	mit 20	
SampID: 16010376-002AMSD									Date
Analyses	RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref Val	%RPD	Analyzed
1,1-Dichloroethene	5.0		36.9	50.00	0	73.7	41.89	12.75	01/08/2016
Benzene	2.0		41.4	50.00	0	82.9	45.14	8.52	01/08/2016
Chlorobenzene	5.0		42.0	50.00	0	84.1	45.44	7.77	01/08/2016
Ethylbenzene	5.0		41.8	50.00	0	83.6	45.84	9.27	01/08/2016
m,p-Xylenes	5.0		41.2	50.00	0	82.5	45.70	10.28	01/08/2016
o-Xylene	5.0		39.5	50.00	0	78.9	43.65	10.08	01/08/2016
Toluene	5.0		40.0	50.00	0	80.1	43.77	8.88	01/08/2016
Trichloroethene	5.0		41.8	50.00	0	83.6	45.50	8.50	01/08/2016
Surr: 1,2-Dichloroethane-d4			49.8	50.00		99.5			01/08/2016
Surr: 4-Bromofluorobenzene			51.0	50.00		101.9			01/08/2016
Surr: Dibromofluoromethane			47.8	50.00		95.6			01/08/2016
Surr: Toluene-d8			48.9	50.00		97.7			01/08/2016

Client: Trihydro Corporation

Receiving Check List

http://www.teklabinc.com/

Work Order: 16010422

Client Project: Water from Soil Vapor System Report Date: 13-Jan-16 Carrier: Anthony Kimutis Received By: AMD Mowin L. Darling II Kalyn Foecke Reviewed by: Completed by: On: On: 08-Jan-16 08-Jan-16 Kalyn Foecke Marvin L. Darling Extra pages included 0 Pages to follow: Chain of custody Shipping container/cooler in good condition? Yes 🗸 No Not Present Temp °C 2.22 Type of thermal preservation? Ice 🗹 Blue Ice None Dry Ice **~** No 🗀 Chain of custody present? Yes **~** Chain of custody signed when relinquished and received? Yes No __ Yes 🗹 Chain of custody agrees with sample labels? No __ Yes 🗹 Samples in proper container/bottle? No 🗀 Yes 🗹 No 🗌 Sample containers intact? Sufficient sample volume for indicated test? Yes 🗸 No Yes 🗹 All samples received within holding time? No NA 🗸 Field _ Lab 🗌 Reported field parameters measured: Yes 🗹 No 🗌 Container/Temp Blank temperature in compliance? When thermal preservation is required, samples are compliant with a temperature between 0.1°C - 6.0°C, or when samples are received on ice the same day as collected. Yes 🗸 No VOA vials Water - at least one vial per sample has zero headspace? No 🗀 Yes No 🗌 No TOX containers Water - TOX containers have zero headspace? No 🗌 Yes 🗹 Water - pH acceptable upon receipt? NA 🗸 NPDES/CWA TCN interferences checked/treated in the field? Yes No 🗌 Any No responses must be detailed below or on the COC.

CHAIN OF CUSTODY

pg of Work Order # 1601042	pg	of	Work Order#	1601049
----------------------------	----	----	-------------	---------

TEKLAB, INC. 5445 Horseshoe Lake Road ~ Collinsville, IL 62234 ~ Phone: (618) 344-1004 ~ Fax: (618) 344-1005

it: Tr: hydro

ess: (252 Cymnicse Drive Preserved in: D Lab Z Field FOR LAB USE ONLY

City / State / Zip: Laron:	wy 8207	0					2010	Lab		*.*.*.*.*.*				Om?	سے									
Contact: Todd a schtyne	Phone: _ <	-13	72	3	74	70		7c	no	h	00	4 5	ഹ	رب <u>د</u> کا بن).Fr	ir 9	·8·	۱¢.,		/1×#		1. 2 k		
City/State/Zip: <u>Laramie</u> Contact: <u>Todd a seltyne</u> E-Mail: <u>Tagelrynep Tohydo</u>	con Fax:		····					Con	nme	nts		~	9			*								
 Are these samples known to be involved in litigation? If yes, a surcharge will apply. ☐ Yes Are these samples known to be hazardous? ☐ Yes ☐ No Are there any required reporting limits to be met on the requested analysis? If yes, please provide limits in comment section. ☐ Yes ☐ No 																	3	0)A	Y -	>			
Project Name / Number Sample Collector's Name						MA	TRI	X				NDIC	ATE	ANA	LYS	IS RE	QUE	STE	5					
☐ Standard ☐ 1-2 Day (100% Surcharge)	Billing Instructions	# and		_					Drinking Water		Sludge Sp. Waste		 	10.54	A No									
Other(7)-3 Day (50% Surcharge)	. 15 / /	UNPRES	일을	2504	귕	MeOH NaHSO ₄	Other	Water	rink	Soil	opnic N		}'	1/-		-								
Lab Use Only Sample Identification		5 3	Z	Ξ	드	ΣZ	O	\vdash	╀┦	-	0) 0	<u>'</u>	_	-	-	ļ	╂							
1001000 Tank3	1/8/16 730	++	+-		\vdash		+		+	-	-	44	7	0 4	7	ļ	ļ	-				\dashv		
		lacksquare	_				1	1_		\dashv	_	1_	\bot			<u> </u>	<u> </u>	ļ						
																<u></u>								
																						1		
								1																
	Allihara McCalon Washington								\Box															
			1				T																	
			\top	T	\Box	\top	T	Ť		1	\top		T											
	NEIDONNO TERMINANTA INTERNATIONAL PROPERTIES AND THE CONTRACT CONT						T		T	\dashv	\dagger		+											
Relinquished By		Date	7 T	me		and the same					<u></u>	Rec	eive	ed By	_				day of the same of	Date	e / Tii	me		-
losts Und	1/8/	6	8	06	?)					100	L	Manager 10 St.	-	The same of the same	NAME AND ADDRESS OF THE PARTY O			1/	8/16	2		09	35	
12	1/8/1	le		1	110)		T	TK	W	\overline{OC}	1-0	M	P 2001	. 10			Til	7 7	Q		110)	
	-	e educación acomo		agency justine		E		7								<u>. ~~</u> .							h	
		TO THE PERSON NAMED IN COLUMN	mise , creationica			ri _j ografiya garabay y	- Contract of the Contract of	T	in its and more with		Verez Gara	N & P. P. S.									propagation and finalise			
The individual circums this same and the	2 17 7 12	er compromens	enterproperation	AND COMPANY OF THE	THE STREET	CONTRACTOR OF STREET	AND STATE OF STREET		our the guarantees	TOWN OF THE PARTY.	Construction of the Constr	A STATE OF THE PARTY OF THE PAR	Terrent Military	***************************************	are summerced	TO A SAN THE SAN THE	ione entre anno de la constante de la constant	A STATE OF THE PARTY OF THE PAR	- Contraction of the Contraction	200 - AND 100 -	Hadaman Adam	transition of contrast of	and the second of	-

Client: Address:

AP ACCREC

February 25, 2016

Todd Aseltyne
Trihydro Corporation
1252 Commerce Drive
Laramie, WY 82070
TEL: (513) 429-7470

FAX:

RE: Hartford WorkOrder: 16021256

Dear Todd Aseltyne:

TEKLAB, INC received 1 sample on 2/22/2016 11:11:00 AM for the analysis presented in the following report.

Samples are analyzed on an as received basis unless otherwise requested and documented. The sample results contained in this report relate only to the requested analytes of interest as directed on the chain of custody. NELAP accredited fields of testing are indicated by the letters NELAP under the Certification column. Unless otherwise documented within this report, Teklab Inc. analyzes samples utilizing the most current methods in compliance with 40CFR. All tests are performed in the Collinsville, IL laboratory unless otherwise noted in the Case Narrative.

All quality control criteria applicable to the test methods employed for this project have been satisfactorily met and are in accordance with NELAP except where noted. The following report shall not be reproduced, except in full, without the written approval of Teklab, Inc.

If you have any questions regarding these tests results, please feel free to call.

Sincerely,

Marvin L. Darling

Project Manager (618)344-1004 ex 41

mdarling@teklabinc.com

Mowin L. Darling II

Report Contents

http://www.teklabinc.com/

Client: Trihydro Corporation Work Order: 16021256
Client Project: Hartford Report Date: 25-Feb-16

This reporting package includes the following:

Cover Letter	1
Report Contents	2
Definitions	3
Case Narrative	4
Laboratory Results	5
Quality Control Results	8
Receiving Check List	18
Chain of Custody	Appended

Definitions

http://www.teklabinc.com/

Client: Trihydro Corporation Work Order: 16021256
Client Project: Hartford Report Date: 25-Feb-16

Abbr Definition

- CCV Continuing calibration verification is a check of a standard to determine the state of calibration of an instrument between recalibration.
- DF Dilution factor is the dilution performed during analysis only and does not take into account any dilutions made during sample preparation. The reported result is final and includes all dilutions factors.
- DNI Did not ignite
- DUP Laboratory duplicate is an aliquot of a sample taken from the same container under laboratory conditions for independent processing and analysis independently of the original aliquot.
- ICV Initial calibration verification is a check of a standard to determine the state of calibration of an instrument before sample analysis is initiated.
- IDPH IL Dept. of Public Health
- LCS Laboratory control sample, spiked with verified known amounts of analytes, is analyzed exactly like a sample to establish intra-laboratory or analyst specific precision and bias or to assess the performance of all or a portion of the measurement system. The acceptable recovery range is in the QC Package (provided upon request).
- LCSD Laboratory control sample duplicate is a replicate laboratory control sample that is prepared and analyzed in order to determine the precision of the approved test method. The acceptable recovery range is listed in the QC Package (provided upon request).
- MBLK Method blank is a sample of a matrix similar to the batch of associated sample (when available) that is free from the analytes of interest and is processed simultaneously with and under the same conditions as samples through all steps of the analytical procedures, and in which no target analytes or interferences should present at concentrations that impact the analytical results for sample analyses.
- MDL Method detection limit means the minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero.
- MS Matrix spike is an aliquot of matrix fortified (spiked) with known quantities of specific analytes that is subjected to the entire analytical procedures in order to determine the effect of the matrix on an approved test method's recovery system. The acceptable recovery range is listed in the QC Package (provided upon request).
- MSD Matrix spike duplicate means a replicate matrix spike that is prepared and analyzed in order to determine the precision of the approved test method. The acceptable recovery range is listed in the QC Package (provided upon request).
- MW Molecular weight
- ND Not Detected at the Reporting Limit

NELAP NELAP Accredited

- PQL Practical quantitation limit means the lowest level that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operation conditions. The acceptable recovery range is listed in the QC Package (provided upon request).
- RL The reporting limit the lowest level that the data is displayed in the final report. The reporting limit may vary according to customer request or sample dilution. The reporting limit may not be less than the MDL.
- RPD Relative percent difference is a calculated difference between two recoveries (ie. MS/MSD). The acceptable recovery limit is listed in the QC Package (provided upon request).
- SPK The spike is a known mass of target analyte added to a blank sample or sub-sample; used to determine recovery deficiency or for other quality control purposes.
- Surr Surrogates are compounds which are similar to the analytes of interest in chemical composition and behavior in the analytical process, but which are not normally found in environmental samples.
- TIC Tentatively identified compound: Analytes tentatively identified in the sample by using a library search. Only results not in the calibration standard will be reported as tentatively identified compounds. Results for tentatively identified compounds that are not present in the calibration standard, but are assigned a specific chemical name based upon the library search, are calculated using total peak areas from reconstructed ion chromatograms and a response factor of one. The nearest Internal Standard is used for the calculation. The results of any TICs must be considered estimated, and are flagged with a "T". If the estimated result is above the calibration range it is flagged "ET"
- TNTC Too numerous to count (> 200 CFU)

Qualifiers

- # Unknown hydrocarbon
- E Value above quantitation range
- I Associated internal standard was outside method criteria
- M Manual Integration used to determine area response
- R RPD outside accepted recovery limits
- T TIC(Tentatively identified compound)

- B Analyte detected in associated Method Blank
- H Holding times exceeded
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
 - S Spike Recovery outside recovery limits
 - X Value exceeds Maximum Contaminant Level

Case Narrative

http://www.teklabinc.com/

Client: Trihydro Corporation Work Order: 16021256
Client Project: Hartford Report Date: 25-Feb-16

Cooler Receipt Temp: 4.62 °C

Locations and Accreditations

	Collinsville	Springfield	Kansas City	Collinsville Air
Address	5445 Horseshoe Lake Road	3920 Pintail Dr	8421 Nieman Road	5445 Horseshoe Lake Road
	Collinsville, IL 62234-7425	Springfield, IL 62711-9415	Lenexa, KS 66214	Collinsville, IL 62234-7425
Phone	(618) 344-1004	(217) 698-1004	(913) 541-1998	(618) 344-1004
Fax	(618) 344-1005	(217) 698-1005	(913) 541-1998	(618) 344-1005
Email	jhriley@teklabinc.com	KKlostermann@teklabinc.com	dthompson@teklabinc.com	EHurley@teklabinc.com

State	Dept	Cert #	NELAP	Exp Date	Lab
Illinois	IEPA	100226	NELAP	1/31/2017	Collinsville
Kansas	KDHE	E-10374	NELAP	5/31/2016	Collinsville
Louisiana	LDEQ	166493	NELAP	6/30/2016	Collinsville
Louisiana	LDEQ	166578	NELAP	6/30/2016	Collinsville
Texas	TCEQ	T104704515-12-1	NELAP	7/31/2016	Collinsville
Arkansas	ADEQ	88-0966		3/14/2016	Collinsville
Illinois	IDPH	17584		5/31/2017	Collinsville
Kentucky	KDEP	98006		12/31/2016	Collinsville
Kentucky	UST	0073		1/31/2017	Collinsville
Missouri	MDNR	00930		5/31/2017	Collinsville
Oklahoma	ODEQ	9978		8/31/2016	Collinsville

http://www.teklabinc.com/

Client: Trihydro Corporation Work Order: 16021256

Client Project: Hartford Report Date: 25-Feb-16

Matrix: AQUEOUS Collection Date: 02/22/2016 8:30

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed Batch
SW-846 1020B							
Ignitability, Closed Cup	NELAP	60		>200	°F	1	02/22/2016 13:17 R215151
SW-846 3005A, 6010B, META	LS BY ICP (TOTAL)						
Lead	NELAP	0.0150		0.0319	mg/L	1	02/23/2016 9:12 116558
SW-846 3510C, 8270C SIMS, \$	SEMI-VOLATILE ORG	SANIC CON	/POUND	S BY GC/MS			
1-Methylnaphthalene		0.00050		ND	mg/L	5	02/24/2016 3:16 116540
Acenaphthene	NELAP	0.00050		ND	mg/L	5	02/24/2016 3:16 116540
Acenaphthylene	NELAP	0.00050		ND	mg/L	5	02/24/2016 3:16 116540
Anthracene	NELAP	0.00050		0.00180	mg/L	5	02/24/2016 3:16 116540
Benzo(a)anthracene	NELAP	0.00050		0.00065	mg/L	5	02/24/2016 3:16 116540
Benzo(a)pyrene	NELAP	0.00050		ND	mg/L	5	02/24/2016 3:16 116540
Benzo(b)fluoranthene	NELAP	0.00050		ND	mg/L	5	02/24/2016 3:16 116540
Benzo(g,h,i)perylene	NELAP	0.00050		ND	mg/L	5	02/24/2016 3:16 116540
Benzo(k)fluoranthene	NELAP	0.00050		ND	mg/L	5	02/24/2016 3:16 116540
Chrysene	NELAP	0.00050		ND	mg/L	5	02/24/2016 3:16 116540
Dibenzo(a,h)anthracene	NELAP	0.00050		ND	mg/L	5	02/24/2016 3:16 116540
Fluoranthene	NELAP	0.00050		0.00055	mg/L	5	02/24/2016 3:16 116540
Fluorene	NELAP	0.00050		0.00080	mg/L	5	02/24/2016 3:16 116540
Indeno(1,2,3-cd)pyrene	NELAP	0.00050		ND	mg/L	5	02/24/2016 3:16 116540
Naphthalene	NELAP	0.00050		ND	mg/L	5	02/24/2016 3:16 116540
Phenanthrene	NELAP	0.00050		ND	mg/L	5	02/24/2016 3:16 116540
Pyrene	NELAP	0.00050		0.00350	mg/L	5	02/24/2016 3:16 116540
Surr: 2-Fluorobiphenyl		10-143		62.0	%REC	5	02/24/2016 3:16 116540
Surr: Nitrobenzene-d5		10-166		50.5	%REC	5	02/24/2016 3:16 116540
Surr: p-Terphenyl-d14		10-137		59.5	%REC	5	02/24/2016 3:16 116540
Elevated reporting limit due to samp	ole extract composition.						
SW-846 5030, 8260B, VOLATI	LE ORGANIC COMP	OUNDS BY	GC/MS				
1,1,1,2-Tetrachloroethane	NELAP	5.0		ND	μg/L	1	02/23/2016 5:11 116573
1,1,1-Trichloroethane	NELAP	5.0		ND	μg/L	1	02/23/2016 5:11 116573
1,1,2,2-Tetrachloroethane	NELAP	5.0		ND	μg/L	1	02/23/2016 5:11 116573
1,1,2-Trichloro-1,2,2-trifluoroethar	ne	20.0		ND	μg/L	1	02/23/2016 5:11 116573
1,1,2-Trichloroethane	NELAP	5.0		ND	μg/L	1	02/23/2016 5:11 116573
1,1-Dichloro-2-propanone		50.0		ND	μg/L	1	02/23/2016 5:11 116573
1,1-Dichloroethane	NELAP	5.0		ND	μg/L	1	02/23/2016 5:11 116573
1,1-Dichloroethene	NELAP	5.0		ND	μg/L	1	02/23/2016 5:11 116573
1,1-Dichloropropene	NELAP	5.0		ND	μg/L	1	02/23/2016 5:11 116573
1,2,3-Trichlorobenzene	NELAP	5.0		ND	μg/L	1	02/23/2016 5:11 116573
1,2,3-Trichloropropane	NELAP	5.0		ND	μg/L	1	02/23/2016 5:11 116573
1,2,3-Trimethylbenzene		5.0	J	3.3	μg/L	1	02/23/2016 5:11 116573
1,2,4-Trichlorobenzene	NELAP	5.0		ND	μg/L	1	02/23/2016 5:11 116573
1,2,4-Trimethylbenzene	NELAP	5.0		ND	μg/L	1	02/23/2016 5:11 116573
1,2-Dibromo-3-chloropropane	NELAP	5.0		ND	μg/L	1	02/23/2016 5:11 116573
1,2-Dibromoethane	NELAP	5.0		ND	μg/L	1	02/23/2016 5:11 116573
1,2-Dichlorobenzene	NELAP	5.0		ND	μg/L	1	02/23/2016 5:11 116573
1,2-Dichloroethane	NELAP	5.0		ND	μg/L	1	02/23/2016 5:11 116573
1,2-Dichloropropane	NELAP	5.0		ND	μg/L	1	02/23/2016 5:11 116573
1,3,5-Trimethylbenzene	NELAP	5.0	J	2.6	μg/L	1	02/23/2016 5:11 116573
1,3-Dichlorobenzene	NELAP	5.0		ND	μg/L	1	02/23/2016 5:11 116573
					. .		

http://www.teklabinc.com/

Client: Trihydro Corporation Work Order: 16021256

Client Project: Hartford Report Date: 25-Feb-16

Matrix: AQUEOUS Collection Date: 02/22/2016 8:30

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Batch
SW-846 5030, 8260B, VOLA						_		
1,3-Dichloropropane	NELAP	5.0	00/1110	ND	μg/L	1	02/23/2016 5:11	116573
1,4-Dichlorobenzene	NELAP	5.0		ND	μg/L	1	02/23/2016 5:11	116573
1-Chlorobutane	NELAP	5.0		ND	μg/L	1	02/23/2016 5:11	116573
2,2-Dichloropropane	NELAP	5.0		ND	μg/L	1	02/23/2016 5:11	116573
2-Butanone	NELAP	25.0		ND	μg/L	1	02/23/2016 5:11	116573
2-Chloroethyl vinyl ether	NELAP	20.0		ND	μg/L	1	02/23/2016 5:11	116573
2-Chlorotoluene	NELAP	5.0		ND	μg/L	1	02/23/2016 5:11	116573
2-Hexanone	NELAP	25.0		ND	μg/L	1	02/23/2016 5:11	116573
2-Nitropropane	NELAP	50.0		ND	μg/L	1	02/23/2016 5:11	116573
4-Chlorotoluene	NELAP	5.0		ND	μg/L	1	02/23/2016 5:11	116573
4-Methyl-2-pentanone	NELAP	25.0		ND	μg/L	1	02/23/2016 5:11	116573
Acetone	NELAP	25.0	J	6.9	μg/L	1	02/23/2016 5:11	116573
Acetonitrile	NELAP	50.0	ŭ	ND	μg/L	1	02/23/2016 5:11	116573
Acrolein	NELAP	100		ND	μg/L	1	02/23/2016 5:11	116573
Acrylonitrile	NELAP	5.0		ND	μg/L	1	02/23/2016 5:11	116573
Allyl chloride	NELAP	5.0		ND	μg/L	1	02/23/2016 5:11	116573
Benzene	NELAP	2.0		ND	μg/L	1	02/23/2016 5:11	116573
Bromobenzene	NELAP	5.0		ND	μg/L	1	02/23/2016 5:11	116573
Bromochloromethane	NELAP	5.0		ND	μg/L	1	02/23/2016 5:11	116573
Bromodichloromethane	NELAP	5.0		ND	μg/L	1	02/23/2016 5:11	116573
Bromoform	NELAP	5.0		ND	μg/L	1	02/23/2016 5:11	116573
Bromomethane	NELAP	10.0		ND	μg/L	1	02/23/2016 5:11	116573
Carbon disulfide	NELAP	5.0		ND	μg/L	1	02/23/2016 5:11	116573
Carbon tetrachloride	NELAP	5.0		ND	μg/L	1	02/23/2016 5:11	116573
Chlorobenzene	NELAP	5.0		ND	μg/L	1	02/23/2016 5:11	116573
Chloroethane	NELAP	10.0		ND	μg/L	1	02/23/2016 5:11	116573
Chloroform	NELAP	5.0		ND	μg/L	1	02/23/2016 5:11	116573
Chloromethane	NELAP	10.0		ND	μg/L	1	02/23/2016 5:11	116573
Chloroprene	NELAP	20.0		ND	μg/L	1	02/23/2016 5:11	116573
cis-1,2-Dichloroethene	NELAP	5.0		ND	μg/L	1	02/23/2016 5:11	116573
cis-1,3-Dichloropropene	NELAP	5.0		ND	μg/L	1	02/23/2016 5:11	116573
cis-1,4-Dichloro-2-butene	NELAP	5.0		ND	μg/L	1	02/23/2016 5:11	116573
Cyclohexanone		50.0		ND	μg/L	1	02/23/2016 5:11	116573
Dibromochloromethane	NELAP	5.0		ND	μg/L	1	02/23/2016 5:11	
Dibromomethane	NELAP	5.0		ND	μg/L	1	02/23/2016 5:11	
Dichlorodifluoromethane	NELAP	10.0		ND	μg/L	1	02/23/2016 5:11	
Ethyl acetate	NELAP	10.0		ND	μg/L	1	02/23/2016 5:11	
Ethyl ether	NELAP	5.0		ND	μg/L	1	02/23/2016 5:11	
Ethyl methacrylate	NELAP	5.0		ND	μg/L	1	02/23/2016 5:11	
Ethylbenzene	NELAP	5.0		ND	μg/L	1	02/23/2016 5:11	
Hexachlorobutadiene	NELAP	5.0		ND	μg/L	1	02/23/2016 5:11	
Hexachloroethane	NELAP	10.0		ND	μg/L	1	02/23/2016 5:11	
lodomethane	NELAP	5.0		ND	μg/L	1	02/23/2016 5:11	
Isopropylbenzene	NELAP	5.0		ND	μg/L	1	02/23/2016 5:11	
m,p-Xylenes	NELAP	5.0		ND	μg/L	1	02/23/2016 5:11	
Methacrylonitrile	NELAP	10.0		ND	μg/L	1	02/23/2016 5:11	
Methyl Methacrylate	NELAP	5.0		ND	μg/L	1	02/23/2016 5:11	
, -, ,		- ,			. 0			-

http://www.teklabinc.com/

Client: Trihydro Corporation Work Order: 16021256

Client Project: Hartford Report Date: 25-Feb-16

Matrix: AQUEOUS Collection Date: 02/22/2016 8:30

Manager / NQOLOOS				Concessor Butter 02/22/2010 0:50					
Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Batch	
SW-846 5030, 8260B, VOLAT	LE ORGANIC COM	POUNDS BY	GC/MS						
Methyl tert-butyl ether	NELAP	2.0		ND	μg/L	1	02/23/2016 5:11	116573	
Methylacrylate	NELAP	10.0		ND	μg/L	1	02/23/2016 5:11	116573	
Methylene chloride	NELAP	5.0		ND	μg/L	1	02/23/2016 5:11	116573	
Naphthalene	NELAP	10.0		ND	μg/L	1	02/23/2016 5:11	116573	
n-Butyl acetate		25.0		ND	μg/L	1	02/23/2016 5:11	116573	
n-Butylbenzene	NELAP	5.0	J	1.3	μg/L	1	02/23/2016 5:11	116573	
n-Heptane		20.0		ND	μg/L	1	02/23/2016 5:11	116573	
n-Hexane		20.0		ND	μg/L	1	02/23/2016 5:11	116573	
Nitrobenzene	NELAP	50.0		ND	μg/L	1	02/23/2016 5:11	116573	
n-Propylbenzene	NELAP	5.0		ND	μg/L	1	02/23/2016 5:11	116573	
o-Xylene	NELAP	5.0	J	1.1	μg/L	1	02/23/2016 5:11	116573	
Pentachloroethane	NELAP	20.0		ND	μg/L	1	02/23/2016 5:11	116573	
p-Isopropyltoluene	NELAP	5.0		ND	μg/L	1	02/23/2016 5:11	116573	
Propionitrile	NELAP	50.0		ND	μg/L	1	02/23/2016 5:11	116573	
sec-Butylbenzene	NELAP	5.0		ND	μg/L	1	02/23/2016 5:11	116573	
Styrene	NELAP	5.0		ND	μg/L	1	02/23/2016 5:11	116573	
tert-Butylbenzene	NELAP	5.0		ND	μg/L	1	02/23/2016 5:11	116573	
Tetrachloroethene	NELAP	5.0		ND	μg/L	1	02/23/2016 5:11	116573	
Tetrahydrofuran	NELAP	20.0		ND	μg/L	1	02/23/2016 5:11	116573	
Toluene	NELAP	5.0		ND	μg/L	1	02/23/2016 5:11	116573	
trans-1,2-Dichloroethene	NELAP	5.0		ND	μg/L	1	02/23/2016 5:11	116573	
trans-1,3-Dichloropropene	NELAP	5.0		ND	μg/L	1	02/23/2016 5:11	116573	
trans-1,4-Dichloro-2-butene	NELAP	10.0		ND	μg/L	1	02/23/2016 5:11	116573	
Trichloroethene	NELAP	5.0		ND	μg/L	1	02/23/2016 5:11	116573	
Trichlorofluoromethane	NELAP	5.0		ND	μg/L	1	02/23/2016 5:11	116573	
Vinyl acetate	NELAP	10.0		ND	μg/L	1	02/23/2016 5:11	116573	
Vinyl chloride	NELAP	2.0		ND	μg/L	1	02/23/2016 5:11	116573	
Surr: 1,2-Dichloroethane-d4		74.7-129		99.7	%REC	1	02/23/2016 5:11	116573	
Surr: 4-Bromofluorobenzene		86-119		95.8	%REC	1	02/23/2016 5:11	116573	
Surr: Dibromofluoromethane		81.7-123		99.8	%REC	1	02/23/2016 5:11	116573	
Surr: Toluene-d8		84.3-114		90.3	%REC	1	02/23/2016 5:11	116573	

http://www.teklabinc.com/

Client: Trihydro Corporation Work Order: 16021256

SW-846 1020B											
	SampType:	LCS		Units °F							Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Ignitability, Closed C	up		60			81.00	0	101.2	97	103	02/22/2016
Batch R215151 S SampID: 16021256-00	SampType:	DUP		Units °F					RPD	Limit 5	Date
Analyses	710001		RL	Oual	Recult	Snike	SPK Ref Val	%REC	RPD Ref \	/al %RPD	Analyzed
Ignitability, Closed C	up		60	Quai	>200	Spike		70.120	0	0.00	02/22/2016
SW-846 3005A, 6010	OB, METAL	S BY I	CP (TO	AL)							
	SampType:			Units mg/L							
SampID: MBLK-11655	58										Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Lead			0.0150		< 0.0150 C	0.01500	0	0	-100	100	02/23/2016
Batch 116558 S SampID: LCS-116558	SampType:	LCS		Units mg/L							Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Lead			0.0150	•	0.538		0	107.6	85	115	02/23/2016
Batch 116558 SampID: 16021281-00	SampType: 02AMS	MS		Units mg/L							Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Lead			0.0150		0.519	0.5000	0	103.7	75	125	02/23/2016
Batch 116558 S	SampType:	MSD		Units mg/L					RPD	Limit 20	
SampID: 16021281-00	2AMSD										Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref \	/al %RPD	Analyzed
Lead			0.0150		0.513	0.5000	0	102.6	0.5187	1.12	02/23/2016

http://www.teklabinc.com/

Client: Trihydro Corporation Work Order: 16021256

	e: MBLK	Units mg/L						
ampID: MBLK-116540 Analyses	RL	Qual	Result Spike	SPK Ref Val	%REC	I ow Limit	High Limit	Date Analyz
1-Methylnaphthalene	0.00010	Quai	ND	Of It Itol Val	701120	LOW LIMIT	r iigir Liinit	02/22/2
Acenaphthene	0.00010		ND					02/22/2
Acenaphthene	0.00010		ND					02/22/2
Acenaphthylene	0.00010		ND ND					02/22/2
Anthracene	0.00010		ND					02/22/2
Anthracene	0.00010		ND					02/22/2
Benzo(a)anthracene	0.00010		ND					02/22/2
Benzo(a)pyrene	0.00010		ND					02/22/2
Benzo(b)fluoranthene	0.00010		ND					02/22/2
Benzo(g,h,i)perylene	0.00010		ND					02/22/2
Benzo(k)fluoranthene	0.00010		ND					02/22/2
Chrysene	0.00010		ND					02/22/2
Dibenzo(a,h)anthracene	0.00010		ND					02/22/
Fluoranthene	0.00010		ND					02/22/
Fluoranthene	0.00010		ND					02/22/
Fluorene	0.00010		ND					02/22/
Fluorene	0.00010		ND					02/22/
ndeno(1,2,3-cd)pyrene	0.00010		ND					02/22/
Naphthalene	0.00010		ND					02/22/
Naphthalene	0.00010		ND					02/22/
Phenanthrene	0.00010		ND					02/22/
Phenanthrene	0.00010		ND					02/22/2
Pyrene	0.00010		ND					02/22/2
Pyrene	0.00010		ND					02/22/2
Surr: 2-Fluorobiphenyl			0.00350 0.005000		70.0	44.4	89.6	02/22/2
Surr: 2-Fluorobiphenyl			0.00349 0.005000		69.8	30.2	114	02/22/2
Surr: Nitrobenzene-d5			0.00320).005000		64.0	40.9	81.4	02/22/2
Surr: Nitrobenzene-d5			0.00394).005000		78.8	27.2	106	02/22/
Surr: p-Terphenyl-d14			0.00535).005000		107.0	35.2	135	02/22/2
Surr: p-Terphenyl-d14			0.00443 0.005000		88.6	54.3	104	02/22/2

http://www.teklabinc.com/

Client: Trihydro Corporation Work Order: 16021256

atch 116540 SampTyp ampID: LCS-116540	e: LCS	Units mg/L						
Analyses	RL	Qual Res	ult Spike	SPK Ref Val	%REC	Low Limit	High Limit	Date Analyz
1-Methylnaphthalene	0.00010		36).005000		73.2	38.8	96.6	02/22/2
Acenaphthene	0.00010	0.003	39).005000	0	77.8	46.6	96.4	02/22/2
Acenaphthene	0.00010	0.004	31).005000	0	86.2	53.5	111	02/22/2
Acenaphthylene	0.00010	0.003	33 0.005000	0	78.6	48.1	95.6	02/22/2
Anthracene	0.00010	0.004	79	0	95.8	49.4	119	02/22/2
Anthracene	0.00010	0.003	33).005000	0	76.6	53.2	95.9	02/22/2
Benzo(a)anthracene	0.00010	0.003	31 0.005000	0	76.2	52.5	102	02/22/2
Benzo(a)pyrene	0.00010	0.003	96 0.005000	0	79.2	55.1	103	02/22/
Benzo(b)fluoranthene	0.00010	0.003	99).005000	0	79.8	53.6	105	02/22/
Benzo(g,h,i)perylene	0.00010	0.003	95 0.005000	0	79.0	46.3	110	02/22/
Benzo(k)fluoranthene	0.00010	0.003	33 0.005000	0	78.6	53.8	104	02/22/
Chrysene	0.00010	0.003	33 0.005000	0	78.6	51	101	02/22/
Dibenzo(a,h)anthracene	0.00010	0.004	20).005000	0	84.0	49.4	110	02/22/
Fluoranthene	0.00010	0.003	39).005000	0	73.8	54.5	99.5	02/22/
Fluoranthene	0.00010	0.005)2).005000	0	100.4	57.1	121	02/22/
Fluorene	0.00010	0.004	17).005000	0	89.4	53.3	117	02/22/
Fluorene	0.00010	0.003	98).005000	0	79.6	51.1	97.6	02/22/
ndeno(1,2,3-cd)pyrene	0.00010	0.003	36 0.005000	0	79.2	48.6	110	02/22/
Naphthalene	0.00010	0.003	53).005000	0	70.6	39.8	93.1	02/22/
Naphthalene	0.00010	0.004	9 0.005000	0	81.8	47.8	109	02/22/
Phenanthrene	0.00010	0.003	73).005000	0	74.6	52.2	95.9	02/22/
Phenanthrene	0.00010	0.004	39).005000	0	93.8	51.9	119	02/22/
Pyrene	0.00010	0.003	38).005000	0	73.6	53.4	99.1	02/22/
Pyrene	0.00010	0.0049	97).005000	0	99.4	52.5	124	02/22/
Surr: 2-Fluorobiphenyl		0.003	40).005000		68.0	45.5	101	02/22/
Surr: 2-Fluorobiphenyl		0.003	21).005000		64.2	44.4	89.6	02/22/
Surr: Nitrobenzene-d5		0.004	37).005000		87.4	47.2	102	02/22/
Surr: Nitrobenzene-d5		0.003	21).005000		64.2	40.9	81.4	02/22/
Surr: p-Terphenyl-d14		0.005	38 3.005000		101.6	54.9	115	02/22/2
Surr: p-Terphenyl-d14		0.004	36 3.005000		81.2	54.3	104	02/22/2

http://www.teklabinc.com/

Client: Trihydro Corporation Work Order: 16021256

atch 116540 SampType	e: LCSD	Units mg/L			RPD Lir	nit 40	
ampID: LCSD-116540							Date
Analyses	RL (Qual Result Spike	SPK Ref Val	%REC	RPD Ref Val	%RPD	Analyze
1-Methylnaphthalene	0.00010	0.00364).005000	0	72.8	0.003660	0.55	02/22/20
Acenaphthene	0.00010	0.00433).005000	0	86.6	0.004310	0.46	02/22/20
Acenaphthene	0.00010	0.00387).005000	0	77.4	0.003890	0.52	02/22/20
Acenaphthylene	0.00010	0.00388).005000	0	77.6	0.003930	1.28	02/22/20
Anthracene	0.00010	0.00478).005000	0	95.6	0.004790	0.21	02/22/20
Anthracene	0.00010	0.00386).005000	0	77.2	0.003830	0.78	02/22/20
Benzo(a)anthracene	0.00010	0.00380).005000	0	76.0	0.003810	0.26	02/22/20
Benzo(a)pyrene	0.00010	0.00391).005000	0	78.2	0.003960	1.27	02/22/2
Benzo(b)fluoranthene	0.00010	0.00402).005000	0	80.4	0.003990	0.75	02/22/2
Benzo(g,h,i)perylene	0.00010	0.00391).005000	0	78.2	0.003950	1.02	02/22/2
Benzo(k)fluoranthene	0.00010	0.00390).005000	0	78.0	0.003930	0.77	02/22/2
Chrysene	0.00010	0.00397).005000	0	79.4	0.003930	1.01	02/22/2
Dibenzo(a,h)anthracene	0.00010	0.00414).005000	0	82.8	0.004200	1.44	02/22/2
Fluoranthene	0.00010	0.00369 0.005000	0	73.8	0.003690	0.00	02/22/2
Fluoranthene	0.00010	0.00497).005000	0	99.4	0.005020	1.00	02/22/2
Fluorene	0.00010	0.00386).005000	0	77.2	0.003980	3.06	02/22/2
Fluorene	0.00010	0.00459).005000	0	91.8	0.004470	2.65	02/22/2
Indeno(1,2,3-cd)pyrene	0.00010	0.00390).005000	0	78.0	0.003960	1.53	02/22/2
Naphthalene	0.00010	0.00406 0.005000	0	81.2	0.004090	0.74	02/22/2
Naphthalene	0.00010	0.00353).005000	0	70.6	0.003530	0.00	02/22/2
Phenanthrene	0.00010	0.00475).005000	0	95.0	0.004690	1.27	02/22/2
Phenanthrene	0.00010	0.00373).005000	0	74.6	0.003730	0.00	02/22/2
Pyrene	0.00010	0.00492).005000	0	98.4	0.004970	1.01	02/22/2
Pyrene	0.00010	0.00366 0.005000	0	73.2	0.003680	0.54	02/22/2
Surr: 2-Fluorobiphenyl		0.00330).005000		66.0			02/22/2
Surr: 2-Fluorobiphenyl		0.00300).005000		60.0			02/22/2
Surr: Nitrobenzene-d5		0.00431).005000		86.2			02/22/2
Surr: Nitrobenzene-d5		0.00322).005000		64.4			02/22/2
Surr: p-Terphenyl-d14		0.00384).005000		76.8			02/22/2
Surr: p-Terphenyl-d14		0.00493).005000		98.6			02/22/2

http://www.teklabinc.com/

Client: Trihydro Corporation Work Order: 16021256

SW-846 5030, 8260B, VOLATILE OR	GANIC C	OMPOUNDS	BY GC/M	S					
Batch 116573 SampType: MBLI	K	Units µg/L							
SampID: MBLK-N160222-2									Date
Analyses	RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
1,1,1,2-Tetrachloroethane	5.0		ND	•					02/22/2016
1,1,1-Trichloroethane	5.0		ND						02/22/2016
1,1,2,2-Tetrachloroethane	5.0		ND						02/22/2016
1,1,2-Trichloro-1,2,2-trifluoroethane	20.0		ND						02/22/2016
1,1,2-Trichloroethane	5.0		ND						02/22/2016
1,1-Dichloro-2-propanone	50.0		ND						02/22/2016
1,1-Dichloroethane	5.0		ND						02/22/2016
1,1-Dichloroethene	5.0		ND						02/22/2016
1,1-Dichloropropene	5.0		ND						02/22/2016
1,2,3-Trichlorobenzene	5.0		ND						02/22/2016
1,2,3-Trichloropropane	5.0		ND						02/22/2016
1,2,3-Trimethylbenzene	5.0		ND						02/22/2016
1,2,4-Trichlorobenzene	5.0		ND						02/22/2016
1,2,4-Trimethylbenzene	5.0		ND						02/22/2016
1,2-Dibromo-3-chloropropane	5.0		ND						02/22/2016
1,2-Dibromoethane	5.0		ND						02/22/2016
1,2-Dichlorobenzene	5.0		ND						02/22/2016
1,2-Dichloroethane	5.0		ND						02/22/2016
1,2-Dichloropropane	5.0		ND						02/22/2016
1,3,5-Trimethylbenzene	5.0		ND						02/22/2016
1,3-Dichlorobenzene	5.0		ND						02/22/2016
1,3-Dichloropropane	5.0		ND						02/22/2016
1,4-Dichlorobenzene	5.0		ND						02/22/2016
1-Chlorobutane	5.0		ND						02/22/2016
2,2-Dichloropropane	5.0		ND						02/22/2016
2-Butanone	25.0		ND						02/22/2016
2-Chloroethyl vinyl ether	20.0		ND						02/22/2016
2-Chlorotoluene	5.0		ND						02/22/2016
2-Hexanone	25.0		ND						02/22/2016
2-Nitropropane	50.0		ND						02/22/2016
4-Chlorotoluene	5.0		ND						02/22/2016
4-Methyl-2-pentanone	25.0		ND						02/22/2016
Acetone	25.0		ND						02/22/2016
Acetonitrile	50.0		ND						02/22/2016
Acrolein	100		ND						02/22/2016
Acrylonitrile	5.0		ND						02/22/2016
Allyl chloride	5.0		ND						02/22/2016
Benzene	2.0		ND						02/22/2016
Bromobenzene	5.0		ND						02/22/2016
Bromochloromethane	5.0		ND						02/22/2016
Bromodichloromethane	5.0		ND						02/22/2016
Bromoform	5.0		ND						02/22/2016
Bromomethane	10.0		ND						02/22/2016
Carbon disulfide	5.0		ND						02/22/2016
Carbon tetrachloride	5.0		ND						02/22/2016
Chlorobenzene	5.0		ND						02/22/2016
Chloroethane	10.0		ND						02/22/2016

http://www.teklabinc.com/

Client: Trihydro Corporation Work Order: 16021256

atch 116573 SampType	: MBLK	Units µg/L					
mpID: MBLK-N160222-2		. •					Date
Analyses	RL	Qual Result	Spike SPK Ref Val	%RFC	I ow I imit	High Limit	Analyz
Chloroform	5.0	Quai Result	Spike of the rai	70.120	2011 2	9 =	02/22/2
Chloromethane	10.0	ND					02/22/2
Chloroprene	20.0	ND					02/22/2
cis-1,2-Dichloroethene	5.0	ND					02/22/2
cis-1,3-Dichloropropene	5.0	ND					02/22/2
cis-1,4-Dichloro-2-butene	5.0	ND					02/22/2
Cyclohexanone	50.0	ND					02/22/2
Dibromochloromethane	5.0	ND					02/22/2
Dibromomethane	5.0	ND					02/22/2
Dichlorodifluoromethane	10.0	ND					02/22/2
Ethyl acetate	10.0	ND					02/22/2
Ethyl ether	5.0	ND ND					02/22/2
Ethyl methacrylate	5.0	ND ND					02/22/
Ethylbenzene	5.0	ND ND					02/22/
Hexachlorobutadiene	5.0	ND ND					02/22/
Hexachloroethane	10.0	ND ND					02/22/
lodomethane	5.0	ND ND					02/22/
	5.0	ND ND					02/22/
sopropylbenzene m,p-Xylenes	5.0	ND ND					02/22/
•	10.0						02/22/
Methacrylonitrile	5.0	ND					02/22/
Methyl Methacrylate	2.0	ND					02/22/
Methyl tert-butyl ether	10.0	ND					02/22/
Methylacrylate	5.0	ND					02/22/
Methylene chloride		ND					
Naphthalene	10.0	ND					02/22/
n-Butyl acetate	25.0	ND					02/22/
n-Butylbenzene	5.0	ND					02/22/
n-Heptane	20.0	ND					02/22/
n-Hexane	20.0	ND					02/22/
Nitrobenzene	50.0	ND					02/22/
n-Propylbenzene	5.0	ND					02/22/
o-Xylene	5.0	ND					02/22/
Pentachloroethane	20.0	ND					02/22/
p-Isopropyltoluene	5.0	ND					02/22/
Propionitrile	50.0	ND					02/22/
sec-Butylbenzene	5.0	ND					02/22/
Styrene	5.0	ND					02/22/
tert-Butylbenzene	5.0	ND					02/22/
Tetrachloroethene	5.0	ND					02/22/
Tetrahydrofuran	20.0	ND					02/22/
Toluene	5.0	ND					02/22/
trans-1,2-Dichloroethene	5.0	ND					02/22/
trans-1,3-Dichloropropene	5.0	ND					02/22/
trans-1,4-Dichloro-2-butene	10.0	ND					02/22/
Trichloroethene	5.0	ND					02/22/2
Trichlorofluoromethane	5.0	ND					02/22/2
Vinyl acetate	10.0	ND					02/22/2

http://www.teklabinc.com/

Client: Trihydro Corporation Work Order: 16021256

SW-846 5030, 8260B, VOLATII	LE ORGAN	IIC C	OMPOUNDS	BY GC/M	3					
Batch 116573 SampType: SampID: MBLK-N160222-2	MBLK		Units µg/L							Date
Analyses	RL	_	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Vinyl chloride		2.0		ND						02/22/2016
Surr: 1,2-Dichloroethane-d4				50.5	50.00		100.9	74.7	129	02/22/2016
Surr: 4-Bromofluorobenzene				49.4	50.00		98.7	86	119	02/22/2016
Surr: Dibromofluoromethane				49.6	50.00		99.1	81.7	123	02/22/2016
Surr: Toluene-d8				48.7	50.00		97.4	84.3	114	02/22/2016

http://www.teklabinc.com/

Client: Trihydro Corporation Work Order: 16021256

SW-846 5030, 8260B, VOLATILE OR	GANIC C	OMPOUNDS E	BY GC/M	S					
Batch 116573 SampType: LCS		Units µg/L							
SampID: LCS-N160222-2									Date
Analyses	RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
1,1,1,2-Tetrachloroethane	5.0			50.00	0	104.7	81.9	115	02/22/2016
1,1,1-Trichloroethane	5.0		49.4	50.00	0	98.8	79.4	124	02/22/2016
1,1,2,2-Tetrachloroethane	5.0		46.5	50.00	0	93.0	74.7	116	02/22/2016
1,1,2-Trichloro-1,2,2-trifluoroethane	20.0		46.5	50.00	0	92.9	72.9	121	02/22/2016
1,1,2-Trichloroethane	5.0		48.1	50.00	0	96.1	80.8	111	02/22/2016
1,1-Dichloro-2-propanone	50.0		96.5	125.0	0	77.2	66.3	130	02/22/2016
1,1-Dichloroethane	5.0		51.1	50.00	0	102.2	79.4	114	02/22/2016
1,1-Dichloroethene	5.0		47.1	50.00	0	94.2	74.1	117	02/22/2016
1,1-Dichloropropene	5.0		49.9	50.00	0	99.8	81.7	116	02/22/2016
1,2,3-Trichlorobenzene	5.0		51.0	50.00	0	102.0	79.7	118	02/22/2016
1,2,3-Trichloropropane	5.0		46.3	50.00	0	92.6	77.3	112	02/22/2016
1,2,3-Trimethylbenzene	5.0		48.7	50.00	0	97.4	79.9	119	02/22/2016
1,2,4-Trichlorobenzene	5.0		50.1	50.00	0	100.2	79.3	118	02/22/2016
1,2,4-Trimethylbenzene	5.0		49.0	50.00	0	97.9	78.7	115	02/22/2016
1,2-Dibromo-3-chloropropane	5.0		43.3	50.00	0	86.5	76	122	02/22/2016
1,2-Dibromoethane	5.0		49.8	50.00	0	99.6	80.8	114	02/22/2016
1,2-Dichlorobenzene	5.0		50.7	50.00	0	101.3	78.3	112	02/22/2016
1,2-Dichloroethane	5.0		45.7	50.00	0	91.3	70.6	118	02/22/2016
1,2-Dichloropropane	5.0		51.7	50.00	0	103.3	79.6	113	02/22/2016
1,3,5-Trimethylbenzene	5.0		49.6	50.00	0	99.1	77.5	115	02/22/2016
1,3-Dichlorobenzene	5.0		50.6	50.00	0	101.1	78.6	117	02/22/2016
1,3-Dichloropropane	5.0		48.4	50.00	0	96.8	78.8	112	02/22/2016
1,4-Dichlorobenzene	5.0		50.1	50.00	0	100.1	77.8	114	02/22/2016
1-Chlorobutane	5.0		48.6	50.00	0	97.1	78.6	115	02/22/2016
2,2-Dichloropropane	5.0		40.0	50.00	0	80.0	74.9	130	02/22/2016
2-Butanone	25.0		112	125.0	0	89.7	70.7	136	02/22/2016
2-Chloroethyl vinyl ether	20.0		49.7	50.00	0	99.4	52.5	145	02/22/2016
2-Chlorotoluene	5.0		47.9	50.00	0	95.8	77.4	114	02/22/2016
2-Hexanone	25.0		108	125.0	0	86.2	73.3	125	02/22/2016
2-Nitropropane	50.0		453	500.0	0	90.7	67.3	139	02/22/2016
4-Chlorotoluene	5.0		47.7	50.00	0	95.3	78.3	115	02/22/2016
4-Methyl-2-pentanone	25.0		115	125.0	0	92.0	76.3	122	02/22/2016
Acetone	25.0		105	125.0	0	83.9	56.4	147	02/22/2016
Acetonitrile	50.0		419	500.0	0	83.9	59.3	129	02/22/2016
Acrolein	100		357	500.0	0	71.4	1	201	02/22/2016
Acrylonitrile	5.0		44.9	50.00	0	89.9	74.1	128	02/22/2016
Allyl chloride	5.0		48.5	50.00	0	97.0	71.5	123	02/22/2016
Benzene	2.0		51.2	50.00	0	102.4	80	114	02/22/2016
Bromobenzene	5.0		45.8	50.00	0	91.6	73.2	118	02/22/2016
Bromochloromethane	5.0		47.3	50.00	0	94.5	73.3	121	02/22/2016
Bromodichloromethane	5.0		51.8	50.00	0	103.6	81.6	121	02/22/2016
Bromoform	5.0		50.6	50.00	0	101.2	83.1	127	02/22/2016
Bromomethane	10.0		41.9	50.00	0	83.9	44.4	154	02/22/2016
Carbon disulfide	5.0		46.0	50.00	0	92.0	73.2	118	02/22/2016
Carbon tetrachloride	5.0		51.5	50.00	0	103.1	79.4	130	02/22/2016
Chlorobenzene	5.0		50.5	50.00	0	101.1	81.4	110	02/22/2016
Chloroethane	10.0		41.0	50.00	0	82.0	52.1	137	02/22/2016

http://www.teklabinc.com/

Client: Trihydro Corporation Work Order: 16021256

SW-846 5030, 8260B, VOLATI	LE ORGANIC C	OMPOUNDS BY GC/	MS					
Batch 116573 SampType:	LCS	Units µg/L						
SampID: LCS-N160222-2								Date
Analyses	RL	Qual Resu	lt Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Chloroform	5.0	49.	50.00	0	97.9	82.7	116	02/22/2016
Chloromethane	10.0	35.	3 50.00	0	71.6	48.2	144	02/22/2016
Chloroprene	20.0	44.	50.00	0	89.9	80.6	126	02/22/2016
cis-1,2-Dichloroethene	5.0	47.	5 50.00	0	95.1	78.2	116	02/22/2016
cis-1,3-Dichloropropene	5.0	51.	50.00	0	103.1	83	119	02/22/2016
cis-1,4-Dichloro-2-butene	5.0	36.	3 50.00	0	73.7	60.7	137	02/22/2016
Cyclohexanone	50.0	30	500.0	0	61.7	54.2	145	02/22/2016
Dibromochloromethane	5.0	52.	3 50.00	0	105.6	81.2	121	02/22/2016
Dibromomethane	5.0	48.	3 50.00	0	97.5	78.3	118	02/22/2016
Dichlorodifluoromethane	10.0	32.	50.00	0	65.8	20.6	154	02/22/2016
Ethyl acetate	10.0	45.	4 50.00	0	90.8	73.1	116	02/22/2016
Ethyl ether	5.0	45.	50.00	0	91.6	75.2	109	02/22/2016
Ethyl methacrylate	5.0	47.	50.00	0	95.5	80.1	113	02/22/2016
Ethylbenzene	5.0	49.	50.00	0	99.1	77.2	113	02/22/2016
Hexachlorobutadiene	5.0	48.	4 50.00	0	96.9	77.3	123	02/22/2016
Hexachloroethane	10.0	52.	7 50.00	0	105.4	74.6	117	02/22/2016
Iodomethane	5.0	55.	4 50.00	0	110.8	61.3	140	02/22/2016
Isopropylbenzene	5.0	50.	50.00	0	101.9	81.3	114	02/22/2016
m,p-Xylenes	5.0	97.	1 100.0	0	97.1	79.6	113	02/22/2016
Methacrylonitrile	10.0	48.	3 50.00	0	97.6	77.2	125	02/22/2016
Methyl Methacrylate	5.0	47.		0	95.3	74.2	121	02/22/2016
Methyl tert-butyl ether	2.0	48.		0	96.2	76.8	117	02/22/2016
Methylacrylate	10.0	50.		0	100.3	78	124	02/22/2016
Methylene chloride	5.0	48.		0	97.7	74.1	114	02/22/2016
Naphthalene	10.0	52.		0	104.4	77.9	122	02/22/2016
n-Butyl acetate	25.0	45.		0	90.0	74	120	02/22/2016
n-Butylbenzene	5.0	44.		0	89.6	71.1	120	02/22/2016
n-Heptane	20.0	42.		0	83.9	67.4	129	02/22/2016
n-Hexane	20.0	47.		0	95.0	68.4	126	02/22/2016
Nitrobenzene	50.0	41		0	82.5	37.9	181	02/22/2016
n-Propylbenzene	5.0	48.		0	95.9	74.6	118	02/22/2016
o-Xylene	5.0	50.		0	100.0	80.1	111	02/22/2016
Pentachloroethane	20.0	51.		0	101.9	78.8	117	02/22/2016
p-Isopropyltoluene	5.0	50.		0	100.6	77.6	118	02/22/2016
Propionitrile	50.0	45		0	91.0	72.9	137	02/22/2016
sec-Butylbenzene	5.0	48.		0	96.5	74.5	119	02/22/2016
Styrene	5.0	52.		0	105.2	83.4	113	02/22/2016
tert-Butylbenzene	5.0	46.		0	93.5	75.9	114	02/22/2016
Tetrachloroethene	5.0	51.		0	102.9	72.5	125	02/22/2016
Tetrahydrofuran	20.0	43.		0	87.2	69.6	125	02/22/2016
Toluene	5.0	48.		0	97.1	77.5	113	02/22/2016
trans-1,2-Dichloroethene	5.0	48.		0	97.3	79	114	02/22/2016
trans-1,3-Dichloropropene	5.0	48.		0	96.0	78	115	02/22/2016
trans-1,4-Dichloro-2-butene	10.0	39.		0	78.2	63.3	128	02/22/2016
Trichloroethene	5.0	51.		0	103.4	84.4	114	02/22/2016
Trichlorofluoromethane	5.0	45.		0	90.6	75.2	132	02/22/2016
Vinyl acetate	10.0	49.		0	98.3	64.5	127	02/22/2016
. myr doordio	10.0		. 55.55	v	30.0	J-1.0		<i>52,22,20</i> 10

http://www.teklabinc.com/

Client: Trihydro Corporation Work Order: 16021256

LCS		Units µg/L							
									Date Analyze
		Qual							•
	2.0				0				02/22/201
			44.2				74.7	129	02/22/201
			48.1				86	119	02/22/201
			49.9	50.00		99.8	81.7	123	02/22/201
			47.7	50.00		95.3	84.1	114	02/22/201
MS		Units mg/L							
									Date
	RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyze
	0.500		5.30	5.000	0	105.9	61.3	123	02/23/20
	0.500		5.02	5.000	0	100.4	71.5	116	02/23/20
	0.500		4.85	5.000	0	97.0	76.9	113	02/23/20
	2.50		5.08	5.000	0	101.6	64.1	132	02/23/20
	0.200		5.36	5.000	0	107.2	81.5	113	02/23/20
	0.500		5.30	5.000	0	106.1	55.5	125	02/23/20
	0.500		5.07	5.000	0	101.5	81.8	111	02/23/20
	0.500		4.99	5.000	0	99.9	81	115	02/23/20
	0.500		4.79	5.000	0	95.7	61.7	114	02/23/20
	0.500		5.27	5.000	0	105.4	74.4	117	02/23/20
	0.200		4.33	5.000	0	86.7	45.7	130	02/23/20
			5.10	5.000		102.0	74.7	129	02/23/20
			4.85	5.000		97.0	86	119	02/23/20
			5.00	5.000		100.0	81.7	123	02/23/20
			4.79	5.000		95.9	84.3	114	02/23/20
MSD		Units mg/L					RPD	Limit 20	
									Date
	RL	Oual	Result	Spike	SPK Ref Val	%REC	RPD Ref \	/al %RPD	Analyze
		Q 55512			0		5.295	2.83	02/23/20
					-				02/23/20
					_				02/23/20
					-				02/23/20
									02/23/20
									02/23/20
									02/23/20
									02/23/20
									02/23/20
									02/23/20
									02/23/20
	0.200				U		4.000	0.30	02/23/20
				5.000		98.1			02/23/20
						.π(C). I			UZ Z 3// U
				5.000		99.0			02/23/20
	MS	RL 2.0 MS RL 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500	RL Qual RL Qual RL Qual RL Qual 0.500	RL Qual Result 2.0 40.3 44.2 48.1 49.9 47.7 MS Units mg/L RL Qual Result 0.500 5.30 0.500 5.02 0.500 4.85 2.50 5.08 0.200 5.36 0.500 5.07 0.500 4.99 0.500 4.79 0.500 4.79 0.500 5.27 0.200 4.33 5.10 4.85 5.00 4.79 MSD Units mg/L RL Qual Result 0.500 5.27 0.200 4.385 5.00 4.79 0.500 5.27 0.200 5.36 0.500 5.27 0.200 5.27 0.200 5.21 0.500 5.24 0.500 5.21	RL	NE	Name	RL	No. No.

Water - pH acceptable upon receipt?

NPDES/CWA TCN interferences checked/treated in the field?

Receiving Check List

http://www.teklabinc.com/

Work Order: 16021256 Client: Trihydro Corporation Client Project: Hartford Report Date: 25-Feb-16 Carrier: Nick Harvey Received By: AMD Elizabeth a thurley Reviewed by: Completed by: ntoen Ollaul On: On: 22-Feb-16 22-Feb-16 Amber M. Dilallo Elizabeth A. Hurley 0 Pages to follow: Chain of custody Extra pages included Shipping container/cooler in good condition? Yes 🗸 No Not Present Temp °C 4.62 Type of thermal preservation? Ice 🗹 Blue Ice None Dry Ice **~** No 🗔 Chain of custody present? Yes **~** Chain of custody signed when relinquished and received? Yes No __ Yes 🗹 Chain of custody agrees with sample labels? No __ Yes 🗹 Samples in proper container/bottle? No 🗀 Yes 🗹 No 🗌 Sample containers intact? Sufficient sample volume for indicated test? Yes 🗸 No Yes 🗹 All samples received within holding time? No NA 🗸 Field _ Lab 🗌 Reported field parameters measured: Yes 🗹 No 🗌 Container/Temp Blank temperature in compliance? When thermal preservation is required, samples are compliant with a temperature between 0.1°C - 6.0°C, or when samples are received on ice the same day as collected. Yes 🗸 No VOA vials Water – at least one vial per sample has zero headspace? No 🗀 Yes No 🗌 No TOX containers Water - TOX containers have zero headspace? No 🗌 Yes 🗹

Any No responses must be detailed below or on the COC.

Yes

No 🗌

NA 🗸

CHAIN OF CUSTODY

pg. ____ of ___ Work Order # 100 21 250

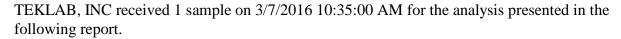
TEKLAB, INC. 5445 Horseshoe Lake Road ~ Collinsville, IL 62234 ~ Phone: (618) 344-1004 ~ Fax: (618) 344-1005

Client: //inydra Address: /252 Com City/State/Zip: Laramie Contact: Todd Gseltyne	noice D- Wy 820 Phono: 57	70	129	7			Pre: Lab	serv No	red tes:	in:		lce Lab								O) ONL Pig		, B		
E-Mail: Tabeltynep Tribyda							Con	nme	nts	.			3	Ĺ)/	۱Y	p							
Are these samples known to be involved in litige. Are these samples known to be hazardous? Are there any required reporting limits to be making in comment section. Yes No						N .	ZC.	nc)	hs	<u>-a</u>	1	Sp	AC.	. (<u> 1</u>	<u>12</u>	_ć	2:6	124	Le_			
Project Name / Number	Sample Col	lector'	s Nar	ne		4		MA	TRI	X				IN	DICA	TE A	NAI	LYSI	S RE	QUE	STE	5		
□ Standard □ 1-2 Day (100% Surcharge) □ Other(\$\sqrt{3}\)Day (50% Surcharge) Lab Use Only Sample Identification	ling Instructions Date/Time Sampled	# and σ	Туре	of Co	MeOH		Water	Drinking Water	Soil	Sludge	Sp. Waste	JOC	12 la 14	lend	pro									
1602125601 Tank 3	2/22/16 830									·	1	6	8		0								l	1
	, , ,					丅	T																	
						1	1							_		1								
				\sqcup			_				_													
	and a second contract of the c																							
							Stophin				and the same of													
											and the second													ON SCHOOL STATEMENT
				I		†		\Box					$\neg \uparrow$	$\neg \dagger$		1	$\neg \dagger$							
				\vdash	\dashv	+			\dashv	\dashv				$\neg \dagger$	\dashv	$\neg \uparrow$	\dashv					_	$\neg \uparrow$	
Relinguished By		Date /	Time				۸,				7	Rede	ved V	Rv.						Dat	e⊿ Tiı	me l		
TIII NAIN	2/22/1	отпуском пастех важного		- L	10	Billion Commen	+			-	4	T)	1	3			\dashv	1	17	TK	\mathfrak{S}^-	<u> </u>	nt	R
		16		1			(n	0	D		Òĺ	Qc	II	2		2/	28	410	<u> </u>	1	LL	
The individual cigning this agreement on below				TO BE AND REAL PROPERTY.									Million Strive To					On the second	anni de la constanta de la cons				one	

The individual signing this agreement on behalf of client acknowledges that he/she has read and understands the terms and conditions of this agreement, on the reverse side, and that he/she has the authority to sign on behalf of client.

AP ACCREC

WorkOrder: 16030420


March 08, 2016

Todd Aseltyne Trihydro Corporation 1252 Commerce Drive Laramie, WY 82070 TEL: (513) 429-7470

FAX:

RE: Soil Vapor System

Dear Todd Aseltyne:

Samples are analyzed on an as received basis unless otherwise requested and documented. The sample results contained in this report relate only to the requested analytes of interest as directed on the chain of custody. NELAP accredited fields of testing are indicated by the letters NELAP under the Certification column. Unless otherwise documented within this report, Teklab Inc. analyzes samples utilizing the most current methods in compliance with 40CFR. All tests are performed in the Collinsville, IL laboratory unless otherwise noted in the Case Narrative.

All quality control criteria applicable to the test methods employed for this project have been satisfactorily met and are in accordance with NELAP except where noted. The following report shall not be reproduced, except in full, without the written approval of Teklab, Inc.

If you have any questions regarding these tests results, please feel free to call.

Sincerely,

Marvin L. Darling

Project Manager (618)344-1004 ex 41

mdarling@teklabinc.com

Mowin L. Darling II

Client Project: Soil Vapor System

Report Contents

http://www.teklabinc.com/

Work Order: 16030420 Report Date: 08-Mar-16

This reporting package includes the following:

Client: Trihydro Corporation

Cover Letter	1
Report Contents	2
Definitions	3
Case Narrative	4
Laboratory Results	5
Quality Control Results	8
Receiving Check List	20
Chain of Custody	Appended

Definitions

http://www.teklabinc.com/

Client: Trihydro Corporation Work Order: 16030420
Client Project: Soil Vapor System Report Date: 08-Mar-16

Abbr Definition

- CCV Continuing calibration verification is a check of a standard to determine the state of calibration of an instrument between recalibration.
- DF Dilution factor is the dilution performed during analysis only and does not take into account any dilutions made during sample preparation. The reported result is final and includes all dilutions factors.
- DNI Did not ignite
- DUP Laboratory duplicate is an aliquot of a sample taken from the same container under laboratory conditions for independent processing and analysis independently of the original aliquot.
- ICV Initial calibration verification is a check of a standard to determine the state of calibration of an instrument before sample analysis is initiated.
- IDPH IL Dept. of Public Health
- LCS Laboratory control sample, spiked with verified known amounts of analytes, is analyzed exactly like a sample to establish intra-laboratory or analyst specific precision and bias or to assess the performance of all or a portion of the measurement system. The acceptable recovery range is in the QC Package (provided upon request).
- LCSD Laboratory control sample duplicate is a replicate laboratory control sample that is prepared and analyzed in order to determine the precision of the approved test method. The acceptable recovery range is listed in the QC Package (provided upon request).
- MBLK Method blank is a sample of a matrix similar to the batch of associated sample (when available) that is free from the analytes of interest and is processed simultaneously with and under the same conditions as samples through all steps of the analytical procedures, and in which no target analytes or interferences should present at concentrations that impact the analytical results for sample analyses.
- MDL Method detection limit means the minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero.
- MS Matrix spike is an aliquot of matrix fortified (spiked) with known quantities of specific analytes that is subjected to the entire analytical procedures in order to determine the effect of the matrix on an approved test method's recovery system. The acceptable recovery range is listed in the QC Package (provided upon request).
- MSD Matrix spike duplicate means a replicate matrix spike that is prepared and analyzed in order to determine the precision of the approved test method. The acceptable recovery range is listed in the QC Package (provided upon request).
- MW Molecular weight
- ND Not Detected at the Reporting Limit

NELAP NELAP Accredited

- PQL Practical quantitation limit means the lowest level that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operation conditions. The acceptable recovery range is listed in the QC Package (provided upon request).
- RL The reporting limit the lowest level that the data is displayed in the final report. The reporting limit may vary according to customer request or sample dilution. The reporting limit may not be less than the MDL.
- RPD Relative percent difference is a calculated difference between two recoveries (ie. MS/MSD). The acceptable recovery limit is listed in the QC Package (provided upon request).
- SPK The spike is a known mass of target analyte added to a blank sample or sub-sample; used to determine recovery deficiency or for other quality control purposes.
- Surr Surrogates are compounds which are similar to the analytes of interest in chemical composition and behavior in the analytical process, but which are not normally found in environmental samples.
- TIC Tentatively identified compound: Analytes tentatively identified in the sample by using a library search. Only results not in the calibration standard will be reported as tentatively identified compounds. Results for tentatively identified compounds that are not present in the calibration standard, but are assigned a specific chemical name based upon the library search, are calculated using total peak areas from reconstructed ion chromatograms and a response factor of one. The nearest Internal Standard is used for the calculation. The results of any TICs must be considered estimated, and are flagged with a "T". If the estimated result is above the calibration range it is flagged "ET"
- TNTC Too numerous to count (> 200 CFU)

Qualifiers

- # Unknown hydrocarbon
- E Value above quantitation range
- I Associated internal standard was outside method criteria
- M Manual Integration used to determine area response
- R RPD outside accepted recovery limits
- T TIC(Tentatively identified compound)

- B Analyte detected in associated Method Blank
- H Holding times exceeded
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
 - S Spike Recovery outside recovery limits
 - X Value exceeds Maximum Contaminant Level

Case Narrative

http://www.teklabinc.com/

Client: Trihydro Corporation Work Order: 16030420 Client Project: Soil Vapor System Report Date: 08-Mar-16

Cooler Receipt Temp: 5.22 °C

Collinsville

Missouri

Oklahoma

5445 Horseshoe Lake Road

Address

Locations and Accreditations

Kansas City

8421 Nieman Road

Collinsville Air

5445 Horseshoe Lake Road

Collinsville

Collinsville

5/31/2017

8/31/2016

Springfield

MDNR

ODEQ

3920 Pintail Dr

Phone Fax Email	Collinsville, IL 62234-7425 (618) 344-1004 (618) 344-1005 jhriley@teklabinc.com	Springfield, IL 62' (217) 698-1004 (217) 698-1005 KKlostermann@te		(913) 54 (913) 54	KS 66214 41-1998 41-1998 son@teklabinc.c	(Collinsville, IL 62234-7425 (618) 344-1004 (618) 344-1005 EHurley@teklabinc.com	
	State	Dept	Cert #		NELAP	Exp Date	Lab	
	Illinois	IEPA	100226		NELAP	1/31/2017	Collinsville	
	Kansas	KDHE	E-10374		NELAP	5/31/2016	Collinsville	
	Louisiana	LDEQ	166493		NELAP	6/30/2016	Collinsville	
	Louisiana	LDEQ	166578		NELAP	6/30/2016	Collinsville	
	Texas	TCEQ	T104704515	12-1	NELAP	7/31/2016	Collinsville	
	Arkansas	ADEQ	88-0966			3/14/2017	Collinsville	
	Illinois	IDPH	17584			5/31/2017	Collinsville	
	Kentucky	KDEP	98006			12/31/2016	Collinsville	
	Kentucky	UST	0073			1/31/2017	Collinsville	

00930

9978

http://www.teklabinc.com/

Client: Trihydro Corporation Work Order: 16030420

Client Project: Soil Vapor System Report Date: 08-Mar-16

Lab ID: 16030420-001 Client Sample ID: Tank 3

Matrix: AQUEOUS Collection Date: 03/07/2016 8:30

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Batch
SW-846 1020B								
Ignitability, Closed Cup	NELAP	60		>200	°F	1	03/07/2016 12:57	R215657
SW-846 3005A, 6010B, META	LS BY ICP (TOTAL	.)						
Lead	NELAP	0.0150		0.0293	mg/L	1	03/08/2016 8:29	116922
SW-846 3510C, 8270C SIMS,	SEMI-VOLATILE O	RGANIC COM	(POUND	S BY GC/MS				
1-Methylnaphthalene		0.00050		0.00240	mg/L	5	03/08/2016 10:40	116925
Acenaphthene	NELAP	0.00050		0.00050	mg/L	5	03/08/2016 10:40	116925
Acenaphthylene	NELAP	0.00050		ND	mg/L	5	03/08/2016 10:40	116925
Anthracene	NELAP	0.00050		0.00100	mg/L	5	03/08/2016 10:40	116925
Benzo(a)anthracene	NELAP	0.00050		ND	mg/L	5	03/08/2016 10:40	116925
Benzo(a)pyrene	NELAP	0.00050		ND	mg/L	5	03/08/2016 10:40	116925
Benzo(b)fluoranthene	NELAP	0.00050		ND	mg/L	5	03/08/2016 10:40	116925
Benzo(g,h,i)perylene	NELAP	0.00050		ND	mg/L	5	03/08/2016 10:40	116925
Benzo(k)fluoranthene	NELAP	0.00050		ND	mg/L	5	03/08/2016 10:40	116925
Chrysene	NELAP	0.00050		ND	mg/L	5	03/08/2016 10:40	116925
Dibenzo(a,h)anthracene	NELAP	0.00050		ND	mg/L	5	03/08/2016 10:40	116925
Fluoranthene	NELAP	0.00050		ND	mg/L	5	03/08/2016 10:40	116925
Fluorene	NELAP	0.00050		0.00095	mg/L	5	03/08/2016 10:40	116925
Indeno(1,2,3-cd)pyrene	NELAP	0.00050		ND	mg/L	5	03/08/2016 10:40	116925
Naphthalene	NELAP	0.00050		0.00100	mg/L	5	03/08/2016 10:40	116925
Phenanthrene	NELAP	0.00050		0.00075	mg/L	5	03/08/2016 10:40	116925
Pyrene	NELAP	0.00050		0.00210	mg/L	5	03/08/2016 10:40	116925
Surr: 2-Fluorobiphenyl		10-143		60.5	%REC	5	03/08/2016 10:40	116925
Surr: Nitrobenzene-d5		10-166		54.5	%REC	5	03/08/2016 10:40	116925
Surr: p-Terphenyl-d14		10-137		61.0	%REC	5	03/08/2016 10:40	116925
Elevated reporting limit due to san	nple extract compositio	n.						
SW-846 5030, 8260B, VOLAT	ILE ORGANIC CON	IPOUNDS BY	GC/MS					
1,1,1,2-Tetrachloroethane	NELAP	5.0		ND	μg/L	1	03/08/2016 12:10	116960
1,1,1-Trichloroethane	NELAP	5.0		ND	μg/L	1	03/08/2016 12:10	116960
1,1,2,2-Tetrachloroethane	NELAP	5.0		ND	μg/L	1	03/08/2016 12:10	116960
1,1,2-Trichloro-1,2,2-trifluoroetha	nne	20.0		ND	μg/L	1	03/08/2016 12:10	116960
1,1,2-Trichloroethane	NELAP	5.0		ND	μg/L	1	03/08/2016 12:10	116960
1,1-Dichloro-2-propanone		50.0		ND	μg/L	1	03/08/2016 12:10	116960
1,1-Dichloroethane	NELAP	5.0		ND	μg/L	1	03/08/2016 12:10	116960
1,1-Dichloroethene	NELAP	5.0		ND	μg/L	1	03/08/2016 12:10	
1,1-Dichloropropene	NELAP	5.0		ND	μg/L	1	03/08/2016 12:10	
1,2,3-Trichlorobenzene	NELAP	5.0		ND	μg/L	1	03/08/2016 12:10	
1,2,3-Trichloropropane	NELAP	5.0		ND	μg/L	1	03/08/2016 12:10	
1,2,3-Trimethylbenzene		5.0		10.0	μg/L	1	03/08/2016 12:10	
1,2,4-Trichlorobenzene	NELAP	5.0		ND	μg/L	1	03/08/2016 12:10	
1,2,4-Trimethylbenzene	NELAP	5.0		5.8	μg/L	1	03/08/2016 12:10	
1,2-Dibromo-3-chloropropane	NELAP	5.0		ND	μg/L	1	03/08/2016 12:10	
1,2-Dibromoethane	NELAP	5.0		ND	μg/L	1	03/08/2016 12:10	
1,2-Dichlorobenzene	NELAP	5.0		ND	μg/L	1	03/08/2016 12:10	
1,2-Dichloroethane	NELAP	5.0		ND	μg/L	1	03/08/2016 12:10	
1,2-Dichloropropane	NELAP	5.0		ND	μg/L	1	03/08/2016 12:10	
1,3,5-Trimethylbenzene	NELAP	5.0	J	4.8	μg/L	1	03/08/2016 12:10	
1,3-Dichlorobenzene	NELAP	5.0		ND	μg/L	1	03/08/2016 12:10	116960

http://www.teklabinc.com/

Client: Trihydro Corporation Work Order: 16030420
Client Project: Soil Vapor System Report Date: 08-Mar-16

Matrix: AQUEOUS Collection Date: 03/07/2016 8:30

Mairix. AQULOUS				Concention	Date. 03/	0//2010	0.30	
Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Batch
SW-846 5030, 8260B, VOL	ATILE ORGANIC COMPO	OUNDS BY	GC/MS					
1,3-Dichloropropane	NELAP	5.0		ND	μg/L	1	03/08/2016 12:10	116960
1,4-Dichlorobenzene	NELAP	5.0		ND	μg/L	1	03/08/2016 12:10	116960
1-Chlorobutane	NELAP	5.0		ND	μg/L	1	03/08/2016 12:10	116960
2,2-Dichloropropane	NELAP	5.0		ND	μg/L	1	03/08/2016 12:10	116960
2-Butanone	NELAP	25.0		ND	μg/L	1	03/08/2016 12:10	116960
2-Chloroethyl vinyl ether	NELAP	20.0		ND	μg/L	1	03/08/2016 12:10	116960
2-Chlorotoluene	NELAP	5.0		ND	μg/L	1	03/08/2016 12:10	116960
2-Hexanone	NELAP	25.0		ND	μg/L	1	03/08/2016 12:10	116960
2-Nitropropane	NELAP	50.0		ND	μg/L	1	03/08/2016 12:10	116960
4-Chlorotoluene	NELAP	5.0		ND	μg/L	1	03/08/2016 12:10	116960
4-Methyl-2-pentanone	NELAP	25.0		ND	μg/L	1	03/08/2016 12:10	116960
Acetone	NELAP	25.0	J	8.3	μg/L	1	03/08/2016 12:10	116960
Acetonitrile	NELAP	50.0		ND	μg/L	1	03/08/2016 12:10	116960
Acrolein	NELAP	100		ND	μg/L	1	03/08/2016 12:10	116960
Acrylonitrile	NELAP	5.0		ND	μg/L	1	03/08/2016 12:10	116960
Allyl chloride	NELAP	5.0		ND	μg/L	1	03/08/2016 12:10	116960
Benzene	NELAP	2.0	J	0.6	μg/L	1	03/08/2016 12:10	116960
Bromobenzene	NELAP	5.0		ND	μg/L	1	03/08/2016 12:10	116960
Bromochloromethane	NELAP	5.0		ND	μg/L	1	03/08/2016 12:10	116960
Bromodichloromethane	NELAP	5.0		ND	μg/L	1	03/08/2016 12:10	116960
Bromoform	NELAP	5.0		ND	μg/L	1	03/08/2016 12:10	116960
Bromomethane	NELAP	10.0		ND	μg/L	1	03/08/2016 12:10	116960
Carbon disulfide	NELAP	5.0		ND	μg/L	1	03/08/2016 12:10	116960
Carbon tetrachloride	NELAP	5.0		ND	μg/L	1	03/08/2016 12:10	116960
Chlorobenzene	NELAP	5.0		ND	μg/L	1	03/08/2016 12:10	116960
Chloroethane	NELAP	10.0		ND	μg/L	1	03/08/2016 12:10	116960
Chloroform	NELAP	5.0		ND	μg/L	1	03/08/2016 12:10	116960
Chloromethane	NELAP	10.0		ND	μg/L	1	03/08/2016 12:10	116960
Chloroprene	NELAP	20.0		ND	μg/L	1	03/08/2016 12:10	116960
cis-1,2-Dichloroethene	NELAP	5.0		ND	μg/L	1	03/08/2016 12:10	116960
cis-1,3-Dichloropropene	NELAP	5.0		ND	μg/L	1	03/08/2016 12:10	116960
cis-1,4-Dichloro-2-butene	NELAP	5.0		ND	μg/L	1	03/08/2016 12:10	
Cyclohexanone		50.0		ND	μg/L	1	03/08/2016 12:10	
Dibromochloromethane	NELAP	5.0		ND	μg/L	1	03/08/2016 12:10	
Dibromomethane	NELAP	5.0		ND	μg/L	1	03/08/2016 12:10	
Dichlorodifluoromethane	NELAP	10.0		ND	μg/L	1	03/08/2016 12:10	
Ethyl acetate	NELAP	10.0		ND	μg/L	1	03/08/2016 12:10	
Ethyl ether	NELAP	5.0		ND	μg/L	1	03/08/2016 12:10	
Ethyl methacrylate	NELAP	5.0		ND	μg/L	1	03/08/2016 12:10	
Ethylbenzene	NELAP	5.0		ND	μg/L	1	03/08/2016 12:10	
Hexachlorobutadiene	NELAP	5.0		ND	μg/L	1	03/08/2016 12:10	
Hexachloroethane	NELAP	10.0		ND	μg/L 	1	03/08/2016 12:10	
lodomethane	NELAP	5.0	J	2.7	μg/L	1	03/08/2016 12:10	
Isopropylbenzene	NELAP	5.0		ND	μg/L 	1	03/08/2016 12:10	
m,p-Xylenes	NELAP	5.0		6.9	μg/L	1	03/08/2016 12:10	
Methacrylonitrile	NELAP	10.0		ND	μg/L	1	03/08/2016 12:10	
Methyl Methacrylate	NELAP	5.0		ND	μg/L	1	03/08/2016 12:10	116960

http://www.teklabinc.com/

Client: Trihydro Corporation Work Order: 16030420

Client Project: Soil Vapor System Report Date: 08-Mar-16

Matrix: AQUEOUS Collection Date: 03/07/2016 8:30

Maurix. AQUEOUS				Conceion	Date. 03/	07/2010	0.50	
Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Batch
SW-846 5030, 8260B, VOLATI	LE ORGANIC COM	POUNDS BY	GC/MS					
Methyl tert-butyl ether	NELAP	2.0		ND	μg/L	1	03/08/2016 12:10	116960
Methylacrylate	NELAP	10.0		ND	μg/L	1	03/08/2016 12:10	116960
Methylene chloride	NELAP	5.0		ND	μg/L	1	03/08/2016 12:10	116960
Naphthalene	NELAP	10.0	J	6.3	μg/L	1	03/08/2016 12:10	116960
n-Butyl acetate		25.0		ND	μg/L	1	03/08/2016 12:10	116960
n-Butylbenzene	NELAP	5.0		ND	μg/L	1	03/08/2016 12:10	116960
n-Heptane		20.0		ND	μg/L	1	03/08/2016 12:10	116960
n-Hexane		20.0		ND	μg/L	1	03/08/2016 12:10	116960
Nitrobenzene	NELAP	50.0		ND	μg/L	1	03/08/2016 12:10	116960
n-Propylbenzene	NELAP	5.0		ND	μg/L	1	03/08/2016 12:10	116960
o-Xylene	NELAP	5.0	J	4.2	μg/L	1	03/08/2016 12:10	116960
Pentachloroethane	NELAP	20.0		ND	μg/L	1	03/08/2016 12:10	116960
p-Isopropyltoluene	NELAP	5.0		ND	μg/L	1	03/08/2016 12:10	116960
Propionitrile	NELAP	50.0		ND	μg/L	1	03/08/2016 12:10	116960
sec-Butylbenzene	NELAP	5.0		ND	μg/L	1	03/08/2016 12:10	116960
Styrene	NELAP	5.0		ND	μg/L	1	03/08/2016 12:10	116960
tert-Butylbenzene	NELAP	5.0		ND	μg/L	1	03/08/2016 12:10	116960
Tetrachloroethene	NELAP	5.0		ND	μg/L	1	03/08/2016 12:10	116960
Tetrahydrofuran	NELAP	20.0		ND	μg/L	1	03/08/2016 12:10	116960
Toluene	NELAP	5.0	J	1.0	μg/L	1	03/08/2016 12:10	116960
trans-1,2-Dichloroethene	NELAP	5.0		ND	μg/L	1	03/08/2016 12:10	116960
trans-1,3-Dichloropropene	NELAP	5.0		ND	μg/L	1	03/08/2016 12:10	116960
trans-1,4-Dichloro-2-butene	NELAP	10.0		ND	μg/L	1	03/08/2016 12:10	116960
Trichloroethene	NELAP	5.0		ND	μg/L	1	03/08/2016 12:10	116960
Trichlorofluoromethane	NELAP	5.0		ND	μg/L	1	03/08/2016 12:10	116960
Vinyl acetate	NELAP	10.0		ND	μg/L	1	03/08/2016 12:10	116960
Vinyl chloride	NELAP	2.0		ND	μg/L	1	03/08/2016 12:10	116960
Surr: 1,2-Dichloroethane-d4		74.7-129		98.6	%REC	1	03/08/2016 12:10	116960
Surr: 4-Bromofluorobenzene		86-119		100.0	%REC	1	03/08/2016 12:10	116960
Surr: Dibromofluoromethane		81.7-123		95.1	%REC	1	03/08/2016 12:10	116960
Surr: Toluene-d8		84.3-114		98.9	%REC	1	03/08/2016 12:10	116960

http://www.teklabinc.com/

Client: Trihydro Corporation Work Order: 16030420

Client Project: Soil Vapor System Report Date: 08-Mar-16

SW-846 1020B											
	ampType:	LCS		Units °F							
SampID: LCS-R215657							0DI/ D / / /	0/550		115 1 1 5 5	Date Analyzed
Analyses			RL	Qual			SPK Ref Val			High Limit	•
Ignitability, Closed Cu	p		60		82	81.00	0	101.2	97	103	03/07/2010
	атрТуре:	DUP		Units °F					RPD	Limit 5	
SampID: 16030382-001	IBDUP										Date
Analyses			RL	Qual		Spike	SPK Ref Val	%REC		/al %RPD	Analyzed
Ignitability, Closed Cu	p		60		131				136.0	3.75	03/07/2016
Batch R215657 Sa	ampType:	DUP		Units °F					RPD	Limit 5	
SampID: 16030382-004	1BDUP										Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref \	/al %RPD	Analyzed
Ignitability, Closed Cu	p		60		71				71.00	0.00	03/07/2010
Batch R215657 Sa	ampType:	DUP		Units °F					RPD	Limit 5	
SampID: 16030382-008	BDUP										Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref \	/al %RPD	Analyzed
Ignitability, Closed Cu	p		60		76				76.00	0.00	03/07/2016
Batch R215657 Sa	ampType:	DUP		Units °F					RPD	Limit 5	
SampID: 16030382-009	BDUP										Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref \	/al %RPD	Analyzed
Ignitability, Closed Cu	p		60		<60				0	0.00	03/07/2016
SW-846 3005A, 6010E	B, METAL	S BY I	CP (TO	ΓAL)							
	ampType:			Units mg/L							
SampID: MBLK-116922	2										Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Lead					- 0.0450.0	04500	0	0	-100	100	03/08/2016
			0.0150		< 0.0150 C).01500	Ü	U	-100	100	00/00/201
Batch 116922 Sa	ampType:	LCS	0.0150	Units mg/L	< 0.0150	7.01500	0	U	-100	100	00/00/2010
Batch 116922 Sa SampID: LCS-116922	атрТуре:	LCS	0.0150	Units mg/L	< 0.0150	J.01500	0	0	-100	100	Date
	атрТуре:	LCS	0.0150 RL	Units mg/L Qual			SPK Ref Val		Low Limit	High Limit	

Indeno(1,2,3-cd)pyrene

Surr: 2-Fluorobiphenyl

Surr: Nitrobenzene-d5

Surr: p-Terphenyl-d14

Naphthalene

Phenanthrene

Pyrene

0.00010

0.00010

0.00010

0.00010

Quality Control Results

http://www.teklabinc.com/

Client: Trihydro Corporation Work Order: 16030420
Client Project: Soil Vapor System Report Date: 08-Mar-16

Batch 116925 SampType	: MBLK	Units mg/L						
SampID: MBLK-116925								Date
Analyses	RL	Qual	Result Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyze
1-Methylnaphthalene	0.00010		ND					03/08/20
Acenaphthene	0.00010		ND					03/08/20
Acenaphthylene	0.00010		ND					03/08/20
Anthracene	0.00010		ND					03/08/20
Benzo(a)anthracene	0.00010		ND					03/08/20
Benzo(a)pyrene	0.00010		ND					03/08/20
Benzo(b)fluoranthene	0.00010		ND					03/08/20
Benzo(g,h,i)perylene	0.00010		ND					03/08/20
Benzo(k)fluoranthene	0.00010		ND					03/08/20
Chrysene	0.00010		ND					03/08/20
Dibenzo(a,h)anthracene	0.00010		ND					03/08/20
Fluoranthene	0.00010		ND					03/08/20
Fluorene	0.00010		ND					03/08/20
Indeno(1,2,3-cd)pyrene	0.00010		ND					03/08/20
Naphthalene	0.00010		ND					03/08/2
Phenanthrene	0.00010		ND					03/08/2
Pyrene	0.00010		ND					03/08/2
Surr: 2-Fluorobiphenyl			0.00306 0.005000		61.2	44.4	89.6	03/08/2
Surr: Nitrobenzene-d5			0.00286 0.005000		57.2	40.9	81.4	03/08/2
Surr: p-Terphenyl-d14			0.00367 0.005000		73.4	54.3	104	03/08/20
atch 116925 SampType	: LCS	Units mg/L						
ampID: LCS-116925								Date
Analyses	RL	Qual	Result Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyz
1-Methylnaphthalene	0.00010		0.00371 0.005000	0	74.2	38.8	96.6	03/08/2
Acenaphthene	0.00010		0.00381 0.005000	0	76.2	46.6	96.4	03/08/2
Acenaphthylene	0.00010		0.00378 0.005000	0	75.6	48.1	95.6	03/08/2
Anthracene	0.00010		0.00367 0.005000	0	73.4	53.2	95.9	03/08/2
Benzo(a)anthracene	0.00010		0.00404 0.005000	0	80.8	52.5	102	03/08/2
Benzo(a)pyrene	0.00010		0.00388 0.005000	0	77.6	55.1	103	03/08/2
Benzo(b)fluoranthene	0.00010		0.00363 0.005000	0	72.6	53.6	105	03/08/2
Benzo(g,h,i)perylene	0.00010		0.00413 0.005000	0	82.6	46.3	110	03/08/2
Benzo(k)fluoranthene	0.00010		0.00389 0.005000	0	77.8	53.8	104	03/08/2
Chrysene	0.00010		0.00426 0.005000	0	85.2	51	101	03/08/2
Dibenzo(a,h)anthracene	0.00010		0.00402).005000	0	80.4	49.4	110	03/08/2
								00/00/0
Fluoranthene	0.00010		0.00376 0.005000	0	75.2	54.5	99.5	03/08/2

0.00401 0.005000

0.00347 0.005000

0.00376 0.005000

0.00368 0.005000

0.00341 0.005000

0.00356 0.005000

0.00415 0.005000

0

0

0

0

80.2

69.4

75.2

73.6

68.2

71.2

83.0

48.6

39.8

52.2

53.4

44.4

40.9

54.3

110

93.1

95.9

99.1

89.6

81.4

104

03/08/2016

03/08/2016

03/08/2016

03/08/2016

03/08/2016

03/08/2016

03/08/2016

Surr: p-Terphenyl-d14

Quality Control Results

http://www.teklabinc.com/

Client: Trihydro Corporation Work Order: 16030420
Client Project: Soil Vapor System Report Date: 08-Mar-16

SW-846 3510C, 8270C SIMS, SEMI-VOLATILE ORGANIC COMPOUNDS BY GC/MS Batch 116925 SampType: LCSD Units mg/L RPD Limit 40 SampID: LCSD-116925 Date Analyzed Result Spike SPK Ref Val %REC RPD Ref Val %RPD RL Qual Analyses 1-Methylnaphthalene 0.00010 0.00311 0.005000 62.2 0.003710 03/08/2016 Acenaphthene 0.00010 0.00322 0.005000 0 64.4 0.003810 16.79 03/08/2016 63.6 Acenaphthylene 0.00010 0.00318 0.005000 0 0.003780 17.24 03/08/2016 Anthracene 0.00010 0.00313 0.005000 0 62.6 0.003670 15.88 03/08/2016 Benzo(a)anthracene 0.00010 0.00319 0.005000 0 63.8 0.004040 23.51 03/08/2016 65.0 Benzo(a)pyrene 0.00010 0.00325 0.005000 0 0.003880 17.67 03/08/2016 Benzo(b)fluoranthene 0.00010 0.00296 0.005000 0 59.2 0.003630 20.33 03/08/2016 Benzo(g,h,i)perylene 0.00010 0.00343 0.005000 0 68.6 0.004130 18.52 03/08/2016 67.0 14.92 Benzo(k)fluoranthene 0.00010 0.00335 0.005000 0 0.003890 03/08/2016 Chrysene 0.00010 0.00334).005000 0 66.8 0.004260 24.21 03/08/2016 66.8 Dibenzo(a,h)anthracene 0.00334 0.005000 0 0.004020 18.48 0.00010 03/08/2016 Fluoranthene 0.00010 0.00311 0.005000 0 62.2 0.003760 18.92 03/08/2016 Fluorene 65.0 17.93 0.00010 0.00325 0.005000 0 0.003890 03/08/2016 66.6 0.004010 18.53 Indeno(1,2,3-cd)pyrene 0.00010 0.00333 0.005000 0 03/08/2016 Naphthalene 0.00010 0.00294 0.005000 0 58.8 0.003470 16.54 03/08/2016 0.003760 Phenanthrene 0.00010 0.00315 0.005000 0 63.0 17.66 03/08/2016 Pyrene 0.00010 0.00304 0.005000 0 60.8 0.003680 19.05 03/08/2016 Surr: 2-Fluorobiphenyl 0.00271 0.005000 54.2 03/08/2016 Surr: Nitrobenzene-d5 0.00289 0.005000 57.8 03/08/2016

0.00335 0.005000

67.0

03/08/2016

http://www.teklabinc.com/

Client: Trihydro Corporation Work Order: 16030420

Client Project: Soil Vapor System Report Date: 08-Mar-16

SW-846 5030, 8260B, VOLATILE OI Batch 116960		Units µg/L	DI GC/IVIS)					
SampID: MBLK-T160308-1	-rv	Omio µg/L							Date
Analyses	RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
1,1,1,2-Tetrachloroethane	5.0		ND						03/08/2016
1,1,1-Trichloroethane	5.0		ND						03/08/2016
1,1,2,2-Tetrachloroethane	5.0		ND						03/08/2016
1,1,2-Trichloro-1,2,2-trifluoroethane	20.0		ND						03/08/2016
1,1,2-Trichloroethane	5.0		ND						03/08/2016
1,1-Dichloro-2-propanone	50.0		ND						03/08/2016
1,1-Dichloroethane	5.0		ND						03/08/2016
1,1-Dichloroethene	5.0		ND						03/08/2016
1,1-Dichloropropene	5.0		ND						03/08/2016
1,2,3-Trichlorobenzene	5.0		ND						03/08/2016
1,2,3-Trichloropropane	5.0		ND						03/08/2016
1,2,3-Trimethylbenzene	5.0		ND						03/08/2016
1,2,4-Trichlorobenzene	5.0		ND						03/08/2016
1,2,4-Trimethylbenzene	5.0		ND						03/08/2016
1,2-Dibromo-3-chloropropane	5.0		ND						03/08/2016
1,2-Dibromoethane	5.0		ND						03/08/2016
1,2-Dichlorobenzene	5.0		ND						03/08/2016
1,2-Dichloroethane	5.0		ND						03/08/2016
1,2-Dichloropropane	5.0		ND						03/08/2016
1,3,5-Trimethylbenzene	5.0		ND						03/08/2016
1,3-Dichlorobenzene	5.0		ND						03/08/2016
1,3-Dichloropropane	5.0		ND						03/08/2016
1,4-Dichlorobenzene	5.0		ND						03/08/2016
1-Chlorobutane	5.0		ND						03/08/2016
2,2-Dichloropropane	5.0		ND						03/08/2016
2-Butanone	25.0		ND						03/08/2016
2-Chloroethyl vinyl ether	20.0		ND						03/08/2016
2-Chlorotoluene	5.0		ND						03/08/2016
2-Hexanone	25.0		ND						03/08/2016
2-Nitropropane	50.0		ND						03/08/2016
4-Chlorotoluene	5.0		ND						03/08/2016
4-Methyl-2-pentanone	25.0		ND						03/08/2016
Acetone	25.0		ND						03/08/2016
Acetonic	50.0		ND						03/08/2016
Acrolein	100		ND						03/08/2016
Acrylonitrile	5.0		ND						03/08/2016
Allyl chloride	5.0		ND						03/08/2016
Benzene	2.0		ND ND						03/08/2016
Bromobenzene	5.0		ND						03/08/2016
Bromochloromethane	5.0								03/08/2016
Bromodichloromethane	5.0 5.0		ND ND						03/08/2016
Bromoform	5.0 5.0								03/08/2016
Bromomethane	10.0		ND ND						03/08/2016
			ND ND						
Carbon disulfide	5.0		ND ND						03/08/2016
Carbon tetrachloride	5.0		ND ND						03/08/2016
Chloropthone	5.0		ND ND						03/08/2016
Chloroethane	10.0		ND						03/08/2016

http://www.teklabinc.com/

Client: Trihydro Corporation Work Order: 16030420

SW-846 5030, 8260B, VOLATI	LE ORGANIC C	OMPOUNDS	BY GC/MS					
Batch 116960 SampType:	MBLK	Units µg/L						
SampID: MBLK-T160308-1								Date
Analyses	RL	Qual	Result Spik	e SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Chloroform	5.0	Q 0.002	ND	_				03/08/2016
Chloromethane	10.0		ND					03/08/2016
Chloroprene	20.0		ND					03/08/2016
cis-1,2-Dichloroethene	5.0		ND					03/08/2016
cis-1,3-Dichloropropene	5.0		ND					03/08/2016
cis-1,4-Dichloro-2-butene	5.0		ND					03/08/2016
Cyclohexanone	50.0		ND					03/08/2016
Dibromochloromethane	5.0		ND					03/08/2016
Dibromomethane	5.0		ND					03/08/2016
Dichlorodifluoromethane	10.0		ND					03/08/2016
Ethyl acetate	10.0		ND					03/08/2016
Ethyl ether	5.0		ND					03/08/2016
Ethyl methacrylate	5.0		ND					03/08/2016
Ethylbenzene	5.0		ND					03/08/2016
Hexachlorobutadiene	5.0		ND					03/08/2016
Hexachloroethane	10.0		ND					03/08/2016
Iodomethane	5.0	J	2.7					03/08/2016
Isopropylbenzene	5.0		ND					03/08/2016
m,p-Xylenes	5.0		ND					03/08/2016
Methacrylonitrile	10.0		ND					03/08/2016
Methyl Methacrylate	5.0		ND					03/08/2016
Methyl tert-butyl ether	2.0		ND					03/08/2016
Methylacrylate	10.0		ND					03/08/2016
Methylene chloride	5.0		ND					03/08/2016
Naphthalene	10.0		ND					03/08/2016
n-Butyl acetate	25.0		ND					03/08/2016
n-Butylbenzene	5.0		ND					03/08/2016
n-Heptane	20.0		ND					03/08/2016
n-Hexane	20.0		ND					03/08/2016
Nitrobenzene	50.0		ND					03/08/2016
n-Propylbenzene	5.0		ND					03/08/2016
o-Xylene	5.0		ND					03/08/2016
Pentachloroethane	20.0		ND					03/08/2016
p-Isopropyltoluene	5.0		ND					03/08/2016
Propionitrile	50.0		ND					03/08/2016
sec-Butylbenzene	5.0		ND					03/08/2016
Styrene	5.0		ND					03/08/2016
tert-Butylbenzene	5.0		ND					03/08/2016
Tetrachloroethene	5.0		ND					03/08/2016
Tetrahydrofuran	20.0		ND					03/08/2016
Toluene	5.0		ND					03/08/2016
trans-1,2-Dichloroethene	5.0		ND					03/08/2016
trans-1,3-Dichloropropene	5.0		ND					03/08/2016
trans-1,4-Dichloro-2-butene	10.0		ND					03/08/2016
Trichloroethene	5.0		ND					03/08/2016
Trichlorofluoromethane	5.0		ND					03/08/2016
Vinyl acetate	10.0		ND					03/08/2016

http://www.teklabinc.com/

Client: Trihydro Corporation Work Order: 16030420
Client Project: Soil Vapor System Report Date: 08-Mar-16

SW-846 5030, 8260B, VOLATILE ORGANIC COMPOUNDS BY GC/MS													
Batch 116960 SampType:	MBLK	Units µg/L											
SampID: MBLK-T160308-1									Date				
Analyses	RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed				
Vinyl chloride	2.0		ND						03/08/2016				
Surr: 1,2-Dichloroethane-d4			49.6	50.00		99.1	74.7	129	03/08/2016				
Surr: 4-Bromofluorobenzene			50.0	50.00		100.1	86	119	03/08/2016				
Surr: Dibromofluoromethane			47.3	50.00		94.6	81.7	123	03/08/2016				
Surr: Toluene-d8			50.2	50.00		100.4	84.3	114	03/08/2016				

http://www.teklabinc.com/

Client: Trihydro Corporation Work Order: 16030420

W-846 5030, 8260B, VOLATILE OI atch 116960 SampType: LCS		Units µg/L	<u> </u>			RPD Lir	mit 40	
amplD: LCSD-T160308-1	.5	ormo µg/L				141 5 2.11	40	Date
Analyses	RL	Qual Result	Spike	SPK Ref Val	%REC	RPD Ref Val	%RPD	Analyze
1,1,1,2-Tetrachloroethane	5.0	51.2	50.00	0	102.3	49.95	2.39	03/08/201
1,1,1-Trichloroethane	5.0	49.4	50.00	0	98.9	47.47	4.09	03/08/201
1,1,2,2-Tetrachloroethane	5.0	46.6	50.00	0	93.1	47.35	1.70	03/08/201
1,1,2-Trichloro-1,2,2-trifluoroethane	20.0	45.6	50.00	0	91.2	43.21	5.43	03/08/201
1,1,2-Trichloroethane	5.0	49.2	50.00	0	98.3	48.67	0.98	03/08/20
1,1-Dichloro-2-propanone	50.0	92.6	125.0	0	74.1	95.19	2.73	03/08/20
1,1-Dichloroethane	5.0	51.7	50.00	0	103.4	50.70	1.97	03/08/20
1,1-Dichloroethene	5.0	47.5	50.00	0	95.0	45.23	4.85	03/08/20
1,1-Dichloropropene	5.0	48.9	50.00	0	97.8	46.66	4.65	03/08/20
1,2,3-Trichlorobenzene	5.0	46.0	50.00	0	92.0	45.39	1.33	03/08/20
1,2,3-Trichloropropane	5.0	43.5	50.00	0	87.1	43.53	0.00	03/08/20
1,2,3-Trimethylbenzene	5.0	50.4	50.00	0	100.8	48.66	3.55	03/08/20
1,2,4-Trichlorobenzene	5.0	46.9	50.00	0	93.8	45.86	2.28	03/08/20
1,2,4-Trimethylbenzene	5.0	51.9	50.00	0	103.8	49.59	4.53	03/08/20
1,2-Dibromo-3-chloropropane	5.0	38.2	50.00	0	76.4	39.67	3.75	03/08/20
1,2-Dibromoethane	5.0	47.7	50.00	0	95.5	48.57	1.74	03/08/20
1,2-Dichlorobenzene	5.0	47.0	50.00	0	93.9	45.48	3.22	03/08/20
1,2-Dichloroethane	5.0	48.6	50.00	0	97.3	47.48	2.41	03/08/20
1,2-Dichloropropane	5.0	48.8	50.00	0	97.5	48.11	1.36	03/08/20
1,3,5-Trimethylbenzene	5.0	52.2		0	104.4	49.76	4.77	03/08/20
1,3-Dichlorobenzene	5.0	48.8	50.00	0	97.6	46.84	4.08	03/08/20
1,3-Dichloropropane	5.0	47.6	50.00	0	95.3	47.90	0.54	03/08/20
1,4-Dichlorobenzene	5.0	48.2	50.00	0	96.5	46.70	3.22	03/08/20
1-Chlorobutane	5.0	48.7	50.00	0	97.5	46.81	4.04	03/08/20
2,2-Dichloropropane	5.0	52.0	50.00	0	104.1	50.49	3.00	03/08/20
2-Butanone	25.0	93.1	125.0	0	74.5	99.53	6.69	03/08/20
2-Chloroethyl vinyl ether	20.0	50.4	50.00	0	100.8	51.81	2.74	03/08/20
2-Chlorotoluene	5.0	50.6	50.00	0	101.2	48.74	3.71	03/08/20
2-Hexanone	25.0	104	125.0	0	82.9	108.8	4.83	03/08/20
2-Nitropropane	50.0	441	500.0	0	88.1	464.3	5.23	03/08/20
4-Chlorotoluene	5.0	51.5	50.00	0	103.1	49.18	4.67	03/08/20
4-Methyl-2-pentanone	25.0		125.0	0	84.2	109.6	4.05	03/08/20
Acetone	25.0	89.1	125.0	0	71.3	97.12	8.61	03/08/20
Acetonitrile	50.0	388	500.0	0	77.6	407.9	5.05	03/08/20
Acrolein	100	424	500.0	0	84.8	461.8	8.52	03/08/20
Acrylonitrile	5.0	40.8	50.00	0	81.6	43.62	6.71	03/08/20
Allyl chloride	5.0	50.8	50.00	0	101.6	49.93	1.73	03/08/20
Benzene	2.0	48.1	50.00	0	96.2	46.76	2.78	03/08/20
Bromobenzene	5.0	49.0	50.00	0	98.0	48.72	0.59	03/08/20
Bromochloromethane	5.0	50.0	50.00	0	99.9	48.47	3.05	03/08/20
Bromodichloromethane	5.0		50.00		99.7	49.20		03/08/20
Bromoform	5.0 5.0	49.8		0 0	96.3	49.20 48.64	1.29 0.99	03/08/20
			50.00					
Bromomethane	10.0	39.5	50.00	0	79.0	35.50	10.69	03/08/20
Carbon disulfide	5.0		50.00	0	91.4	43.56	4.84	03/08/20
Carbon tetrachloride	5.0	50.0	50.00	0	100.0	47.55	5.00	03/08/20
Chlorobenzene	5.0		50.00	0	97.2	47.23	2.84	03/08/20
Chloroethane	10.0	42.2	50.00	0	84.4	40.62	3.82	03/08/20

http://www.teklabinc.com/

Client: Trihydro Corporation Work Order: 16030420

atch 116960 SampType:		OMPOUNDS BY GC/M: Units µg/L	_			RPD Lir	nit 40	
ampID: LCSD-T160308-1	1002	μg/=				2	10	Date
Analyses	RL	Qual Result	Spike	SPK Ref Val	%REC	RPD Ref Val	%RPD	Analyzed
Chloroform	5.0	48.6	50.00	0	97.1	46.97	3.35	03/08/2010
Chloromethane	10.0	42.8	50.00	0	85.6	42.20	1.41	03/08/2010
Chloroprene	20.0	49.1	50.00	0	98.1	47.33	3.61	03/08/2010
cis-1,2-Dichloroethene	5.0	49.7	50.00	0	99.4	48.15	3.19	03/08/2010
cis-1,3-Dichloropropene	5.0	50.8	50.00	0	101.5	49.94	1.63	03/08/2010
cis-1,4-Dichloro-2-butene	5.0	52.6	50.00	0	105.2	53.23	1.23	03/08/201
Cyclohexanone	50.0	344	500.0	0	68.8	356.7	3.58	03/08/201
Dibromochloromethane	5.0	51.9	50.00	0	103.7	50.80	2.08	03/08/201
Dibromomethane	5.0	45.6	50.00	0	91.2	45.35	0.55	03/08/201
Dichlorodifluoromethane	10.0	33.2	50.00	0	66.5	31.59	5.12	03/08/201
Ethyl acetate	10.0	40.6	50.00	0	81.3	41.82	2.84	03/08/201
Ethyl ether	5.0	45.9	50.00	0	91.7	44.74	2.47	03/08/201
Ethyl methacrylate	5.0	49.8	50.00	0	99.6	50.36	1.10	03/08/201
Ethylbenzene	5.0	49.2	50.00	0	98.4	47.74	3.05	03/08/201
Hexachlorobutadiene	5.0	46.3	50.00	0	92.5	45.13	2.47	03/08/201
Hexachloroethane	10.0	49.7	50.00		92.5	45.13 47.42	4.70	03/08/201
	5.0		50.00	0				
Iodomethane		44.2	50.00	0	88.3 107.2	41.33	6.62	03/08/201
Isopropylbenzene	5.0	53.6		0		51.88	3.28	03/08/201
m,p-Xylenes	5.0	103	100.0	0	102.9	99.79	3.04	03/08/201
Methacrylonitrile	10.0	43.2	50.00	0	86.5	43.59	0.83	03/08/201
Methyl Methacrylate	5.0	47.0	50.00	0	94.1	48.14	2.31	03/08/201
Methyl tert-butyl ether	2.0	48.1	50.00	0	96.2	47.50	1.28	03/08/201
Methylacrylate	10.0	43.8	50.00	0	87.7	46.10	5.00	03/08/201
Methylene chloride	5.0	47.9	50.00	0	95.8	46.95	2.04	03/08/201
Naphthalene	10.0	44.4	50.00	0	88.7	45.00	1.43	03/08/201
n-Butyl acetate	25.0	46.9	50.00	0	93.9	47.65	1.50	03/08/201
n-Butylbenzene	5.0	49.7	50.00	0	99.3	47.60	4.24	03/08/201
n-Heptane	20.0	53.3	50.00	0	106.6	51.42	3.61	03/08/201
n-Hexane	20.0	49.9	50.00	0	99.7	48.08	3.65	03/08/201
Nitrobenzene	50.0	318	500.0	0	63.5	335.5	5.49	03/08/201
n-Propylbenzene	5.0	51.5	50.00	0	103.0	49.39	4.16	03/08/201
o-Xylene	5.0	49.4		0	98.8	48.30	2.27	03/08/201
Pentachloroethane	20.0	51.4	50.00	0	102.8	49.97	2.78	03/08/201
p-Isopropyltoluene	5.0	52.1	50.00	0	104.2	49.67	4.81	03/08/201
Propionitrile	50.0	380	500.0	0	76.0	401.5	5.47	03/08/201
sec-Butylbenzene	5.0	51.8	50.00	0	103.6	49.35	4.86	03/08/201
Styrene	5.0	54.0	50.00	0	108.1	52.36	3.14	03/08/201
tert-Butylbenzene	5.0	51.1	50.00	0	102.2	49.10	4.01	03/08/201
Tetrachloroethene	5.0	50.0	50.00	0	99.9	47.86	4.27	03/08/201
Tetrahydrofuran	20.0	36.9	50.00	0	73.8	39.69	7.29	03/08/201
Toluene	5.0	48.4	50.00	0	96.8	47.04	2.89	03/08/201
trans-1,2-Dichloroethene	5.0	49.4	50.00	0	98.8	47.82	3.29	03/08/201
trans-1,3-Dichloropropene	5.0	51.7	50.00	0	103.4	51.64	0.15	03/08/201
trans-1,4-Dichloro-2-butene	10.0	47.8	50.00	0	95.5	48.68	1.93	03/08/201
Trichloroethene	5.0	47.6	50.00	0	95.3	46.05	3.39	03/08/201
Trichlorofluoromethane	5.0	46.4	50.00	0	92.8	44.07	5.13	03/08/201
Vinyl acetate	10.0	52.1		0	104.2	54.42	4.39	03/08/201

http://www.teklabinc.com/

Client: Trihydro Corporation Work Order: 16030420
Client Project: Soil Vapor System Report Date: 08-Mar-16

SW-846 5030, 8260B, VOLATILE ORGANIC COMPOUNDS BY GC/MS													
Batch 116960 SampType:	LCSD		Units µg/L					RPD Li	mit 40				
SampID: LCSD-T160308-1										Date			
Analyses		RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref Val	%RPD	Analyzed			
Vinyl chloride		2.0		44.1	50.00	0	88.2	42.15	4.54	03/08/2016			
Surr: 1,2-Dichloroethane-d4				51.2	50.00		102.4			03/08/2016			
Surr: 4-Bromofluorobenzene				51.2	50.00		102.4			03/08/2016			
Surr: Dibromofluoromethane				48.3	50.00		96.6			03/08/2016			
Surr: Toluene-d8				50.0	50.00		100.0			03/08/2016			

http://www.teklabinc.com/

Client: Trihydro Corporation Work Order: 16030420

SW-846 5030, 8260B, VOLATILE OR	GANIC C	OMPOUNDS E	BY GC/M	S					
Batch 116960 SampType: LCS		Units µg/L							
SampID: LCS-T160308-1									Date
Analyses	RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
1,1,1,2-Tetrachloroethane	5.0		50.0		0	99.9	81.9	115	03/08/2016
1,1,1-Trichloroethane	5.0		47.5	50.00	0	94.9	79.4	124	03/08/2016
1,1,2,2-Tetrachloroethane	5.0		47.4	50.00	0	94.7	74.7	116	03/08/2016
1,1,2-Trichloro-1,2,2-trifluoroethane	20.0		43.2	50.00	0	86.4	72.9	121	03/08/2016
1,1,2-Trichloroethane	5.0		48.7	50.00	0	97.3	80.8	111	03/08/2016
1,1-Dichloro-2-propanone	50.0		95.2	125.0	0	76.2	66.3	130	03/08/2016
1,1-Dichloroethane	5.0		50.7	50.00	0	101.4	79.4	114	03/08/2016
1,1-Dichloroethene	5.0		45.2	50.00	0	90.5	74.1	117	03/08/2016
1,1-Dichloropropene	5.0		46.7	50.00	0	93.3	81.7	116	03/08/2016
1,2,3-Trichlorobenzene	5.0		45.4	50.00	0	90.8	79.7	118	03/08/2016
1,2,3-Trichloropropane	5.0		43.5	50.00	0	87.1	77.3	112	03/08/2016
1,2,3-Trimethylbenzene	5.0		48.7	50.00	0	97.3	79.9	119	03/08/2016
1,2,4-Trichlorobenzene	5.0		45.9	50.00	0	91.7	79.3	118	03/08/2016
1,2,4-Trimethylbenzene	5.0		49.6	50.00	0	99.2	78.7	115	03/08/2016
1,2-Dibromo-3-chloropropane	5.0		39.7	50.00	0	79.3	76	122	03/08/2016
1,2-Dibromoethane	5.0		48.6	50.00	0	97.1	80.8	114	03/08/2016
1,2-Dichlorobenzene	5.0		45.5	50.00	0	91.0	78.3	112	03/08/2016
1,2-Dichloroethane	5.0		47.5	50.00	0	95.0	70.6	118	03/08/2016
1,2-Dichloropropane	5.0		48.1	50.00	0	96.2	79.6	113	03/08/2016
1,3,5-Trimethylbenzene	5.0		49.8	50.00	0	99.5	77.5	115	03/08/2016
1,3-Dichlorobenzene	5.0		46.8	50.00	0	93.7	78.6	117	03/08/2016
1,3-Dichloropropane	5.0		47.9	50.00	0	95.8	78.8	112	03/08/2016
1,4-Dichlorobenzene	5.0		46.7	50.00	0	93.4	77.8	114	03/08/2016
1-Chlorobutane	5.0		46.8	50.00	0	93.6	78.6	115	03/08/2016
2,2-Dichloropropane	5.0		50.5	50.00	0	101.0	74.9	130	03/08/2016
2-Butanone	25.0		99.5	125.0	0	79.6	70.7	136	03/08/2016
2-Chloroethyl vinyl ether	20.0		51.8	50.00	0	103.6	52.5	145	03/08/2016
2-Chlorotoluene	5.0		48.7	50.00	0	97.5	77.4	114	03/08/2016
2-Hexanone	25.0		109	125.0	0	87.0	73.3	125	03/08/2016
2-Nitropropane	50.0		464	500.0	0	92.9	67.3	139	03/08/2016
4-Chlorotoluene	5.0		49.2	50.00	0	98.4	78.3	115	03/08/2016
4-Methyl-2-pentanone	25.0		110	125.0	0	87.7	76.3	122	03/08/2016
Acetone	25.0		97.1	125.0	0	77.7	56.4	147	03/08/2016
Acetonitrile	50.0		408	500.0	0	81.6	59.3	129	03/08/2016
Acrolein	100		462	500.0	0	92.4	1	201	03/08/2016
Acrylonitrile	5.0		43.6	50.00	0	87.2	74.1	128	03/08/2016
Allyl chloride	5.0		49.9	50.00	0	99.9	71.5	123	03/08/2016
Benzene	2.0		46.8	50.00	0	93.5	80	114	03/08/2016
Bromobenzene	5.0		48.7	50.00	0	97.4	73.2	118	03/08/2016
Bromochloromethane	5.0		48.5	50.00	0	96.9	73.3	121	03/08/2016
Bromodichloromethane	5.0		49.2	50.00	0	98.4	81.6	121	03/08/2016
Bromoform	5.0		48.6	50.00	0	97.3	83.1	127	03/08/2016
Bromomethane	10.0		35.5	50.00	0	71.0	44.4	154	03/08/2016
Carbon disulfide	5.0		43.6	50.00	0	87.1	73.2	118	03/08/2016
Carbon tetrachloride	5.0		47.6	50.00	0	95.1	79.4	130	03/08/2016
Chlorobenzene	5.0		47.2	50.00	0	94.5	81.4	110	03/08/2016
Chloroethane	10.0		40.6	50.00	0	81.2	52.1	137	03/08/2016

http://www.teklabinc.com/

Client: Trihydro Corporation Work Order: 16030420

tch 116960 SampType:	LCS	Units µg/L							
mpID: LCS-T160308-1		. •							Date
Analyses	RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyz
Chloroform	5.0	Quui	47.0	50.00	0	93.9	82.7	116	03/08/20
Chloromethane	10.0		42.2	50.00	0	84.4	48.2	144	03/08/20
Chloroprene	20.0		47.3	50.00	0	94.7	80.6	126	03/08/2
cis-1,2-Dichloroethene	5.0		48.2	50.00	0	96.3	78.2	116	03/08/2
cis-1,3-Dichloropropene	5.0		49.9	50.00	0	99.9	83	119	03/08/2
cis-1,4-Dichloro-2-butene	5.0		53.2	50.00	0	106.5	60.7	137	03/08/2
Cyclohexanone	50.0		357	500.0	0	71.3	54.2	145	03/08/2
Dibromochloromethane	5.0		50.8	50.00	0	101.6	81.2	121	03/08/2
Dibromomethane	5.0		45.4	50.00	0	90.7	78.3	118	03/08/2
Dichlorodifluoromethane	10.0		31.6	50.00	0	63.2	20.6	154	03/08/2
Ethyl acetate	10.0		41.8	50.00	0	83.6	73.1	116	03/08/2
Ethyl ether	5.0		44.7	50.00	0	89.5	75.2	109	03/08/2
Ethyl methacrylate	5.0		50.4		0	100.7	80.1	113	03/08/2
Ethylbenzene	5.0		47.7	50.00	0	95.5	77.2	113	03/08/2
Hexachlorobutadiene	5.0		45.1	50.00	0	90.3	77.3	123	03/08/2
Hexachloroethane	10.0		47.4		0	94.8	74.6	117	03/08/2
odomethane	5.0		41.3	50.00	0	82.7	61.3	140	03/08/2
sopropylbenzene	5.0		51.9	50.00	0	103.8	81.3	114	03/08/2
m,p-Xylenes	5.0		99.8	100.0	0	99.8	79.6	113	03/08/2
Methacrylonitrile	10.0		43.6	50.00	0	87.2	77.2	125	03/08/2
Methyl Methacrylate	5.0		48.1	50.00	0	96.3	74.2	121	03/08/2
Methyl tert-butyl ether	2.0		47.5	50.00	0	95.0	76.8	117	03/08/2
Methylacrylate	10.0		46.1	50.00	0	92.2	78.5	124	03/08/2
Methylene chloride	5.0		47.0	50.00	0	93.9	76 74.1	114	03/08/2
Naphthalene	10.0		45.0	50.00	0	90.0	77.9	122	03/08/2
n-Butyl acetate	25.0		47.6	50.00	0	95.3	77.9 74	120	03/08/2
n-Butylbenzene	5.0		47.6	50.00	0	95.2	74 71.1	120	03/08/2
•	20.0			50.00	0	102.8	67.4	120	03/08/2
n-Heptane n-Hexane	20.0		51.4 48.1	50.00	0	96.2	68.4	129	03/08/2
	50.0		335	500.0	0	67.1	37.9	181	03/08/2
Nitrobenzene	5.0			50.00	0	98.8			03/08/2
n-Propylbenzene	5.0		49.4	50.00	0	96.6	74.6 80.1	118 111	03/08/2
o-Xylene Pentachloroethane					0			117	
	20.0 5.0		50.0	50.00 50.00	0	99.9 99.3	78.8 77.6	117	03/08/2 03/08/2
o-Isopropyltoluene Propionitrile	50.0		49.7 402			80.3	77.0 72.9	137	03/08/2
•					0				03/08/2
sec-Butylbenzene	5.0		49.4		0	98.7 104.7	74.5	119	
Styrene	5.0		52.4		0		83.4	113	03/08/2
tert-Butylbenzene	5.0		49.1	50.00	0	98.2	75.9 70.5	114	03/08/2
Tetrachloroethene	5.0		47.9	50.00	0	95.7	72.5	125	03/08/2
Tetrahydrofuran	20.0		39.7	50.00	0	79.4	69.6	125	03/08/2
Toluene	5.0		47.0	50.00	0	94.1	77.5	113	03/08/2
trans-1,2-Dichloroethene	5.0		47.8	50.00	0	95.6	79 70	114	03/08/2
trans-1,3-Dichloropropene	5.0		51.6	50.00	0	103.3	78	115	03/08/2
trans-1,4-Dichloro-2-butene	10.0		48.7	50.00	0	97.4	63.3	128	03/08/2
Trichloroethene	5.0		46.0	50.00	0	92.1	84.4	114	03/08/2
Trichlorofluoromethane Vinyl acetate	5.0 10.0		44.1	50.00 50.00	0 0	88.1 108.8	75.2 64.5	132 127	03/08/2 03/08/2

http://www.teklabinc.com/

Client: Trihydro Corporation Work Order: 16030420

Batch 116960 SampType:	LCS		Units µg/L							
SampID: LCS-T160308-1										Date
Analyses		RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Vinyl chloride		2.0		42.2	50.00	0	84.3	58	134	03/08/2016
Surr: 1,2-Dichloroethane-d4				50.8	50.00		101.7	74.7	129	03/08/2016
Surr: 4-Bromofluorobenzene				50.7	50.00		101.5	86	119	03/08/2016
Surr: Dibromofluoromethane				48.2	50.00		96.5	81.7	123	03/08/2016
Surr: Toluene-d8				50.0	50.00		100.0	84.1	114	03/08/2016

Batch 116960 SampType:	MS	Units mg/L							
SampID: 16030387-001AMS									Date
Analyses	RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
1,1-Dichloroethene	0.500		4.80	5.000	0	96.1	61.3	123	03/08/201
1,2-Dichloroethane	0.500		4.87	5.000	0	97.4	71.5	116	03/08/2010
1,4-Dichlorobenzene	0.500		4.66	5.000	0	93.3	76.9	113	03/08/2010
2-Butanone	2.50		3.58	5.000	0	71.7	64.1	132	03/08/2010
Benzene	0.200		4.85	5.000	0.05100	96.1	81.5	113	03/08/201
Carbon tetrachloride	0.500		4.74	5.000	0	94.9	55.5	125	03/08/2010
Chlorobenzene	0.500		4.91	5.000	0	98.2	81.8	111	03/08/201
Chloroform	0.500		4.65	5.000	0	93.1	81	115	03/08/2010
Tetrachloroethene	0.500		4.72	5.000	0	94.3	61.7	114	03/08/2010
Trichloroethene	0.500		4.80	5.000	0	96.0	74.4	117	03/08/2010
Vinyl chloride	0.200		5.01	5.000	0	100.2	45.7	130	03/08/2010
Surr: 1,2-Dichloroethane-d4			5.03	5.000		100.5	74.7	129	03/08/201
Surr: 4-Bromofluorobenzene			5.01	5.000		100.2	86	119	03/08/201
Surr: Dibromofluoromethane			4.74	5.000		94.8	81.7	123	03/08/201
Surr: Toluene-d8			4.96	5.000		99.2	84.3	114	03/08/2016

Client: Trihydro Corporation

Receiving Check List

http://www.teklabinc.com/

Work Order: 16030420

Client Project: Soil Vapor System Report Date: 08-Mar-16 Carrier: Nick Harvey Received By: AMD Elizabeth a thurley 1. Kaminski Reviewed by: Completed by: On: On: 07-Mar-16 07-Mar-16 Elizabeth A. Hurley 0 Chain of custody Extra pages included Pages to follow: Shipping container/cooler in good condition? Yes 🗸 No Not Present Temp °C 5.22 Type of thermal preservation? Ice 🗹 Blue Ice None Dry Ice **~** No 🗀 Chain of custody present? Yes **~** Chain of custody signed when relinquished and received? Yes No __ Yes 🗹 Chain of custody agrees with sample labels? No __ Yes 🗹 Samples in proper container/bottle? No 🗀 Yes 🗹 No 🗌 Sample containers intact? Sufficient sample volume for indicated test? Yes 🗸 No Yes 🗹 All samples received within holding time? No NA 🗸 Field _ Lab 🗌 Reported field parameters measured: Yes 🗹 Container/Temp Blank temperature in compliance? No 🗀 When thermal preservation is required, samples are compliant with a temperature between 0.1°C - 6.0°C, or when samples are received on ice the same day as collected. Yes 🗸 No VOA vials Water – at least one vial per sample has zero headspace? No 🗀 Yes No 🗌 No TOX containers Water - TOX containers have zero headspace? Yes 🗹 No 🗌 Water - pH acceptable upon receipt? NA 🗸 NPDES/CWA TCN interferences checked/treated in the field? Yes No 🗌 Any No responses must be detailed below or on the COC.

CHAIN OF CUSTODY

pg. ____ of ____

Work order # 10030-20

TEKLAB, INC. 5445 Horseshoe Lake Road - Collinsville, IL 62234 - Phone: (618) 344-1004 - Fax: (618) 344-1005

	71.1.0		·							Т						<u></u>	[····	BLU	F 10F		NO 1	<u> </u>	e "'	$\overline{\sim}$	20.					
Client:	Trihydro Corporat									. `	San	npl	es (on:\		ICE					NO I	UE	$\mathcal{O}_{\mathbf{A}}$	S	<u>}</u> ~∘(3 3 554	Σ Α			
Address:	1252 Commerce						·			.	Pre	ser	vec	l in:	:Ш	LAB	(ZX	FIEL いり	.D			E	JK B	API,	4	<u>ON</u>	ðΔ	V		A
City / State	/ Zip Laramie, WY 820	070								. 1	Lab	No	otes	\$				1-10	,								- 8			H
Contact:	Todd Aseltyne	Phone) :	(5	13)	429-	7470)			7	e x	γ	\ \ \	1 Oc	10		54		0	0	M	2							
E-Mail:	taseltyne@trihydro.com	Fax:									lie							91	· · · · · · ·	4			ilo	_	$\overline{}$					
Are these camples	known to be involved in li	tigation? If yes, a surcharge					Yes	П	N.	-	,,,,		, 011				710	h i	m.		၁	į	10							
	known to be involved in it		WIII &	appi	y	Ш	res	Ш	No					,	<u>.</u>	W.	Va	D; l D;		≠ € **			. [A		K	D F			S
•	ired reporting limits to be	met on the requested analys	is?. I	If ye	s, pl	ease	e pro	vide						į	5	i.	do.	Di								1			1/2	$\stackrel{\wedge}{\sim}$
	ent section. Yes Name/Number	No Sample Co	loo	404	- N	lama				ㅗ		VIA ^T	r D I	-					INII		TE	A NI A	LYS					_		.0.
Soil Vapor System								10		\vdash	T	П					I	l	IINI	JICA	IIE /	ANA	T	IS K	T	T		$\overline{}$		
		Todd									Drinking Water	1		Special Waste	Gr										İ					
Results	Requested 1-2 Day (100% Surcharge)	Billing Instructions	#	and	Тур	e of	Con	tain	ers	ģ			SE	eci	ou	⊐	_	ס	<				1							
1 /	1		Ş	ᆈ	z	ᇵ .	∓ اٰ≤	Z Z	9	Aqueous	ğ	Soil	Sludge	<u>a</u> /	Groundwater	FPCC	Lead	PNAs	VOCs											
Other 17h	3 Day (50% Surcharge)		UNPRES	HNO3	위	SS	HCL Ne CH	징	OTHER	S	Na		Φ	۷as	/ate											1				
Lab Use Only	Sample Identification	Date/Time Sampled	S			*	-	4	~	l	9			te	9	İ														
14030439	Tank 3	3/7/16 830				T		T		Г						4	K	4	X											
021	7 20217	1 1 1 1 1 2 3 2 5			\neg	\dashv		十	T	Т	T					\		Ι –	~				†	†		1				
			-			\dashv	\dashv	+	╁┈	╂─	╁─	-				-						╫	+	\vdash	+-	+-				
			\vdash	\vdash		\dashv	+	+	╁	⊢	╂	├-	_	_		 						├	 	┼	+	+				
						_	_	_	1	┺	<u> </u>	_										<u> </u>	<u> </u>	<u> </u>		<u> </u>				
										L		<u> </u>						<u> </u>												L
								ı																						
						1	\top		1	1						<u> </u>							1		T					
			\vdash	\vdash	$\neg \dagger$	_	\dashv	+	+	H	 	1		1									1	+	+	+				
			╁╌	\vdash	\dashv	-	+	+	+	╁	╁			-							-	 	+	+-	+	 	+			_
			 		\dashv		_		1_	╀	↓_	ļ			\vdash			<u> </u>				<u> </u>	-	╄	 			ļ		<u> </u>
							$oldsymbol{\perp}$			L			$oxed{oldsymbol{ol}}}}}}}}}}}}}}}}}}}}}$		<u> </u>									<u></u>			<u> Ш</u>			
	Relinquished By,	/	<u>, c</u>) /	/Tir	ne	į			<u> </u>			4		Re	ceiv	ed B	У				_ _	<u> </u>	i —	//P	ate/T	ime	~ _ ,		
Und	1/ Horal	TH 9	H		<u>3/</u>	2/	16	8	50	L			ota		Д,	Д,		1					<u>)/</u>		<u>/U</u>			1	Z	1
		3/7//	0		l	6	35	5			λr	M	\bigcirc			T	\mathcal{I}'	00	1.	li		Ι,	31	7/	110	Q	10	13	5	
																	-						,	7		-				
										T-												\top								

The individual signing this agreement on behalf of the client, acknowledges that he/she has read and understands the terms and conditions of this agreement, and that he/she has the authority to sign on behalf of the client.

APPENDIX E

Dec. 2015

2702 East Kemper Road Cincinnati, Ohio 45241

Attention, Paul Michalski, P.G.

Data was collected recently at your facilities and the results of the analysis of this data are presented in the following report.

The contents of this report will highlight the equipment that poses potential problems and equipment that require repair work. Please note, repair work is not being requested for equipment whose defects have not yet been confirmed.

Most of the equipment monitored was operating satisfactorily; however, data collected on some of the equipment indicated potential problems might exist. Generally, each piece of equipment in your facility will fall into one of three categories.

- 1. No problems detected equipment operating normally.
- 2. Data analysis indicates a potential problem condition additional data may be required, equipment should be watched more closely.
- 3. Equipment defect has been confirmed repair work has been requested to be performed at some point in time.

I will mention spectra and waveform, which pertain to the graphs you will be seeing in this report, and the explanations are,

Spectra, has the frequency and amplitude as to where the vibration is taking place and how bad it is. The horizontal line is frequency and the vertical line is amplitude. Spectra measurements are in in/sec velocity.

Time waveform, show impacts in the equipment, some repeatable and some random. The impacts are then transmitted to the spectra where it can be seen at certain frequencies. Time waveform measurements are in g's force or impacts.

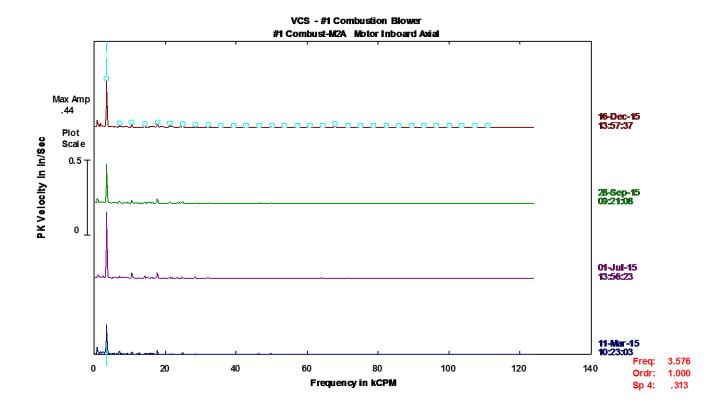
Sincerely, John J Meyers Senior Reliability Analyst Level III Vibration Certification BRI, INC. A Cogent Company imeyers@bri-inc.com

Copy; Todd Hanford, Dave Meyer, Gary Erler, Sean Bulla, Chris Becker

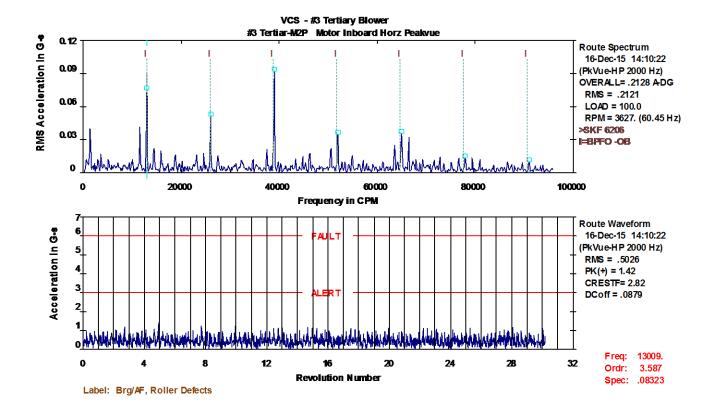
COGENT BRI LEE MATHEWS FLUID EQUIPMENT ENGINEERING GROUP

4	Corrective Measures required at next scheduled maintenance period or as permits, continue to trend for further analysis.
3	Corrective measures required on a priority basis.
2	Corrective Measures required ASAP depending on the equipment's process importance and redundant equipment availability.
1	Corrective measures required immediately.

Potential Problem Equipment


No Corrective Action required at this time.

#1 Combustion Blower vibrations are moderate at this time. See the first attached sheet. We can continue to monitor fir trend increases


Priority 4 Corrective Measures required at next scheduled maintenance period or as permits, continue to trend for further analysis.

#3 Tertiary Fan has impacts in the time waveform that match the outer race of the 6206 and 6208 bearings installed. See the second attached sheet. Let's grease the motor bearings and recheck them next visit.

All the other equipment is running Ok at this time. #3 Vacuum Pump was out for repair.

The top spectrum shows a moderate amount of vibration this monitoring, but we can continue to monitor for trend increases.

The vertical I lines in the spectrum above are the outer race frequencies of the 6206 and 6208 bearings installed. Peakvue spectra are an early look at bearing defects or dryness. Let's grease the bearings and recheck them next visit.

APPENDIX F

FID TVPH Concentration, Direct

		C	oncentration, Direc				
Location Group	Location ID	Date Sampled	Read	LEL	Oxygen	Pressure	Total Organic Vapor by PID
			(ppmv)	(%)	(%)	(in-H2O)	(ppmv)
107WBirch	107WBirch-Basement	02/10/16	0.0	0.0			0.0
107WBirch	107WBirch-Floor drain Basement for sink	02/10/16	0.0	0.0			0.0
107WBirch	107WBirch-Crawl Space under family room	02/10/16	0.0	0.0			0.0
107WBirch	107WBirch-Living Room	02/10/16	0.0	0.0			0.0
107WBirch	107WBirch-Shower floor drain Basement	02/10/16	0.0	0.0			0.0
107WBirch	107WBirch-SS1	02/10/16	0.0	0.0	19.8	0.00	0.0
107WBirch	107WBirch-SS2	02/10/16	0.0	0.0	19.9	0.00	0.0
107WBirch	107WBirch-SS3	02/10/16	1.0	0.0	20.9	0.00	0.0
117WBirch	117WBirch-Back/N porch	10/07/15	1.3	0.0			
117WBirch	117WBirch-Basement	10/07/15	3.7	0.0			
117WBirch	117WBirch-Floor Drain	10/07/15	3.8	0.0			
117WBirch	117WBirch-SS1	10/07/15	0.0	0.0	20.9	0.00	0.0
117WBirch	117WBirch-SS2	10/07/15	0.0	0.0	20.5	0.00	0.0
117WBirch	117WBirch-SS3	10/07/15	0.0	0.0	17.5	0.00	0.0
117WBirch	117WBirch-Back/N porch	10/14/15	0.0	0.0			
117WBirch	117WBirch-Basement	10/14/15	3.4	0.0			
117WBirch	117WBirch-Floor Drain	10/14/15	3.0	0.0			
117WBirch	117WBirch-SS1	10/14/15	0.0	0.0	20.9	0.00	0.0
117WBirch	117WBirch-SS2	10/14/15	0.0	0.0	20.9	0.00	0.0
117WBirch	117WBirch-SS3	10/14/15	0.0	0.0	18.1	0.00	0.0
117WBirch	117WBirch-Back/N porch	10/21/15	1.4	0.0			
117WBirch	117WBirch-Basement	10/21/15	3.2	0.0			
117WBirch	117WBirch-Floor Drain	10/21/15	3.3	0.0			
117WBirch	117WBirch-SS1	10/21/15	0.0	0.0	20.9	0.00	0.0
117WBirch	117WBirch-SS2	10/21/15	0.0	0.0	20.9	0.00	0.0
117WBirch	117WBirch-SS3	10/21/15	0.0	0.0	17.8	0.00	0.0
117WBirch	117WBirch-Back/N porch	10/28/15	2.5	0.0			0.0
117WBirch	117WBirch-Basement	10/28/15	2.7	0.0			0.0
117WBirch	117WBirch-Floor Drain	10/28/15	2.7	0.0			0.0
117WBirch	117WBirch-SS1	10/28/15	13.5	0.0	20.9	0.00	0.0
117WBirch	117WBirch-SS2	10/28/15	2.6	0.0	20.9	0.00	0.0
117WBirch	117WBirch-SS3	10/28/15	0.0	0.0	18.2	0.00	0.0
117WBirch	117WBirch-Back/N porch	11/04/15	2.2	0.0			0.0
117WBirch	117WBirch-Basement	11/04/15	4.7	0.0			0.0

FID TVPH Concentration, Direct

		Co	oncentration, Direc	I			
Location Group	Location ID	Date Sampled	Read	LEL	Oxygen	Pressure	Total Organic Vapor by PID
			(ppmv)	(%)	(%)	(in-H2O)	(ppmv)
117WBirch	117WBirch-Floor Drain	11/04/15	4.9	0.0			0.0
117WBirch	117WBirch-SS1	11/04/15	0.0	0.0	20.9	0.00	0.0
117WBirch	117WBirch-SS2	11/04/15	0.0	0.0	20.9	0.00	0.0
117WBirch	117WBirch-SS3	11/04/15	0.0	0.0	18.6	0.00	0.0
117WBirch	117WBirch-Back/N porch	11/11/15	0.0	0.0			0.0
117WBirch	117WBirch-Basement	11/11/15	3.4	0.0			0.0
117WBirch	117WBirch-Floor Drain	11/11/15	4.3	0.0			0.0
117WBirch	117WBirch-SS1	11/11/15	0.0	0.0	17.9	0.00	0.0
117WBirch	117WBirch-SS2	11/11/15	0.0	0.0	20.5	0.00	0.0
117WBirch	117WBirch-SS3	11/11/15	1.5	0.0	20.9	0.00	0.0
117WBirch	117WBirch-Back/N porch	11/18/15	1.7	0.0			0.0
117WBirch	117WBirch-Basement	11/18/15	3.2	0.0			0.0
117WBirch	117WBirch-Floor Drain	11/18/15	3.5	0.0			0.0
117WBirch	117WBirch-SS1	11/18/15	0.0	0.0	19.9	0.00	0.0
117WBirch	117WBirch-SS2	11/18/15	0.0	0.0	20.4	0.00	0.0
117WBirch	117WBirch-SS3	11/18/15	0.0	0.0	20.2	0.00	0.0
117WBirch	117WBirch-Back/N porch	11/25/15	1.8	0.0			0.0
117WBirch	117WBirch-Basement	11/25/15	3.0	0.0			0.0
117WBirch	117WBirch-Floor Drain	11/25/15	3.0	0.0			0.0
117WBirch	117WBirch-SS1	11/25/15	0.0	0.0	20.9	0.00	0.0
117WBirch	117WBirch-SS2	11/25/15	0.0	0.0	20.9	0.00	0.0
117WBirch	117WBirch-SS3	11/25/15	0.0	0.0	18.3	0.00	0.0
117WBirch	117WBirch-Back/N porch	12/02/15	0.0	0.0			0.0
117WBirch	117WBirch-Basement	12/02/15	2.6	0.0			0.0
117WBirch	117WBirch-Floor Drain	12/02/15	2.4	0.0			0.0
117WBirch	117WBirch-SS1	12/02/15	0.0	0.0	20.9	0.00	0.0
117WBirch	117WBirch-SS2	12/02/15	0.0	0.0	20.2	0.00	0.0
117WBirch	117WBirch-SS3	12/02/15	0.0	0.0	20.4	0.00	0.0
117WBirch	117WBirch-Back/N porch	12/07/15	0.0	0.0			0.0
117WBirch	117WBirch-Basement	12/07/15	2.4	0.0			0.0
117WBirch	117WBirch-Floor Drain	12/07/15	2.1	0.0			0.0
117WBirch	117WBirch-SS1	12/07/15	0.0	0.0	20.9	0.00	0.0
117WBirch	117WBirch-SS2	12/07/15	0.0	0.0	20.5	0.00	0.0
117WBirch	117WBirch-SS3	12/07/15	0.0	0.0	20.3	0.00	0.0

FID TVPH Concentration, Direct

Location Group			C	oncentration, Direc	از			
117WBirch	Location Group	Location ID	Date Sampled	Read	LEL	Oxygen	Pressure	Total Organic Vapor by PID
117WBirch				(ppmv)	(%)	(%)	(in-H2O)	(ppmv)
117WBirch	117WBirch	117WBirch-Back/N porch	12/16/15	3.4	0.0			0.0
117WBirch	117WBirch	117WBirch-Basement	12/16/15	5.9	0.0			0.0
117WBirch	117WBirch	117WBirch-Floor Drain	12/16/15	5.4	0.0			0.0
117WBirch	117WBirch	117WBirch-SS1	12/16/15					
117WBirch	117WBirch	117WBirch-SS2	12/16/15	0.0	0.0	20.9	0.00	0.0
117WBirch 117WBirch-Basement 01/06/16 3.3 0.0 0.0 117WBirch 117WBirch-Bor Drain 01/06/16 2.3 0.0 0.0 117WBirch 117WBirch-SS1 01/06/16 26.0 0.0 20.9 0.00 0.0 117WBirch 117WBirch-SS2 01/06/16 0.0 0.0 20.0 0.00 0.0 117WBirch 117WBirch-SS2 01/06/16 0.0 0.0 17.3 0.00 0.0 117WBirch 117WBirch-Back/N porch 01/13/16 1.7 0.0 0.0 117WBirch 117WBirch-Basement 01/13/16 2.7 0.0 0.0 117WBirch 117WBirch-SS1 01/13/16 2.6 0.0 0.0 117WBirch 117WBirch-SS2 01/13/16 0.0 0.0 20.4 0.00 0.0 117WBirch 117WBirch-SS3 01/13/16 0.0 0.0 1	117WBirch	117WBirch-SS3	12/16/15	0.0	0.0	17.8	0.00	0.0
117WBirch	117WBirch	117WBirch-Back/N porch	01/06/16	2.7	0.0			0.0
117WBirch 117WBirch-SS1 01/06/16 26.0 0.0 20.9 0.00 0.0 117WBirch 117WBirch-SS2 01/06/16 0.0 0.0 20.0 0.00 0.0 117WBirch 117WBirch-SS3 01/06/16 0.0 0.0 17.3 0.00 0.0 117WBirch 117WBirch-Back/N porch 01/13/16 1.7 0.0 0.0 117WBirch 117WBirch-Basement 01/13/16 2.7 0.0 0.0 117WBirch 117WBirch-SS1 01/13/16 2.6 0.0 0.0 117WBirch 117WBirch-SS2 01/13/16 0.0 0.0 20.4 0.00 0.0 117WBirch 117WBirch-SS2 01/13/16 0.0 0.0 20.4 0.00 0.0 117WBirch 117WBirch-Back/N porch 03/02/16 0.0 0.0 17.8 0.00 0.0 117WBirch 117WBirch-Back/N porch 03/02/16 1.3 0.0 <td>117WBirch</td> <td>117WBirch-Basement</td> <td>01/06/16</td> <td>3.3</td> <td>0.0</td> <td></td> <td></td> <td>0.0</td>	117WBirch	117WBirch-Basement	01/06/16	3.3	0.0			0.0
117WBirch 117WBirch 117WBirch 0.0 0.0 20.0 0.00 0.0 117WBirch 117WBirch 0.1006/16 0.0 0.0 17.3 0.00 0.0 117WBirch 117WBirch Pasek/N porch 0.1/13/16 1.7 0.0 0.0 117WBirch 117WBirch-Basement 01/13/16 2.7 0.0 0.0 117WBirch 117WBirch-Basement 01/13/16 2.6 0.0 0.0 117WBirch 117WBirch-SS1 01/13/16 <td>117WBirch</td> <td>117WBirch-Floor Drain</td> <td>01/06/16</td> <td>2.3</td> <td>0.0</td> <td></td> <td></td> <td>0.0</td>	117WBirch	117WBirch-Floor Drain	01/06/16	2.3	0.0			0.0
117WBirch 117WBirch-Back/N porch 01/06/16 0.0 0.0 17.3 0.00 0.0 117WBirch 117WBirch-Back/N porch 01/13/16 1.7 0.0 0.0 117WBirch 117WBirch Floor Drain 01/13/16 2.6 0.0 0.0 117WBirch 117WBirch-Floor Drain 01/13/16 0.0 117WBirch 117WBirch-SS1 01/13/16 0.0 117WBirch 117WBirch-Basement 03/02/16 0.0 0.0 0.0	117WBirch	117WBirch-SS1	01/06/16	26.0	0.0	20.9	0.00	0.0
117WBirch 117WBirch-Back/N porch 01/13/16 1.7 0.0 0.0 117WBirch 117WBirch-Basement 01/13/16 2.7 0.0 0.0 117WBirch 117WBirch-Floor Drain 01/13/16 2.6 0.0 0.0 117WBirch 117WBirch-SS1 01/13/16 0.0 0.0 20.4 0.00 0.0 117WBirch 117WBirch-SS2 01/13/16 0.0 0.0 20.4 0.00 0.0 117WBirch 117WBirch-SS3 01/13/16 0.0 0.0 17.8 0.00 0.0 117WBirch 117WBirch-Back/N porch 03/02/16 0.0 0.0 0.0 117WBirch 117WBirch-Back/N porch 03/02/16 1.3 0.0 0.0 117WBirch 117WBirch-Floor Drain 03/02/16 1.3 0.0 0.0 117WBirch 117WBirch-SS1 03/02/16 0.0 0.0<	117WBirch	117WBirch-SS2	01/06/16	0.0	0.0	20.0	0.00	0.0
117WBirch 117WBirch-Basement 01/13/16 2.7 0.0 0.0 117WBirch 117WBirch-Floor Drain 01/13/16 2.6 0.0 0.0 117WBirch 117WBirch-SS1 01/13/16 0.0 0.0 20.4 0.00 0.0 117WBirch 117WBirch-SS3 01/13/16 0.0 0.0 17.8 0.00 0.0 117WBirch 117WBirch-Back/N porch 03/02/16 0.0 0.0 0.0 117WBirch 117WBirch-Basement 03/02/16 0.0 0.0 0.0 117WBirch 117WBirch-Floor Drain 03/02/16 1.3 0.0 0.0 117WBirch 117WBirch-SS1 03/02/16 1.3 0.0 0.0 117WBirch 117WBirch-SS2 03/02/16 0.0 0.0 20.9 0.00 0.0 117WBirch 117WBirch-SS3 03/02/16 0.0 0.0	117WBirch	117WBirch-SS3	01/06/16	0.0	0.0	17.3	0.00	0.0
117WBirch 117WBirch-Basement 01/13/16 2.7 0.0 0.0 117WBirch 117WBirch-Floor Drain 01/13/16 2.6 0.0 0.0 117WBirch 117WBirch-SS1 01/13/16 0.0 0.0 20.4 0.00 0.0 117WBirch 117WBirch-SS3 01/13/16 0.0 0.0 17.8 0.00 0.0 117WBirch 117WBirch-Back/N porch 03/02/16 0.0 0.0 0.0 117WBirch 117WBirch-Basement 03/02/16 0.0 0.0 0.0 117WBirch 117WBirch-Floor Drain 03/02/16 1.3 0.0 0.0 117WBirch 117WBirch-SS1 03/02/16 1.3 0.0 0.0 117WBirch 117WBirch-SS2 03/02/16 0.0 0.0 20.9 0.00 0.0 117WBirch 117WBirch-SS3 03/02/16 0.0 0.0	117WBirch	117WBirch-Back/N porch	01/13/16	1.7	0.0			0.0
117WBirch 117WBirch-Floor Drain 01/13/16 2.6 0.0 0.0 117WBirch 117WBirch-SS1 01/13/16 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	117WBirch		01/13/16	2.7				
117WBirch 117WBirch-SS1 01/13/16 0.0 117WBirch 117WBirch PBack/N porch 03/02/16 1.3 0.0 0.0 0.0 117WBirch 117WBirch-Floor Drain 03/02/16 1.3 0.0 0.0 117WBirch 117WBirch-SS1 03/02/16 0.0 0.0 20.9 0.00 0.0 117WBirch 117WBirch-SS3 03/02/16 0.0 0.0 18.7 0.00 0.0 117WBirch 117WBirch-Back/N porch 0	117WBirch	117WBirch-Floor Drain	01/13/16	2.6	0.0			
117WBirch 117WBirch-SS3 01/13/16 0.0 0.0 17.8 0.00 0.0 117WBirch 117WBirch-Back/N porch 03/02/16 0.0 0.0 0.0 117WBirch 117WBirch-Basement 03/02/16 1.3 0.0 0.0 117WBirch 117WBirch-Floor Drain 03/02/16 1.3 0.0 0.0 117WBirch 117WBirch-SS1 03/02/16 0.0 0.0 20.9 0.00 0.0 117WBirch 117WBirch-SS2 03/02/16 0.0 0.0 20.9 0.00 0.0 117WBirch 117WBirch-SS3 03/02/16 0.0 0.0 18.7 0.00 0.0 117WBirch 117WBirch-Back/N porch 03/23/16 0.0 0.0 18.7 0.0 0.0 117WBirch 117WBirch-Back/N porch 03/23/16 0.0 0.0 0.0 117WBirch 117WBirch-SS1 03/23/16 0.0 0.0 </td <td>117WBirch</td> <td>117WBirch-SS1</td> <td>01/13/16</td> <td></td> <td></td> <td></td> <td></td> <td></td>	117WBirch	117WBirch-SS1	01/13/16					
117WBirch 117WBirch-Back/N porch 03/02/16 0.0 0.0 0.0 117WBirch 117WBirch-Basement 03/02/16 1.3 0.0 0.0 117WBirch 117WBirch-Floor Drain 03/02/16 0.0 0.0 20.9 0.00 0.0 117WBirch 117WBirch-SS1 03/02/16 0.0 0.0 20.9 0.00 0.0 117WBirch 117WBirch-SS2 03/02/16 0.0 0.0 20.9 0.00 0.0 117WBirch 117WBirch-SS3 03/02/16 0.0 0.0 18.7 0.00 0.0 117WBirch 117WBirch-Base/N porch 03/23/16 0.0 0.0 0.0 117WBirch 117WBirch-Floor Drain 03/23/16 2.1 0.0 0.0 117WBirch 117WBirch-SS1 03/23/16 0.0 0.0 0.0 0.0 117WBirch 117WBirch-SS2	117WBirch	117WBirch-SS2	01/13/16	0.0	0.0	20.4	0.00	0.0
117WBirch 117WBirch-Basement 03/02/16 1.3 0.0 0.0 117WBirch 117WBirch-Floor Drain 03/02/16 1.3 0.0 0.0 117WBirch 117WBirch-SS1 03/02/16 0.0 0.0 20.9 0.00 0.0 117WBirch 117WBirch-SS2 03/02/16 0.0 0.0 20.9 0.00 0.0 117WBirch 117WBirch-SS3 03/02/16 0.0 0.0 18.7 0.00 0.0 117WBirch 117WBirch-Back/N porch 03/23/16 0.0 0.0 0.0 117WBirch 117WBirch-Basement 03/23/16 2.1 0.0 0.0 117WBirch 117WBirch-SS1 03/23/16 2.1 0.0 0.0 117WBirch 117WBirch-SS2 03/23/16 0.0 0.0 20.9 0.00 0.0 117WBirch 117WBirch-SS3 03/23/16 0.0 0.0	117WBirch	117WBirch-SS3	01/13/16	0.0	0.0	17.8	0.00	0.0
117WBirch 117WBirch-Basement 03/02/16 1.3 0.0 0.0 117WBirch 117WBirch-Floor Drain 03/02/16 1.3 0.0 0.0 117WBirch 117WBirch-SS1 03/02/16 0.0 0.0 20.9 0.00 0.0 117WBirch 117WBirch-SS2 03/02/16 0.0 0.0 20.9 0.00 0.0 117WBirch 117WBirch-SS3 03/02/16 0.0 0.0 18.7 0.00 0.0 117WBirch 117WBirch-Back/N porch 03/23/16 0.0 0.0 0.0 117WBirch 117WBirch-Basement 03/23/16 2.1 0.0 0.0 117WBirch 117WBirch-SS1 03/23/16 2.1 0.0 0.0 117WBirch 117WBirch-SS2 03/23/16 0.0 0.0 20.9 0.00 0.0 117WBirch 117WBirch-SS3 03/23/16 0.0 0.0	117WBirch	117WBirch-Back/N porch	03/02/16	0.0	0.0			0.0
117WBirch 117WBirch-Floor Drain 03/02/16 1.3 0.0 0.0 117WBirch 117WBirch-SS1 03/02/16 0.0 0.0 20.9 0.00 0.0 117WBirch 117WBirch-SS2 03/02/16 0.0 0.0 20.9 0.00 0.0 117WBirch 117WBirch-SS3 03/02/16 0.0 0.0 18.7 0.00 0.0 117WBirch 117WBirch-Back/N porch 03/23/16 0.0 0.0 0.0 117WBirch 117WBirch-Basement 03/23/16 2.1 0.0 0.0 117WBirch 117WBirch-SS1 03/23/16 2.1 0.0 0.0 117WBirch 117WBirch-SS2 03/23/16 0.0 0.0 20.9 0.00 0.0 117WBirch 117WBirch-SS2 03/23/16 0.0 0.0 20.0 0.00 0.0 117WBirch 117WBirch-SS3 03/23/16 0.0 0.0 1	117WBirch	117WBirch-Basement	03/02/16	1.3	0.0			0.0
117WBirch 117WBirch-SS2 03/02/16 0.0 0.0 20.9 0.00 0.0 117WBirch 117WBirch-SS3 03/02/16 0.0 0.0 18.7 0.00 0.0 117WBirch 117WBirch-Back/N porch 03/23/16 0.0 0.0 0.0 117WBirch 117WBirch-Basement 03/23/16 2.1 0.0 0.0 117WBirch 117WBirch-Floor Drain 03/23/16 2.1 0.0 0.0 117WBirch 117WBirch-SS1 03/23/16 0.0 0.0 20.9 0.00 0.0 117WBirch 117WBirch-SS2 03/23/16 0.0 0.0 20.0 0.00 0.0 117WBirch 117WBirch-SS3 03/23/16 0.0 0.0 19.2 0.00 0.0 117WBirch 117WBirch-Back/N porch 03/30/16 0.0 0.0 0.0 117WBirch 117WBirch-Basement 03/30/16 2.3 0.0 0.0 117WBirch 117WBirch-Floor	117WBirch	117WBirch-Floor Drain	03/02/16	1.3				
117WBirch 117WBirch-SS3 03/02/16 0.0 0.0 18.7 0.00 0.0 117WBirch 117WBirch-Back/N porch 03/23/16 0.0 0.0 0.0 117WBirch 117WBirch-Basement 03/23/16 2.1 0.0 0.0 117WBirch 117WBirch-Floor Drain 03/23/16 2.1 0.0 0.0 117WBirch 117WBirch-SS1 03/23/16 0.0 0.0 20.9 0.00 0.0 117WBirch 117WBirch-SS2 03/23/16 0.0 0.0 20.0 0.00 0.0 117WBirch 117WBirch-Back/N porch 03/30/16 0.0 0.0 19.2 0.00 0.0 117WBirch 117WBirch-Basement 03/30/16 0.0 0.0 0.0 117WBirch 117WBirch-Floor Drain 03/30/16 2.3 0.0 0.0	117WBirch	117WBirch-SS1	03/02/16	0.0	0.0	20.9	0.00	0.0
117WBirch 117WBirch-Back/N porch 03/23/16 0.0 0.0 0.0 117WBirch 117WBirch-Basement 03/23/16 2.1 0.0 0.0 117WBirch 117WBirch-Floor Drain 03/23/16 2.1 0.0 0.0 117WBirch 117WBirch-SS1 03/23/16 0.0 0.0 20.9 0.00 0.0 117WBirch 117WBirch-SS2 03/23/16 0.0 0.0 20.0 0.00 0.0 117WBirch 117WBirch-SS3 03/23/16 0.0 0.0 19.2 0.00 0.0 117WBirch 117WBirch-Back/N porch 03/30/16 0.0 0.0 0.0 117WBirch 117WBirch-Basement 03/30/16 2.3 0.0 0.0 117WBirch 117WBirch-Floor Drain 03/30/16 2.3 0.0 0.0	117WBirch	117WBirch-SS2	03/02/16	0.0	0.0	20.9	0.00	0.0
117WBirch 117WBirch-Basement 03/23/16 2.1 0.0 0.0 117WBirch 117WBirch-Floor Drain 03/23/16 2.1 0.0 0.0 117WBirch 117WBirch-SS1 03/23/16 0.0 0.0 20.9 0.00 0.0 117WBirch 117WBirch-SS2 03/23/16 0.0 0.0 20.0 0.00 0.0 117WBirch 117WBirch-Back/N porch 03/30/16 0.0 0.0 0.0 117WBirch 117WBirch-Basement 03/30/16 2.3 0.0 0.0 117WBirch 117WBirch-Floor Drain 03/30/16 2.3 0.0 0.0	117WBirch	117WBirch-SS3	03/02/16	0.0	0.0	18.7	0.00	0.0
117WBirch 117WBirch-Floor Drain 03/23/16 2.1 0.0 0.0 117WBirch 117WBirch-SS1 03/23/16 0.0 0.0 20.9 0.00 0.0 117WBirch 117WBirch-SS2 03/23/16 0.0 0.0 20.0 0.00 0.0 117WBirch 117WBirch-Back/N porch 03/23/16 0.0 0.0 19.2 0.00 0.0 117WBirch 117WBirch-Back/N porch 03/30/16 0.0 0.0 0.0 117WBirch 117WBirch-Basement 03/30/16 2.3 0.0 0.0 117WBirch 117WBirch-Floor Drain 03/30/16 2.3 0.0 0.0	117WBirch	117WBirch-Back/N porch	03/23/16	0.0	0.0			0.0
117WBirch 117WBirch-SS1 03/23/16 0.0 0.0 20.9 0.00 0.0 117WBirch 117WBirch-SS2 03/23/16 0.0 0.0 20.0 0.00 0.0 117WBirch 117WBirch-SS3 03/23/16 0.0 0.0 19.2 0.00 0.0 117WBirch 117WBirch-Back/N porch 03/30/16 0.0 0.0 0.0 117WBirch 117WBirch-Basement 03/30/16 2.3 0.0 0.0 117WBirch 117WBirch-Floor Drain 03/30/16 2.3 0.0 0.0	117WBirch	117WBirch-Basement	03/23/16	2.1	0.0			0.0
117WBirch 117WBirch-SS2 03/23/16 0.0 0.0 20.0 0.00 0.0 117WBirch 117WBirch-SS3 03/23/16 0.0 0.0 19.2 0.00 0.0 117WBirch 117WBirch-Back/N porch 03/30/16 0.0 0.0 0.0 0.0 117WBirch 117WBirch-Basement 03/30/16 2.3 0.0 0.0 117WBirch 117WBirch-Floor Drain 03/30/16 2.3 0.0 0.0	117WBirch	117WBirch-Floor Drain	03/23/16	2.1	0.0			0.0
117WBirch 117WBirch-SS3 03/23/16 0.0 0.0 19.2 0.00 0.0 117WBirch 117WBirch-Back/N porch 03/30/16 0.0 0.0 0.0 117WBirch 117WBirch-Basement 03/30/16 2.3 0.0 0.0 117WBirch 117WBirch-Floor Drain 03/30/16 2.3 0.0 0.0	117WBirch	117WBirch-SS1	03/23/16	0.0	0.0	20.9	0.00	0.0
117WBirch 117WBirch-Back/N porch 03/30/16 0.0 0.0 0.0 117WBirch 117WBirch-Basement 03/30/16 2.3 0.0 0.0 117WBirch 117WBirch-Floor Drain 03/30/16 2.3 0.0 0.0	117WBirch	117WBirch-SS2	03/23/16	0.0	0.0	20.0	0.00	0.0
117WBirch 117WBirch-Back/N porch 03/30/16 0.0 0.0 0.0 117WBirch 117WBirch-Basement 03/30/16 2.3 0.0 0.0 117WBirch 117WBirch-Floor Drain 03/30/16 2.3 0.0 0.0	117WBirch	117WBirch-SS3	03/23/16	0.0	0.0	19.2	0.00	0.0
117WBirch 117WBirch-Basement 03/30/16 2.3 0.0 0.0 117WBirch 117WBirch-Floor Drain 03/30/16 2.3 0.0 0.0	117WBirch	117WBirch-Back/N porch	03/30/16	0.0	0.0			
117WBirch 117WBirch-Floor Drain 03/30/16 2.3 0.0 0.0	117WBirch	117WBirch-Basement	03/30/16	2.3	0.0			0.0
117WBirch 117WBirch-SS1 03/30/16 0.0 0.0 20.9 0.00 0.0	117WBirch		03/30/16	2.3				
	117WBirch	117WBirch-SS1	03/30/16	0.0	0.0	20.9	0.00	0.0

3 of 18

FID TVPH Concentration, Direct

		C	oncentration, Direc	il			
Location Group	Location ID	Date Sampled	Read	LEL	Oxygen	Pressure	Total Organic Vapor by PID
			(ppmv)	(%)	(%)	(in-H2O)	(ppmv)
117WBirch	117WBirch-SS2	03/30/16	0.0	0.0	20.9	0.00	0.0
117WBirch	117WBirch-SS3	03/30/16	0.0	0.0	18.9	0.00	0.0
129WBirch	129WBirch-Basement	11/11/15	0.0	0.0			0.0
129WBirch	129WBirch-Basement-central room	11/11/15	0.0	0.0			0.0
129WBirch	129WBirch-Basement-CW central room	11/11/15	0.0	0.0			0.0
129WBirch	129WBirch-Basement-furnace room	11/11/15	2.3	0.0			0.0
129WBirch	129WBirch-Basement-game room	11/11/15	0.0	0.0			0.0
129WBirch	129WBirch-Basement-laundry room	11/11/15	0.0	0.0			0.0
129WBirch	129WBirch-Basement-NE bedroom	11/11/15	0.0	0.0			0.0
129WBirch	129WBirch-Basement-NE Room by Stairs	11/11/15	0.0	0.0			0.0
129WBirch	129WBirch-Basement-NW bathroom	11/11/15	0.0	0.0			0.0
129WBirch	129WBirch-Basement-NW bedroom	11/11/15	0.0	0.0			0.0
129WBirch	129WBirch-Basement-NW room	11/11/15	0.0	0.0			0.0
129WBirch	129WBirch-Basement-S Game Room	11/11/15	1.2	0.0			0.0
129WBirch	129WBirch-Basement-Shower Drain	11/11/15	0.0	0.0			0.0
129WBirch	129WBirch-Kitchen	11/11/15	0.0	0.0			0.0
129WBirch	129WBirch-NE Family Room	11/11/15	0.0	0.0			0.0
129WBirch	129WBirch-SS1	11/11/15	0.0	0.0	14.0	0.00	0.0
129WBirch	129WBirch-SS2	11/11/15	0.0	0.0	19.9	0.00	0.0
129WBirch	129WBirch-SS3	11/11/15	0.0	0.0	18.7	0.00	0.0
129WBirch	129WBirch-Basement	12/16/15	1.3	0.0			0.0
129WBirch	129WBirch-Basement-central room	12/16/15	2.0	0.0			0.0
129WBirch	129WBirch-Basement-CW central room	12/16/15	2.0	0.0			0.0
129WBirch	129WBirch-Basement-furnace room	12/16/15	3.4	0.0			0.0
129WBirch	129WBirch-Basement-laundry room	12/16/15	2.1	0.0			0.0
129WBirch	129WBirch-Basement-NE bedroom	12/16/15	2.8	0.0			0.0
129WBirch	129WBirch-Basement-NE Room by Stairs	12/16/15	1.3	0.0			0.0
129WBirch	129WBirch-Basement-NW bathroom	12/16/15	2.1	0.0			0.0
129WBirch	129WBirch-Basement-NW bedroom	12/16/15	2.0	0.0			0.0
129WBirch	129WBirch-Basement-NW room	12/16/15	2.2	0.0			0.0
129WBirch	129WBirch-Basement-S Game Room	12/16/15	3.1	0.0			0.0
129WBirch	129WBirch-Basement-Shower Drain	12/16/15	2.0	0.0			0.0
129WBirch	129WBirch-NE Family Room	12/16/15	0.0	0.0			0.0
129WBirch	129WBirch-SS1	12/16/15	0.0	0.0	19.9	0.00	0.0

FID TVPH Concentration, Direct

		C	oncentration, Direc				
Location Group	Location ID	Date Sampled	Read	LEL	Oxygen	Pressure	Total Organic Vapor by PID
			(ppmv)	(%)	(%)	(in-H2O)	(ppmv)
129WBirch	129WBirch-SS2	12/16/15	0.0	0.0	20.9	0.00	0.0
129WBirch	129WBirch-SS3	12/16/15	0.0	0.0	19.1	0.00	0.0
129WBirch	129WBirch-Basement-CW central room	01/06/16	0.0	0.0			0.0
129WBirch	129WBirch-Basement-furnace room	01/06/16	1.3	0.0			0.0
129WBirch	129WBirch-Basement-laundry room	01/06/16	0.0	0.0			0.0
129WBirch	129WBirch-Basement-NW bathroom	01/06/16	0.0	0.0			0.0
129WBirch	129WBirch-Basement-NW bedroom	01/06/16	0.0	0.0			0.0
129WBirch	129WBirch-Basement-S Game Room	01/06/16	1.3	0.0			0.0
129WBirch	129WBirch-Basement-Shower Drain	01/06/16	0.0	0.0			0.0
129WBirch	129WBirch-NE Family Room	01/06/16	0.0	0.0			0.0
129WBirch	129WBirch-SS1	01/06/16	0.0	0.0	19.7	0.00	0.0
129WBirch	129WBirch-SS2	01/06/16	0.0	0.0	20.9	0.00	0.0
129WBirch	129WBirch-SS3	01/06/16	0.0	0.0	17.2	0.00	0.0
129WBirch	129WBirch-Basement-CW central room	02/03/16	0.0	0.0			0.0
129WBirch	129WBirch-Basement-furnace room	02/03/16	1.8	0.0			0.0
129WBirch	129WBirch-Basement-game room	02/03/16	1.9	0.0			0.0
129WBirch	129WBirch-Basement-laundry room	02/03/16	0.0	0.0			0.0
129WBirch	129WBirch-Basement-NW bathroom	02/03/16	0.0	0.0			0.0
129WBirch	129WBirch-Basement-NW bedroom	02/03/16	0.0	0.0			0.0
129WBirch	129WBirch-Basement-NW room	02/03/16	0.0	0.0			0.0
129WBirch	129WBirch-Basement-Shower Drain	02/03/16	0.0	0.0			0.0
129WBirch	129WBirch-NE Bathroom	02/03/16	0.0	0.0			0.0
129WBirch	129WBirch-NE Family Room	02/03/16	0.0	0.0			0.0
129WBirch	129WBirch-SS1	02/03/16	0.0	0.0	20.9	0.00	0.0
129WBirch	129WBirch-SS2	02/03/16	0.0	0.0	19.2	0.00	0.0
129WBirch	129WBirch-SS3	02/03/16	0.0	0.0	20.9	0.00	0.0
129WBirch	129WBirch-Basement	02/17/16	0.0	0.0			0.0
129WBirch	129WBirch-Basement-central room	02/17/16	0.0	0.0			0.0
129WBirch	129WBirch-Basement-CW central room	02/17/16	0.0	0.0			0.0
129WBirch	129WBirch-Basement-furnace room	02/17/16	1.7	0.0			0.0
129WBirch	129WBirch-Basement-laundry room	02/17/16	0.0	0.0			0.0
129WBirch	129WBirch-Basement-NE bedroom	02/17/16	0.0	0.0			0.0
129WBirch	129WBirch-Basement-NE Room by Stairs	02/17/16	0.0	0.0			0.0
129WBirch	129WBirch-Basement-NW bathroom	02/17/16	0.0	0.0			0.0

FID TVPH Concentration, Direct

		C	oncentration, Direc				
Location Group	Location ID	Date Sampled	Read	LEL	Oxygen	Pressure	Total Organic Vapor by PID
			(ppmv)	(%)	(%)	(in-H2O)	(ppmv)
129WBirch	129WBirch-Basement-NW bedroom	02/17/16	0.0	0.0			0.0
129WBirch	129WBirch-Basement-NW room	02/17/16	0.0	0.0			0.0
129WBirch	129WBirch-Basement-S Game Room	02/17/16	1.7	0.0			0.0
129WBirch	129WBirch-Basement-Shower Drain	02/17/16	0.0	0.0			0.0
129WBirch	129WBirch-NE Bathroom	02/17/16	0.0	0.0			0.0
129WBirch	129WBirch-NE Family Room	02/17/16	0.0	0.0			0.0
129WBirch	129WBirch-SS1	02/17/16	0.0	0.0	20.9	0.00	0.0
129WBirch	129WBirch-SS2	02/17/16	0.0	0.0	20.9	0.00	0.0
129WBirch	129WBirch-SS3	02/17/16	0.0	0.0	20.9	0.00	0.0
129WBirch	129WBirch-Basement	03/09/16	0.0	0.0			0.0
129WBirch	129WBirch-Basement-central room	03/09/16	0.0	0.0			0.0
129WBirch	129WBirch-Basement-CW central room	03/09/16	0.0	0.0			0.0
129WBirch	129WBirch-Basement-furnace room	03/09/16	2.1	0.0			0.0
129WBirch	129WBirch-Basement-laundry room	03/09/16	0.0	0.0			0.0
129WBirch	129WBirch-Basement-NE bedroom	03/09/16	0.0	0.0			0.0
129WBirch	129WBirch-Basement-NE Room by Stairs	03/09/16	0.0	0.0			0.0
129WBirch	129WBirch-Basement-NW bathroom	03/09/16	0.0	0.0			0.0
129WBirch	129WBirch-Basement-NW bedroom	03/09/16	0.0	0.0			0.0
129WBirch	129WBirch-Basement-NW room	03/09/16	0.0	0.0			0.0
129WBirch	129WBirch-Basement-S Game Room	03/09/16	2.1	0.0			0.0
129WBirch	129WBirch-Basement-Shower Drain	03/09/16	0.0	0.0			0.0
129WBirch	129WBirch-NE Family Room	03/09/16	0.0	0.0			0.0
129WBirch	129WBirch-NW bathroom	03/09/16	0.0	0.0			0.0
129WBirch	129WBirch-SS1	03/09/16	0.0	0.0	20.9	0.00	0.0
129WBirch	129WBirch-SS2	03/09/16	0.0	0.0	20.9	0.00	0.0
129WBirch	129WBirch-SS3	03/09/16	0.0	0.0	19.8	0.00	0.0
129WBirch	129WBirch-Basement	03/23/16	0.0	0.0			0.0
129WBirch	129WBirch-Basement-central room	03/23/16	0.0	0.0			0.0
129WBirch	129WBirch-Basement-CW central room	03/23/16	0.0	0.0			0.0
129WBirch	129WBirch-Basement-furnace room	03/23/16	2.2	0.0			0.0
129WBirch	129WBirch-Basement-game room	03/23/16	2.1	0.0			0.0
129WBirch	129WBirch-Basement-laundry room	03/23/16	0.0	0.0			0.0
129WBirch	129WBirch-Basement-NE bedroom	03/23/16	0.0	0.0			0.0
129WBirch	129WBirch-Basement-NE Room by Stairs	03/23/16	0.0	0.0			0.0

FID TVPH Concentration, Direct

Location Group Location ID			C	oncentration, Direc	il			
129WBirch 129WBirch-Basement-NW bathroom 03/23/16 0.0 0.0 0.0 0.0 129WBirch 129WBirch-Basement-NW bodroom 03/23/16 0.0 0.0 0.0 0.0 0.0 129WBirch 129WBirch-Basement-Nw room 03/23/16 0.0 0.0 0.0 0.0 0.0 129WBirch 129WBirch-Basement-Shower Drain 03/23/16 0.0 0.0 0.0 0.0 0.0 129WBirch 129WBirch-Basement-Shower Drain 03/23/16 0.0 0.0 0.0 0.0 0.0 129WBirch 129WBirch-NE Family Room 03/23/16 0.0 0.0 0.0 0.0 0.0 129WBirch 129WBirch-SS2 03/23/16 0.0 0.0 0.0 0.0 0.0 0.0 129WBirch 129WBirch-SS3 03/23/16 0.0 0.0 0.0 0.0 0.0 0.0 129WBirch 129WBirch-Basement 03/30/16 0.0 0.0 0.0 0.0 0.0 129WBirch 129WBirch-Basement 03/30/16 0.0 0.0 0.0 0.0 0.0 129WBirch 129WBirch-Basement 03/30/16 0.0 0.0 0.0 0.0 0.0 129WBirch 129WBirch-Basement-Contral 03/30/16 0.0 0.0 0.0 0.0 0.0 129WBirch 129WBirch-Basement-Contral 03/30/16 0.0 0.0 0.0 0.0 0.0 129WBirch 129WBirch-Basement-Funace roo 03/30/16 0.0 0.0 0.0 0.0 0.0 129WBirch 129WBirch-Basement-We root 03/30/16 0.0 0.0 0.0 0.0 0.0 129WBirch 129WBirch-Basement-We defroom 03/30/16 0.0 0.0 0.0 0.0 0.0 129WBirch 129WBirch-Basement-We defroom 03/30/16 0.0 0.0 0.0 0.0 0.0 129WBirch 129WBirch-Basement-NW bedroom 03/30/16 0.0 0.0 0.0 0.0 0.0 129WBirch 129WBirch-Basement-NW bedroom 03/30/16 0.0 0.0 0.0 0.0 0.0 129WBirch 129WBirch-Basement-NW bedroom 03/30/16 0.0 0.0 0.0 0.0 0.0 129WBirch 129WBirch-Basement-NW bedroom 03/30/16 0.0 0.0 0.0 0.0 0.0 0.0 129WBirch 129WBirch-Basement-NW bedroom 03/30/16 0.0 0.0 0.0 0.0 0.0 0.0 129WBirch 129WBirch-Basement-NW bedroom 03/30/16 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Location Group	Location ID	Date Sampled	Read	LEL	Oxygen	Pressure	Total Organic Vapor by PID
129WBirch 129WBirch-Basement-NW bedroom 03/23/16 0.0 0.0 0.0 0.0 0.0 129WBirch 129WBirch-Basement-Shower Drain 03/23/16 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 129WBirch 129WBirch-NE Bathroom 03/23/16 0.0 0				(ppmv)	(%)	(%)	(in-H2O)	(ppmv)
129WBirch 129WBirch-Basement-NW room 03/23/16 0.0	129WBirch	129WBirch-Basement-NW bathroom	03/23/16	0.0	0.0			0.0
129WBirch 129WBirch-NE Bathroom 03/23/16 0.0 0.0 0.0 0.0 0.0 129WBirch 129WBirch-NE Family Room 03/23/16 0.0 0.0 0.0 0.0 0.0 0.0 129WBirch 129WBirch-SS1 03/23/16 0.0 0.0 0.0 0.0 0.0 0.0 0.0 129WBirch 129WBirch-SS2 03/23/16 0.0 0.0 0.0 0.0 0.0 0.0 0.0 129WBirch 129WBirch-SS3 03/23/16 0.0 0.0 0.0 0.0 0.0 0.0 129WBirch 129WBirch-SS3 03/23/16 0.0 0.0 0.0 0.0 0.0 0.0 129WBirch 129WBirch-SS3 03/23/16 0.0 0.0 0.0 0.0 0.0 0.0 129WBirch 129WBirch-Basement 03/30/16 0.0 0.0 0.0 0.0 0.0 0.0 129WBirch 129WBirch-Basement-Chtral roo 03/30/16 0.0 0.0 0.0 0.0 0.0 0.0 129WBirch 129WBirch-Basement-Low central 03/30/16 0.0 0.0 0.0 0.0 0.0 0.0 129WBirch 129WBirch-Basement-Iunrace roo 03/30/16 0.0 0.0 0.0 0.0 0.0 0.0 129WBirch 129WBirch-Basement-NE bedroom 03/30/16 0.0 0.0 0.0 0.0 0.0 0.0 0.0 129WBirch 129WBirch-Basement-NE bedroom 03/30/16 0.0 0.0 0.0 0.0 0.0 0.0 0.0 129WBirch 129WBirch-Basement-NW bathroom 03/30/16 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 129WBirch 129WBirch-Basement-NW bathroom 03/30/16 0.0	129WBirch	129WBirch-Basement-NW bedroom	03/23/16	0.0	0.0			0.0
129WBirch 129WBirch-NE Family Room 03/23/16 0.0 0.0 0.0 0.0 0.0 129WBirch 129WBirch-NE Family Room 03/23/16 0.0 0.0 0.0 20.9 0.00 0.0 0.0 129WBirch 129WBirch-SS2 03/23/16 0.0 0.0 0.0 20.9 0.00 0.0 0.0 129WBirch 129WBirch-SS3 03/23/16 0.0 0.0 0.0 20.9 0.00 0.0 0.0 129WBirch 129WBirch-Basement 03/30/16 0.0 0.0 0.0 0.0 0.0 129WBirch 129WBirch-Basement-central roo 03/30/16 0.0 0.0 0.0 0.0 0.0 0.0 129WBirch 129WBirch-Basement-central roo 03/30/16 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 129WBirch 129WBirch-Basement-turnace roo 03/30/16 0.0	129WBirch	129WBirch-Basement-NW room	03/23/16	0.0	0.0			0.0
129WBirch 129WBirch-SE1 03/23/16 0.0 0.0 2.9 0.00 0.0 129WBirch 129WBirch-SS1 03/23/16 0.0 0.0 20.9 0.00 0.0 0.0 129WBirch 129WBirch-SS2 03/23/16 0.0 0.0 20.9 0.00 0.0 0.0 129WBirch 129WBirch-SS3 03/23/16 0.0 0.0 0.0 20.9 0.00 0.0 0.0 129WBirch 129WBirch-Basement 03/30/16 0.0 0.0 0.0 0.0 0.0 0.0 129WBirch 129WBirch-Basement-central roo 03/30/16 0.0 0.0 0.0 0.0 0.0 0.0 129WBirch 129WBirch-Basement-central 03/30/16 0.0 0	129WBirch	129WBirch-Basement-Shower Drain	03/23/16	0.0	0.0			0.0
129WBirch 129WBirch-SS1 03/23/16 0.0 0.0 20.9 0.00 0.0 129WBirch 129WBirch-SS2 03/23/16 0.0 0.0 20.9 0.00 0.0 0.0 129WBirch 129WBirch-SS3 03/23/16 0.0 0.0 0.0 20.9 0.00 0.0 0.0 129WBirch 129WBirch-Basement 03/30/16 0.0 0.0 0.0 0.0 0.0 0.0 0.0 129WBirch 129WBirch-Basement-cw 03/30/16 0.0	129WBirch	129WBirch-NE Bathroom	03/23/16	0.0	0.0			0.0
129WBirch 129WBirch-SS2 03/23/16 0.0 0.0 20.9 0.00 0.0 129WBirch 129WBirch-SS3 03/23/16 0.0 0.0 0.0 20.9 0.00 0.0 129WBirch 129WBirch-Basement 03/30/16 0.0 0.0 0.0 0.0 129WBirch 129WBirch-Basement-central roo 03/30/16 0.0 0.0 0.0 0.0 129WBirch 129WBirch-Basement-CW central 03/30/16 0.0 0.0 0.0 0.0 0.0 129WBirch 129WBirch-Basement-CW central 03/30/16 0.0 0.0 0.0 0.0 0.0 129WBirch 129WBirch-Basement-Immace roo 03/30/16 0.0 0.0 0.0 0.0 129WBirch 129WBirch-Basement-Ne bedroom 03/30/16 0.0 0.0 0.0 0.0 0.0 129WBirch 129WBirch-Basement-NE bedroom 03/30/16 0.0 0.0 0.0 0.0 0.0 129WBirch 129WBirch-Basement-NW bedroom 03/30/16 0.0 0.0 0.0 0.0 0.0 129WBirch 129WBirch-Basement-NW bedroom 03/30/16 0.0 0.0 0.0 0.0 0.0 129WBirch 129WBirch-Basement-NW bedroom 03/30/16 0.0 0.0 0.0 0.0 0.0 129WBirch 129WBirch-Basement-NW room 03/30/16 0.0 0.0 0.0 0.0 0.0 129WBirch 129WBirch-Basement-S Game Room 03/30/16 0.0 0.0 0.0 0.0 0.0 129WBirch 129WBirch-Basement-Shower Drai 03/30/16 0.0 0.0 0.0 0.0 0.0 129WBirch 129WBirch-Basement-Shower Drai 03/30/16 0.0 0.0 0.0 0.0 0.0 129WBirch 129WBirch-SS1 03/30/16 0.0 0.0 0.0 0.0 0.0 129WBirch 129WBirch-SS2 03/30/16 0.0 0.0 0.0 0.0 0.0 129WBirch 129WBirch-SS3 03/30/16 0	129WBirch	129WBirch-NE Family Room	03/23/16	0.0	0.0			0.0
129WBirch 129WBirch-Basement 03/23/16 0.0 0.0 20.9 0.00 0.0 129WBirch 129WBirch-Basement 03/30/16 0.0 0.0 0.0 129WBirch 129WBirch-Basement-CW central 03/30/16 0.0 0.0 0.0 129WBirch 129WBirch-Basement-LW central 03/30/16 2.8 0.0 0.0 129WBirch 129WBirch-Basement-LW central 03/30/16 2.8 0.0 0.0 129WBirch 129WBirch-Basement-NE Basement-NE Common 03/30/16 0.0 0.0 0.0 129WBirch 129WBirch-Basement-NE Room by 03/30/16 0.0 0.0 0.0 129WBirch 129WBirch-Basement-NW bedroom 03/30/16 0.0 0.0 0.0 129WBirch 129WBirch-Basement-NW room 03/30/16 0.0 0.0 0.0 129WBirch 129WBirc	129WBirch	129WBirch-SS1	03/23/16	0.0	0.0	20.9	0.00	0.0
129WBirch 129WBirch-Basement 03/30/16 0.0 0.0 0.0 129WBirch 129WBirch-Basement-central roo 03/30/16 0.0 0.0 0.0 129WBirch 129WBirch-Basement-CW central 03/30/16 0.0 0.0 0.0 129WBirch 129WBirch-Basement-Iwarder roo 03/30/16 0.0 0.0 0.0 129WBirch 129WBirch-Basement-NE bedroom 03/30/16 0.0 0.0 0.0 129WBirch 129WBirch-Basement-NE bedroom 03/30/16 0.0 0.0 0.0 129WBirch 129WBirch-Basement-NE Room by 03/30/16 0.0 0.0 0.0 129WBirch 129WBirch-Basement-NW bedroom 03/30/16 0.0 0.0 0.0 129WBirch 129WBirch-Basement-S Game Room 03/30/16 0.0 0.0 0.0 129WBirch 129WBi	129WBirch	129WBirch-SS2	03/23/16	0.0	0.0	20.9	0.00	0.0
129WBirch 129WBirch-Basement-central roo 03/30/16 0.0 0.0 0.0 129WBirch 129WBirch-Basement-CW central 03/30/16 0.0 0.0 0.0 129WBirch 129WBirch-Basement-Irurnace roo 03/30/16 0.0 0.0 0.0 129WBirch 129WBirch-Basement-NE bedroom 03/30/16 0.0 0.0 0.0 129WBirch 129WBirch-Basement-NE Room by 03/30/16 0.0 0.0 0.0 129WBirch 129WBirch-Basement-NW bedroom 03/30/16 0.0 0.0 0.0 129WBirch 129WBirch-Basement-NW bedroom 03/30/16 0.0 0.0 0.0 129WBirch 129WBirch-Basement-NW room 03/30/16 0.0 0.0 0.0 129WBirch 129WBirch-Basement-Shower Drai 03/30/16 0.0 0.0 0.0 129WBirch <	129WBirch	129WBirch-SS3	03/23/16	0.0	0.0	20.9	0.00	0.0
129WBirch 129WBirch-Basement-CW central 03/30/16 0.0 0.0 129WBirch 129WBirch-Basement-furnace roo 03/30/16 2.8 0.0 0.0 129WBirch 129WBirch-Basement-NE bedroom 03/30/16 0.0 0.0 0.0 129WBirch 129WBirch-Basement-NE Room by 03/30/16 0.0 0.0 0.0 129WBirch 129WBirch-Basement-NW bathroom 03/30/16 0.0 0.0 0.0 129WBirch 129WBirch-Basement-NW bedroom 03/30/16 0.0 0.0 0.0 129WBirch 129WBirch-Basement-NW room 03/30/16 0.0 0.0 0.0 129WBirch 129WBirch-Basement-S Game Room 03/30/16 0.0 0.0 0.0 129WBirch 129WBirch-Basement-S Game Room 03/30/16 0.0 0.0 0.0 129WBirch <t< td=""><td>129WBirch</td><td>129WBirch-Basement</td><td>03/30/16</td><td>0.0</td><td>0.0</td><td></td><td></td><td>0.0</td></t<>	129WBirch	129WBirch-Basement	03/30/16	0.0	0.0			0.0
129WBirch 129WBirch-Basement-Jumrace roo 03/30/16 2.8 0.0 0.0 129WBirch 129WBirch-Basement-Jumry roo 03/30/16 0.0 0.0 0.0 129WBirch 129WBirch-Basement-NE Room by 03/30/16 0.0 0.0 0.0 129WBirch 129WBirch-Basement-NW bathroom 03/30/16 0.0 0.0 0.0 129WBirch 129WBirch-Basement-NW bedroom 03/30/16 0.0 0.0 0.0 129WBirch 129WBirch-Basement-NW room 03/30/16 0.0 0.0 0.0 129WBirch 129WBirch-Basement-Sower Drai 03/30/16 0.0 0.0 0.0 129WBirch 129WBirch-Basement-Shower Drai 03/30/16 0.0 0.0 0.0 129WBirch 129WBirch-NE Family Room 03/30/16 0.0 0.0 0.0 129WBirch 129W	129WBirch	129WBirch-Basement-central roo	03/30/16	0.0	0.0			0.0
129WBirch 129WBirch-Basement-laundry roo 03/30/16 0.0 0.0 0.0 129WBirch 129WBirch-Basement-NE bedroom 03/30/16 0.0 0.0 0.0 129WBirch 129WBirch-Basement-NW bathroom 03/30/16 0.0 0.0 0.0 129WBirch 129WBirch-Basement-NW bedroom 03/30/16 0.0 0.0 0.0 129WBirch 129WBirch-Basement-NW room 03/30/16 0.0 0.0 0.0 129WBirch 129WBirch-Basement-Shower Drai 03/30/16 0.0 0.0 0.0 129WBirch 129WBirch-Basement-Shower Drai 03/30/16 0.0 0.0 0.0 129WBirch 129WBirch-NE Family Room 03/30/16 0.0 0.0 0.0 129WBirch 129WBirch-SS1 03/30/16 0.0 0.0 0.0 129WBirch 129WBirch-SS2	129WBirch	129WBirch-Basement-CW central	03/30/16	0.0	0.0			0.0
129WBirch 129WBirch-Basement-NE bedroom 03/30/16 0.0 0.0 129WBirch 129WBirch-Basement-NE Room by 03/30/16 0.0 0.0 0.0 129WBirch 129WBirch-Basement-NW bathroom 03/30/16 0.0 0.0 0.0 129WBirch 129WBirch-Basement-NW room 03/30/16 0.0 0.0 0.0 129WBirch 129WBirch-Basement-NW room 03/30/16 0.0 0.0 0.0 129WBirch 129WBirch-Basement-Shower Drai 03/30/16 0.0 0.0 0.0 129WBirch 129WBirch-Basement-Shower Drai 03/30/16 0.0 0.0 0.0 129WBirch 129WBirch-NE Family Room 03/30/16 0.0 0.0 0.0 129WBirch 129WBirch-SS1 03/30/16 0.0 0.0 0.0 129WBirch 129WBirch-SS2 03/30/16 <td>129WBirch</td> <td>129WBirch-Basement-furnace roo</td> <td>03/30/16</td> <td>2.8</td> <td>0.0</td> <td></td> <td></td> <td>0.0</td>	129WBirch	129WBirch-Basement-furnace roo	03/30/16	2.8	0.0			0.0
129WBirch 129WBirch-Basement-NE bedroom 03/30/16 0.0 0.0 129WBirch 129WBirch-Basement-NE Room by 03/30/16 0.0 0.0 0.0 129WBirch 129WBirch-Basement-NW bathroom 03/30/16 0.0 0.0 0.0 129WBirch 129WBirch-Basement-NW room 03/30/16 0.0 0.0 0.0 129WBirch 129WBirch-Basement-S Game Room 03/30/16 0.0 0.0 0.0 129WBirch 129WBirch-Basement-Shower Drai 03/30/16 0.0 0.0 0.0 129	129WBirch	129WBirch-Basement-laundry roo	03/30/16	0.0	0.0			0.0
129WBirch 129WBirch-Basement-NW bathroom 03/30/16 0.0 0.0 0.0 129WBirch 129WBirch-Basement-NW bedroom 03/30/16 0.0 0.0 0.0 129WBirch 129WBirch-Basement-Sasement-NW room 03/30/16 0.0 0.0 0.0 129WBirch 129WBirch-Basement-S Game Room 03/30/16 0.0 0.0 0.0 129WBirch 129WBirch-Basement-Shower Drai 03/30/16 0.0 0.0 0.0 129WBirch 129WBirch-Basement-Shower Drai 03/30/16 0.0 0.0 0.0 129WBirch 129WBirch-NE Family Room 03/30/16 0.0 0.0 0.0 129WBirch 129WBirch-NE Family Room 03/30/16 0.0 0.0 0.0 129WBirch 129WBirch-SS1 03/30/16 0.0 0.0 0.0 20.9 0.00 0.0	129WBirch		03/30/16	0.0				
129WBirch 129WBirch-Basement-NW bedroom 03/30/16 0.0 0.0 0.0 129WBirch 129WBirch-Basement-NW room 03/30/16 0.0 0.0 0.0 129WBirch 129WBirch-Basement-S Game Room 03/30/16 0.0 0.0 0.0 129WBirch 129WBirch-Basement-Shower Drai 03/30/16 0.0 0.0 0.0 129WBirch 129WBirch-NE Family Room 03/30/16 0.0 0.0 0.0 129WBirch 129WBirch-NW bathroom 03/30/16 0.0 0.0 0.0 129WBirch 129WBirch-SS1 03/30/16 0.0 0.0 0.0 129WBirch 129WBirch-SS2 03/30/16 0.0 0.0 20.9 0.00 0.0 129WBirch 129WBirch-SS3 03/30/16 0.0 0.0 19.5 0.00 0.0 507NOlive 507NOlive-Floor drain in Basement 1	129WBirch	129WBirch-Basement-NE Room by	03/30/16	0.0	0.0			0.0
129WBirch 129WBirch-Basement-NW bedroom 03/30/16 0.0 0.0 0.0 129WBirch 129WBirch-Basement-NW room 03/30/16 0.0 0.0 0.0 129WBirch 129WBirch-Basement-Some Room 03/30/16 0.0 0.0 0.0 129WBirch 129WBirch-Basement-Shower Drai 03/30/16 0.0 0.0 0.0 129WBirch 129WBirch-NE Family Room 03/30/16 0.0 0.0 0.0 129WBirch 129WBirch-NW bathroom 03/30/16 0.0 0.0 0.0 129WBirch 129WBirch-SS1 03/30/16 0.0 0.0 0.0 129WBirch 129WBirch-SS2 03/30/16 0.0 0.0 20.9 0.00 0.0 129WBirch 129WBirch-SS3 03/30/16 0.0 0.0 19.5 0.00 0.0 507NOlive 507NOlive-Floor drain in Basement 10/	129WBirch	129WBirch-Basement-NW bathroom	03/30/16	0.0	0.0			0.0
129WBirch 129WBirch-Basement-S Game Room 03/30/16 2.6 0.0 0.0 129WBirch 129WBirch-Basement-Shower Drai 03/30/16 0.0 0.0 0.0 129WBirch 129WBirch-NE Family Room 03/30/16 0.0 0.0 0.0 129WBirch 129WBirch-NW bathroom 03/30/16 0.0 0.0 0.0 129WBirch 129WBirch-SS1 03/30/16 0.0 0.0 20.9 0.00 0.0 129WBirch 129WBirch-SS2 03/30/16 0.0 0.0 20.9 0.00 0.0 129WBirch 129WBirch-SS3 03/30/16 0.0 0.0 20.9 0.00 0.0 129WBirch 129WBirch-SS3 03/30/16 0.0 0.0 19.5 0.00 0.0 507NOlive 507NOlive-Basement 10/07/15 0.0 507NOlive-Front porch 10/07/15 0.0	129WBirch	129WBirch-Basement-NW bedroom	03/30/16	0.0				
129WBirch 129WBirch-Basement-S Game Room 03/30/16 2.6 0.0 0.0 129WBirch 129WBirch-Basement-Shower Drai 03/30/16 0.0 0.0 0.0 129WBirch 129WBirch-NE Family Room 03/30/16 0.0 0.0 0.0 129WBirch 129WBirch-NW bathroom 03/30/16 0.0 0.0 0.0 129WBirch 129WBirch-SS1 03/30/16 0.0 0.0 20.9 0.00 0.0 129WBirch 129WBirch-SS2 03/30/16 0.0 0.0 20.9 0.00 0.0 129WBirch 129WBirch-SS3 03/30/16 0.0 0.0 20.9 0.00 0.0 129WBirch 129WBirch-SS3 03/30/16 0.0 0.0 19.5 0.00 0.0 507NOlive 507NOlive-Basement 10/07/15 0.0 507NOlive-Front porch 10/07/15 0.0	129WBirch	129WBirch-Basement-NW room	03/30/16	0.0	0.0			0.0
129WBirch 129WBirch-Basement-Shower Drai 03/30/16 0.0 0.0 0.0 129WBirch 129WBirch-NE Family Room 03/30/16 0.0 0.0 0.0 129WBirch 129WBirch-NW bathroom 03/30/16 0.0 0.0 0.0 129WBirch 129WBirch-SS1 03/30/16 0.0 0.0 20.9 0.00 0.0 129WBirch 129WBirch-SS2 03/30/16 0.0 0.0 20.9 0.00 0.0 129WBirch 129WBirch-SS3 03/30/16 0.0 0.0 19.5 0.00 0.0 507NOlive 507NOlive-Basement 10/07/15 0.0 507NOlive 507NOlive-Front porch 10/07/15 0.0 507NOlive 507NOlive-Kitchen 10/07/15 0.0 507NOlive 507NOlive-Living room 10/07/15 <t< td=""><td>129WBirch</td><td>129WBirch-Basement-S Game Room</td><td>03/30/16</td><td>2.6</td><td>0.0</td><td></td><td></td><td>0.0</td></t<>	129WBirch	129WBirch-Basement-S Game Room	03/30/16	2.6	0.0			0.0
129WBirch 129WBirch-NE Family Room 03/30/16 0.0 0.0 0.0 129WBirch 129WBirch-NW bathroom 03/30/16 0.0 0.0 0.0 129WBirch 129WBirch-SS1 03/30/16 0.0 0.0 20.9 0.00 0.0 129WBirch 129WBirch-SS2 03/30/16 0.0 0.0 20.9 0.00 0.0 129WBirch 129WBirch-SS3 03/30/16 0.0 0.0 19.5 0.00 0.0 507NOlive 507NOlive-Basement 10/07/15 0.0 507NOlive 507NOlive-Floor drain in Basement 10/07/15 0.0 507NOlive 507NOlive-Front porch 10/07/15 0.0 507NOlive-Kitchen 10/07/15 0.0 507NOlive-Living room 10/07/15 0.0 0.0	129WBirch	129WBirch-Basement-Shower Drai	03/30/16	0.0				
129WBirch 129WBirch-SS1 03/30/16 0.0 0.0 20.9 0.00 0.0 129WBirch 129WBirch-SS2 03/30/16 0.0 0.0 20.9 0.00 0.0 129WBirch 129WBirch-SS3 03/30/16 0.0 0.0 19.5 0.00 0.0 507NOlive 507NOlive-Basement 10/07/15 0.0 507NOlive 507NOlive-Floor drain in Basement 10/07/15 0.0 507NOlive 507NOlive-Front porch 10/07/15 0.0 507NOlive 507NOlive-Kitchen 10/07/15 0.0 507NOlive 507NOlive-Living room 10/07/15 0.0 507NOlive 507NOlive-SS1 10/07/15 0.0 0.0 20.9 0.00 0.0	129WBirch	129WBirch-NE Family Room	03/30/16	0.0	0.0			
129WBirch 129WBirch-SS2 03/30/16 0.0 0.0 20.9 0.00 0.0 129WBirch 129WBirch-SS3 03/30/16 0.0 0.0 19.5 0.00 0.0 507NOlive 507NOlive-Basement 10/07/15 0.0 507NOlive 507NOlive-Floor drain in Basement 10/07/15 0.0 507NOlive 507NOlive-Front porch 10/07/15 0.0 507NOlive 507NOlive-Kitchen 10/07/15 0.0 507NOlive 507NOlive-Living room 10/07/15 0.0 507NOlive 507NOlive-SS1 10/07/15 0.0 0.0 20.9 0.00 0.0	129WBirch	129WBirch-NW bathroom	03/30/16	0.0	0.0			0.0
129WBirch 129WBirch-SS3 03/30/16 0.0 0.0 19.5 0.00 0.0 507NOlive 507NOlive-Basement 10/07/15 0.0 507NOlive 507NOlive-Floor drain in Basement 10/07/15 0.0 507NOlive 507NOlive-Front porch 10/07/15 0.0 507NOlive 507NOlive-Kitchen 10/07/15 0.0 507NOlive 507NOlive-Living room 10/07/15 0.0 507NOlive 507NOlive-SS1 10/07/15 0.0 0.0 20.9 0.00 0.0	129WBirch	129WBirch-SS1	03/30/16	0.0	0.0	20.9	0.00	0.0
507NOlive 507NOlive-Basement 10/07/15 0.0 507NOlive 507NOlive-Floor drain in Basement 10/07/15 0.0 507NOlive 507NOlive-Front porch 10/07/15 0.0 507NOlive 507NOlive-Kitchen 10/07/15 0.0 507NOlive 507NOlive-Living room 10/07/15 0.0 507NOlive 507NOlive-SS1 10/07/15 0.0 0.0 20.9 0.00 0.0	129WBirch	129WBirch-SS2	03/30/16	0.0	0.0	20.9	0.00	0.0
507NOlive 507NOlive-Floor drain in Basement 10/07/15 0.0 507NOlive 507NOlive-Front porch 10/07/15 0.0 507NOlive 507NOlive-Kitchen 10/07/15 0.0 507NOlive 507NOlive-Living room 10/07/15 0.0 507NOlive 507NOlive-SS1 10/07/15 0.0 0.0 20.9 0.00 0.0	129WBirch	129WBirch-SS3	03/30/16	0.0	0.0	19.5	0.00	0.0
507NOlive 507NOlive-Front porch 10/07/15 0.0 507NOlive 507NOlive-Kitchen 10/07/15 0.0 507NOlive 507NOlive-Living room 10/07/15 0.0 507NOlive 507NOlive-SS1 10/07/15 0.0 0.0 20.9 0.00 0.0	507NOlive	507NOlive-Basement	10/07/15		0.0			
507NOlive 507NOlive-Kitchen 10/07/15 0.0 507NOlive 507NOlive-Living room 10/07/15 0.0 -	507NOlive	507NOlive-Floor drain in Basement	10/07/15		0.0			
507NOlive 507NOlive-Living room 10/07/15 0.0 507NOlive 507NOlive-SS1 10/07/15 0.0 0.0 20.9 0.00 0.0	507NOlive	507NOlive-Front porch	10/07/15		0.0			
507NOlive 507NOlive-Living room 10/07/15 0.0 507NOlive 507NOlive-SS1 10/07/15 0.0 0.0 20.9 0.00 0.0	507NOlive	•	10/07/15					
507NOlive 507NOlive-SS1 10/07/15 0.0 0.0 20.9 0.00 0.0	507NOlive	507NOlive-Living room	10/07/15					
	507NOlive	<u> </u>	10/07/15	0.0		20.9	0.00	0.0
507NOlive 507NOlive-SS3 10/07/15 56.0 0.0 20.9 -0.08 0.0	507NOlive	507NOlive-SS3	10/07/15	56.0	0.0	20.9	-0.08	0.0

FID TVPH Concentration, Direct

Location Group	Location ID	Date Sampled	Read	LEL	Oxygen	Pressure	Total Organic Vapor by PID
			(ppmv)	(%)	(%)	(in-H2O)	(ppmv)
507NOlive	507NOlive-SS4	10/07/15	71.0	0.0	20.9	-0.10	0.0
507NOlive	507NOlive-SS5	10/07/15	0.0	0.0	20.9	0.00	0.0
507NOlive	507NOlive-SS6	10/07/15	0.0	0.0	20.9	0.00	0.0
507NOlive	507NOlive-SS7	10/07/15	0.0	0.0	20.9	0.00	0.0
507NOlive	507NOlive-Basement	10/14/15	0.0	0.0			
507NOlive	507NOlive-Dininng Room	10/14/15	0.0	0.0			
507NOlive	507NOlive-Floor drain in Basement	10/14/15	0.0	0.0			
507NOlive	507NOlive-Front porch	10/14/15	0.0	0.0			
507NOlive	507NOlive-Kitchen	10/14/15	0.0	0.0			
507NOlive	507NOlive-Living room	10/14/15	0.0	0.0			
507NOlive	507NOlive-SS1	10/14/15	0.0	0.0	20.9	0.00	0.0
507NOlive	507NOlive-SS2	10/14/15	0.0	0.0	20.9	0.00	0.0
507NOlive	507NOlive-SS3	10/14/15	58.0	0.0	20.9	-0.07	0.0
507NOlive	507NOlive-SS4	10/14/15	70.0	0.0	20.9	-0.10	0.0
507NOlive	507NOlive-SS5	10/14/15	0.0	0.0	20.9	0.00	0.0
507NOlive	507NOlive-SS6	10/14/15	0.0	0.0	20.9	0.00	0.0
507NOlive	507NOlive-SS7	10/14/15	0.0	0.0	20.9	0.00	0.0
507NOlive	507NOlive-Basement	10/21/15	0.0	0.0			
507NOlive	507NOlive-Bathroom in Basement	10/21/15	0.0	0.0			
507NOlive	507NOlive-Floor drain in Basement	10/21/15	0.0	0.0			
507NOlive	507NOlive-Front porch	10/21/15	0.0	0.0			
507NOlive	507NOlive-Kitchen	10/21/15	0.0	0.0			
507NOlive	507NOlive-Living room	10/21/15	0.0	0.0			
507NOlive	507NOlive-NE bedroom	10/21/15	0.0	0.0			
507NOlive	507NOlive-SS1	10/21/15	0.0	0.0	20.9	0.00	0.0
507NOlive	507NOlive-SS2	10/21/15	0.0	0.0	20.9	0.00	0.0
507NOlive	507NOlive-SS3	10/21/15	47.0	0.0	20.9	-0.07	0.0
507NOlive	507NOlive-SS4	10/21/15	58.0	0.0	20.9	-0.09	0.0
507NOlive	507NOlive-SS5	10/21/15	0.0	0.0	20.9	0.00	0.0
507NOlive	507NOlive-SS6	10/21/15	0.0	0.0	20.9	0.00	0.0
507NOlive	507NOlive-SS7	10/21/15	0.0	0.0	20.9	0.00	0.0
507NOlive	507NOlive-Basement	10/28/15	0.0	0.0			0.0
507NOlive	507NOlive-Bathroom in Basement	10/28/15	0.0	0.0			0.0
507NOlive	507NOlive-Computer room	10/28/15	0.0	0.0			0.0

FID TVPH Concentration, Direct

		C	oncentration, Direc	il			
Location Group	Location ID	Date Sampled	Read	LEL	Oxygen	Pressure	Total Organic Vapor by PID
			(ppmv)	(%)	(%)	(in-H2O)	(ppmv)
507NOlive	507NOlive-Floor drain in Basement	10/28/15	0.0	0.0			0.0
507NOlive	507NOlive-Front porch	10/28/15	0.0	0.0			0.0
507NOlive	507NOlive-Kitchen	10/28/15	0.0	0.0			0.0
507NOlive	507NOlive-SS1	10/28/15	0.0	0.0	20.9	0.00	0.0
507NOlive	507NOlive-SS2	10/28/15	0.0	0.0	20.9	0.00	0.0
507NOlive	507NOlive-SS3	10/28/15	34.0	0.0	20.9	-0.08	0.0
507NOlive	507NOlive-SS4	10/28/15	29.0	0.0	20.9	-0.11	0.0
507NOlive	507NOlive-SS5	10/28/15	0.0	0.0	20.9	0.00	0.0
507NOlive	507NOlive-SS6	10/28/15	0.0	0.0	20.9	0.00	0.0
507NOlive	507NOlive-SS7	10/28/15	0.0	0.0	20.9	0.00	0.0
507NOlive	507NOlive-Basement	11/04/15	0.0	0.0			0.0
507NOlive	507NOlive-Bathroom in Basement	11/04/15	0.0	0.0			0.0
507NOlive	507NOlive-Computer room	11/04/15	0.0	0.0			0.0
507NOlive	507NOlive-Dininng Room	11/04/15	0.0	0.0			0.0
507NOlive	507NOlive-E Porch	11/04/15	0.0	0.0			0.0
507NOlive	507NOlive-Floor drain in Basement	11/04/15	0.0	0.0			0.0
507NOlive	507NOlive-Living room	11/04/15	0.0	0.0			0.0
507NOlive	507NOlive-SS1	11/04/15	0.0	0.0	20.9	0.00	0.0
507NOlive	507NOlive-SS2	11/04/15	0.0	0.0	20.9	0.00	0.0
507NOlive	507NOlive-SS3	11/04/15	27.0	0.0	20.9	-0.08	0.0
507NOlive	507NOlive-SS4	11/04/15	14.0	0.0	20.9	-0.11	0.0
507NOlive	507NOlive-SS5	11/04/15	0.0	0.0	20.9	0.00	0.0
507NOlive	507NOlive-SS6	11/04/15	0.0	0.0	20.9	0.00	0.0
507NOlive	507NOlive-SS7	11/04/15	0.0	0.0	20.9	0.00	0.0
507NOlive	507NOlive-Basement	11/11/15	0.0	0.0			0.0
507NOlive	507NOlive-Floor drain in Basement	11/11/15	0.0	0.0			0.0
507NOlive	507NOlive-Front porch	11/11/15	0.0	0.0			0.0
507NOlive	507NOlive-Kitchen	11/11/15	0.0	0.0			0.0
507NOlive	507NOlive-Living room	11/11/15	0.0	0.0			0.0
507NOlive	507NOlive-SS1	11/11/15	0.0	0.0	20.9	-0.05	0.0
507NOlive	507NOlive-SS2	11/11/15	0.0	0.0	20.9	0.00	0.0
507NOlive	507NOlive-SS3	11/11/15	62.3	0.0	20.9	-0.08	0.0
507NOlive	507NOlive-SS4	11/11/15	57.4	0.0	20.9	-0.08	0.0
507NOlive	507NOlive-SS5	11/11/15	0.0	0.0	20.9	0.00	0.0

FID TVPH Concentration, Direct

Location Group			C	oncentration, Direc	il			
507NOlive 507NOlive-SS6 11/11/15 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS7 11/11/15 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-Basement 11/18/15 0.0 0.0 0.0 0.0 507NOlive 507NOlive-Basement 11/18/15 0.0 0.0 0.0 0.0 507NOlive 507NOlive-Front porch 11/18/15 0.0 0.0 0.0 0.0 507NOlive 507NOlive-Living room 11/18/15 0.0 0.0 0.0 0.0 507NOlive 507NOlive-Living room 11/18/15 0.0 0.0 0.0 0.0 507NOlive 507NOlive-SS1 11/18/15 0.0 0.0 0.0 0.0 507NOlive 507NOlive-SS1 11/18/15 0.0 0.0 0.0 0.0 0.0 507NOlive 507NOlive-SS2 11/18/15 0.0 0.0 0.0 20.9 0.07 0.0 507NOlive 507NOlive-SS3 11/18/15 0.0 0.0 20.9 0.07 0.0 507NOlive 507NOlive-SS3 11/18/15 0.0 0.0 20.9 0.01 0.0 507NOlive 507NOlive-SS4 11/18/15 0.0 0.0 20.9 0.01 0.0 507NOlive 507NOlive-SS5 11/18/15 0.0 0.0 20.9 0.01 0.0 507NOlive 507NOlive-SS5 11/18/15 0.0 0.0 20.9 0.06 0.0 507NOlive 507NOlive-SS6 11/18/15 0.0 0.0 20.9 0.05 0.0 507NOlive 507NOlive-SS6 11/18/15 0.0 0.0 20.9 0.05 0.0 507NOlive 507NOlive-SS6 11/18/15 0.0 0.0 20.9 0.05 0.0 507NOlive 507NOlive-Sasement 11/25/15 0.0 0.0 0.0 0.0 507NOlive 507NOlive-Floor drain in Basement 11/25/15 0.0 0.0 0.0 0.0 507NOlive 507NOlive-SS1 11/25/15 0.0 0.0 0.0 0.0 507NOlive 507NOlive-SS1 11/25/15 0.0 0.0 0.0 0.0 0.0 507NOlive 507NOlive-SS1 11/25/15 0.0 0.0 0.0 0.0 0.0 507NOlive 507NOlive-SS3 11/25/15 0.0 0.0 0.0 0.0 0.0 0.0 507NOlive 507NOlive-SS3 11/25/15 0.0 0.0 0.0 0.0 0.0 0.0 507NOlive 507NOlive-SS3 11/25/15 0.0 0.0 0.0 0.0 0.0 0.0 507NOlive 507NOlive-SS6 11/25/15 0.0 0.0 0.0 0.0 0.0 0.0 507NOlive 507NOlive-SS6 11/25/	Location Group	Location ID	Date Sampled	Read	LEL	Oxygen	Pressure	Total Organic Vapor by PID
507NOlive 507NOlive-SS7 11/11/15 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-Basement 11/18/15 0.0 0.0 0.0				(ppmv)	(%)	(%)	(in-H2O)	(ppmv)
507NOlive 507NOlive-Basement 11/18/15 0.0 0.0 0.0 507NOlive 507NOlive-Dining Room 11/18/15 0.0 0.0 0.0 507NOlive 507NOlive-Front porch 11/18/15 0.0 0.0 0.0 0.0 507NOlive 507NOlive-Front porch 11/18/15 0.0 0.0 0.0 0.0 507NOlive 507NOlive-Kitchen 11/18/15 0.0 0.0 0.0 0.0 507NOlive 507NOlive-Living room 11/18/15 0.0 0.0 0.0 0.0 507NOlive 507NOlive-SS1 11/18/15 0.0 0.0 0.0 0.0 0.0 507NOlive 507NOlive-SS2 11/18/15 0.0 0.0 0.0 0.0 0.0 507NOlive 507NOlive-SS3 11/18/15 0.0 0.0 0.0 0.0 0.0 507NOlive 507NOlive-SS3 11/18/15 0.0 0.0 0.0 0.0 0.0 507NOlive 507NOlive-SS3 11/18/15 0.0 0.0 0.0 0.0 0.0 507NOlive 507NOlive-SS5 11/18/15 0.0 0.0 0.0 0.0 0.0 507NOlive 507NOlive-SS5 11/18/15 0.0 0.0 0.0 0.0 0.0 507NOlive 507NOlive-SS6 11/18/15 0.0 0.0 0.0 0.0 0.0 507NOlive 507NOlive-SS6 11/18/15 0.0 0.0 0.0 0.0 0.0 507NOlive 507NOlive-Basement 11/25/15 0.0 0.0 0.0 0.0 507NOlive 507NOlive-Basement 11/25/15 0.0 0.0 0.0 0.0 507NOlive 507NOlive-Front porch 11/25/15 0.0 0.0 0.0 0.0 507NOlive 507NOlive-Front porch 11/25/15 0.0 0.0 0.0 0.0 507NOlive 507NOlive-SS1 11/18/15 0.0 0.0 0.0 0.0 507NOlive 507NOlive-SS1 11/25/15 0.0 0.0 0.0 0.0 507NOlive 507NOlive-SS3 11/25/15 0.0 0.0 0.0 0.0 507NOlive 507NOlive-SS5 11/25/15 0.0 0.0 0.0 0.0 507NOlive 507NOlive-SS6 11/25/15 0.0 0.0 0.0 0.0 507NOlive 507NOlive-SS6 11/25/15 0.0 0.0 0.0 0.0 507NOliv	507NOlive	507NOlive-SS6	11/11/15	0.0	0.0	20.9	0.00	0.0
507NOlive 507NOlive-Clining Room 11/18/15 0.0 0.0 0.0 507NOlive 507NOlive-Front parin in Basement 11/18/15 0.0 0.0 0.0 507NOlive 507NOlive-Front porch 11/18/15 0.0 0.0 0.0 507NOlive 507NOlive-Kitchen 11/18/15 0.0 0.0 0.0 507NOlive 507NOlive-SS1 11/18/15 0.0 0.0 20.9 -0.07 0.0 507NOlive 507NOlive-SS2 11/18/15 0.0 0.0 20.9 -0.07 0.0 507NOlive 507NOlive-SS3 11/18/15 65.0 0.0 20.9 -0.07 0.0 507NOlive 507NOlive-SS4 11/18/15 85.0 0.0 20.9 -0.14 0.0 507NOlive 507NOlive-SS5 11/18/15 0.0 0.0 20.9 -0.05 0.0 507NOlive 507NOlive-SS7 11/18/15 0.0	507NOlive	507NOlive-SS7	11/11/15	0.0	0.0	20.9	0.00	0.0
507NOlive 507NOlive-Floor drain in Basement 11/18/15 0.0 0.0 0.0 507NOlive 507NOlive-Floor the prorch 11/18/15 0.0 0.0 0.0 507NOlive 507NOlive-Living room 11/18/15 0.0 0.0 0.0 507NOlive 507NOlive-SS1 11/18/15 0.0 0.0 20.9 -0.07 0.0 507NOlive 507NOlive-SS2 11/18/15 0.0 0.0 20.9 -0.07 0.0 507NOlive 507NOlive-SS3 11/18/15 65.0 0.0 20.9 -0.07 0.0 507NOlive 507NOlive-SS4 11/18/15 85.0 0.0 20.9 -0.14 0.0 507NOlive 507NOlive-SS5 11/18/15 0.0 0.0 20.9 -0.06 0.0 507NOlive 507NOlive-SS6 11/18/15 0.0 0.0 20.9 -0.05 0.0 507NOlive 507NOlive-SS7 11/18/15 0.0	507NOlive	507NOlive-Basement	11/18/15	0.0	0.0			0.0
507NOlive 507NOlive-Kitchen 11/18/15 0.0	507NOlive	507NOlive-Dininng Room	11/18/15	0.0	0.0			0.0
507NOlive 507NOlive-Living room 11/18/15 0.0 0.0 0.0	507NOlive	507NOlive-Floor drain in Basement	11/18/15	0.0	0.0			0.0
507NOlive 507NOlive-Ss1 11/18/15 0.0 0.0 0.0 507NOlive 507NOlive-SS1 11/18/15 0.0 0.0 20.9 -0.07 0.0 507NOlive 507NOlive-SS2 11/18/15 0.0 0.0 20.9 -0.11 0.0 507NOlive 507NOlive-SS3 11/18/15 85.0 0.0 20.9 -0.14 0.0 507NOlive 507NOlive-SS5 11/18/15 85.0 0.0 20.9 -0.14 0.0 507NOlive 507NOlive-SS6 11/18/15 0.0 0.0 20.9 -0.05 0.0 507NOlive 507NOlive-SS7 11/18/15 0.0 0.0 20.9 -0.05 0.0 507NOlive 507NOlive-Basement 11/25/15 0.0 0.0 0.0 507NOlive-STORIVie-Computer room 11/25/15 0.0 0.0 0.0 507NOlive-STORIVie-Computer room 11/25/15 0.0 0.0	507NOlive	507NOlive-Front porch	11/18/15	0.0	0.0			0.0
507NOlive 507NOlive-SS1 11/18/15 0.0 0.0 20.9 -0.07 0.0 507NOlive 507NOlive-SS2 11/18/15 0.0 0.0 20.9 -0.07 0.0 507NOlive 507NOlive-SS3 11/18/15 65.0 0.0 20.9 -0.11 0.0 507NOlive 507NOlive-SS4 11/18/15 0.0 0.0 20.9 -0.14 0.0 507NOlive 507NOlive-SS6 11/18/15 0.0 0.0 20.9 -0.05 0.0 507NOlive 507NOlive-Basement 11/25/15 0.0 0.0 20.9 -0.05 0.0 507NOlive 507NOlive-Basement 11/25/15 0.0 0.0 0.0 507NOlive 507NOlive-Basement 11/25/15 0.0 0.0 0.0 507NOlive-Basement 11/25/15 0.0 0.0 0.0 507NOlive-Basement 11/25/15 0.0 0.0 0	507NOlive	507NOlive-Kitchen	11/18/15	0.0	0.0			0.0
507NOlive 507NOlive-SS2 11/18/15 0.0 0.0 20.9 -0.07 0.0 507NOlive 507NOlive-SS3 11/18/15 65.0 0.0 20.9 -0.14 0.0 507NOlive 507NOlive-SS4 11/18/15 85.0 0.0 20.9 -0.06 0.0 507NOlive 507NOlive-SS5 11/18/15 0.0 0.0 20.9 -0.06 0.0 507NOlive 507NOlive-SS7 11/18/15 0.0 0.0 20.9 -0.05 0.0 507NOlive 507NOlive-Basement 11/25/15 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-Computer room 11/25/15 0.0 0.0 0.0 507NOlive 507NOlive-Front porch 11/25/15 0.0 0.0 0.0 507NOlive 507NOlive-Front porch 11/25/15 0.0 0.0 0.0 507NOlive 507NOlive-Stitchen 11/25/15 0.0 <	507NOlive	507NOlive-Living room	11/18/15	0.0	0.0			0.0
507NOlive 507NOlive-SS3 11/18/15 65.0 0.0 20.9 -0.11 0.0 507NOlive 507NOlive-SS4 11/18/15 85.0 0.0 20.9 -0.14 0.0 507NOlive 507NOlive-SS5 11/18/15 0.0 0.0 20.9 -0.06 0.0 507NOlive 507NOlive-SS6 11/18/15 0.0 0.0 20.9 -0.05 0.0 507NOlive 507NOlive-SS7 11/18/15 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-Computer room 11/25/15 0.0 0.0 0.0 507NOlive 507NOlive-Flort prorth 11/25/15 0.0	507NOlive	507NOlive-SS1	11/18/15	0.0	0.0	20.9	-0.07	0.0
507NOlive 507NOlive-SS4 11/18/15 85.0 0.0 20.9 -0.14 0.0 507NOlive 507NOlive-SS5 11/18/15 0.0 0.0 20.9 -0.06 0.0 507NOlive 507NOlive-SS6 11/18/15 0.0 0.0 20.9 -0.05 0.0 507NOlive 507NOlive-SS7 11/18/15 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-Basement 11/25/15 0.0 0.0 0.0 507NOlive 507NOlive-Computer room 11/25/15 0.0 0.0 0.0 507NOlive 507NOlive-Floor drain in Basement 11/25/15 0.0 0.0 0.0 507NOlive 507NOlive-Front porch 11/25/15 0.0 0.0 0.0 507NOlive 507NOlive-Kitchen 11/25/15 0.0 0.0 0.0 507NOlive 507NOlive-SS1 11/25/15 <t< td=""><td>507NOlive</td><td>507NOlive-SS2</td><td>11/18/15</td><td>0.0</td><td>0.0</td><td>20.9</td><td>-0.07</td><td>0.0</td></t<>	507NOlive	507NOlive-SS2	11/18/15	0.0	0.0	20.9	-0.07	0.0
507NOlive 507NOlive-SS5 11/18/15 0.0 0.0 20.9 -0.06 0.0 507NOlive 507NOlive-SS6 11/18/15 0.0 0.0 20.9 -0.05 0.0 507NOlive 507NOlive-SS7 11/18/15 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-Computer room 11/25/15 0.0 0.0 - - 0.0 507NOlive 507NOlive-Computer room 11/25/15 0.0 0.0 - - 0.0 507NOlive 507NOlive-Floor drain in Basement 11/25/15 0.0 0.0 - - 0.0 507NOlive 507NOlive-Floor drain in Basement 11/25/15 0.0 0.0 - - 0.0 507NOlive 507NOlive-Floor drain in Basement 11/25/15 0.0 0.0 - - 0.0 507NOlive 507NOlive-Floor drain in Basement 11/25/15 0.0 0.0 - - - 0.0 507NOlive 507NOlive-SS1	507NOlive	507NOlive-SS3	11/18/15	65.0	0.0	20.9	-0.11	0.0
507NOlive 507NOlive-SS6 11/18/15 0.0 0.0 20.9 -0.05 0.0 507NOlive 507NOlive-SS7 11/18/15 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-Basement 11/25/15 0.0 0.0 0.0 507NOlive 507NOlive-Front porch 11/25/15 0.0 0.0 0.0 507NOlive 507NOlive-Stal 11/25/15 0.0 0.0 0.0 507NOlive 507NOlive-Stal 11/25/15 0.0 0.0	507NOlive	507NOlive-SS4	11/18/15	85.0	0.0	20.9	-0.14	0.0
507NOlive 507NOlive-SS7 11/18/15 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-Basement 11/25/15 0.0 0.0 0.0 507NOlive 507NOlive-Computer room 11/25/15 0.0 0.0 0.0 507NOlive 507NOlive-Floor drain in Basement 11/25/15 0.0 0.0 0.0 507NOlive 507NOlive-Front porch 11/25/15 0.0 0.0 0.0 507NOlive 507NOlive-Kitchen 11/25/15 0.0 0.0 0.0 507NOlive 507NOlive-Living room 11/25/15 0.0 0.0 0.0 507NOlive 507NOlive-SS1 11/25/15 0.0 0.0 20.9 -0.08 0.0 507NOlive 507NOlive-SS2 11/25/15 0.0 0.0 20.9 -0.06 0.0 507NOlive 507NOlive-SS3 11/25/15 0.0	507NOlive	507NOlive-SS5	11/18/15	0.0	0.0	20.9	-0.06	0.0
507NOlive 507NOlive-Basement 11/25/15 0.0 0.0 0.0 507NOlive 507NOlive-Computer room 11/25/15 0.0 0.0 0.0 507NOlive 507NOlive-Floor drain in Basement 11/25/15 0.0 0.0 0.0 507NOlive 507NOlive-Front porch 11/25/15 0.0 0.0 0.0 507NOlive 507NOlive-Kitchen 11/25/15 0.0 0.0 0.0 507NOlive 507NOlive-Living room 11/25/15 0.0 0.0 0.0 507NOlive 507NOlive-Living room 11/25/15 0.0 0.0 0.0 507NOlive 507NOlive-SS1 11/25/15 0.0 0.0 20.9 -0.08 0.0 507NOlive 507NOlive-SS3 11/25/15 27.0 0.0 20.9 -0.06 0.0 507NOlive 507NOlive-SS4 11/25/15	507NOlive	507NOlive-SS6	11/18/15	0.0	0.0	20.9	-0.05	0.0
507NOlive 507NOlive-Computer room 11/25/15 0.0 0.0 0.0 507NOlive 507NOlive-Floor drain in Basement 11/25/15 0.0 0.0 0.0 507NOlive 507NOlive-Front porch 11/25/15 0.0 0.0 0.0 507NOlive 507NOlive-Kitchen 11/25/15 0.0 0.0 0.0 507NOlive 507NOlive-Living room 11/25/15 0.0 0.0 0.0 507NOlive 507NOlive-SS1 11/25/15 0.0 0.0 20.9 -0.08 0.0 507NOlive 507NOlive-SS2 11/25/15 0.0 0.0 20.9 -0.08 0.0 507NOlive 507NOlive-SS3 11/25/15 27.0 0.0 20.9 -0.06 0.0 507NOlive 507NOlive-SS4 11/25/15 66.0 0.0 20.9 -0.08 0.0 507NOlive 507NOlive-SS6 11/25/15 0.0	507NOlive	507NOlive-SS7	11/18/15	0.0	0.0	20.9	0.00	0.0
507NOlive 507NOlive-Floor drain in Basement 11/25/15 0.0 0.0 0.0 507NOlive 507NOlive-Front porch 11/25/15 0.0 0.0 0.0 507NOlive 507NOlive-Kitchen 11/25/15 0.0 0.0 0.0 507NOlive 507NOlive-Living room 11/25/15 0.0 0.0 0.0 507NOlive 507NOlive-SS1 11/25/15 0.0 0.0 20.9 -0.08 0.0 507NOlive 507NOlive-SS2 11/25/15 0.0 0.0 20.9 -0.08 0.0 507NOlive 507NOlive-SS3 11/25/15 27.0 0.0 20.9 -0.06 0.0 507NOlive 507NOlive-SS4 11/25/15 66.0 0.0 20.9 -0.08 0.0 507NOlive 507NOlive-SS5 11/25/15 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS7 11/25/15 0.0 <t< td=""><td>507NOlive</td><td>507NOlive-Basement</td><td>11/25/15</td><td>0.0</td><td>0.0</td><td></td><td></td><td>0.0</td></t<>	507NOlive	507NOlive-Basement	11/25/15	0.0	0.0			0.0
507NOlive 507NOlive-Front porch 11/25/15 0.0 0.0 0.0 507NOlive 507NOlive-Kitchen 11/25/15 0.0 0.0 0.0 507NOlive 507NOlive-Living room 11/25/15 0.0 0.0 0.0 507NOlive 507NOlive-SS1 11/25/15 0.0 0.0 20.9 -0.08 0.0 507NOlive 507NOlive-SS2 11/25/15 0.0 0.0 20.9 -0.08 0.0 507NOlive 507NOlive-SS3 11/25/15 27.0 0.0 20.9 -0.06 0.0 507NOlive 507NOlive-SS4 11/25/15 66.0 0.0 20.9 -0.08 0.0 507NOlive 507NOlive-SS5 11/25/15 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS6 11/25/15 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-Bseement 12/02/15 0.0 0.0	507NOlive	507NOlive-Computer room	11/25/15	0.0	0.0			0.0
507NOlive 507NOlive-Kitchen 11/25/15 0.0 0.0 0.0 507NOlive 507NOlive-Living room 11/25/15 0.0 0.0 0.0 507NOlive 507NOlive-SS1 11/25/15 0.0 0.0 20.9 -0.08 0.0 507NOlive 507NOlive-SS2 11/25/15 0.0 0.0 20.9 -0.08 0.0 507NOlive 507NOlive-SS3 11/25/15 27.0 0.0 20.9 -0.06 0.0 507NOlive 507NOlive-SS4 11/25/15 66.0 0.0 20.9 -0.08 0.0 507NOlive 507NOlive-SS5 11/25/15 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS6 11/25/15 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS7 11/25/15 0.0 0.0 20.9 0.00 0.0 507NOlive-So7 11/25/15 0.0 0.0 </td <td>507NOlive</td> <td>507NOlive-Floor drain in Basement</td> <td>11/25/15</td> <td>0.0</td> <td>0.0</td> <td></td> <td></td> <td>0.0</td>	507NOlive	507NOlive-Floor drain in Basement	11/25/15	0.0	0.0			0.0
507NOlive 507NOlive-Living room 11/25/15 0.0 0.0 0.0 507NOlive 507NOlive-SS1 11/25/15 0.0 0.0 20.9 -0.08 0.0 507NOlive 507NOlive-SS2 11/25/15 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS3 11/25/15 27.0 0.0 20.9 -0.06 0.0 507NOlive 507NOlive-SS4 11/25/15 66.0 0.0 20.9 -0.08 0.0 507NOlive 507NOlive-SS5 11/25/15 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS6 11/25/15 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS7 11/25/15 0.0 0.0 20.9 0.00 0.0 507NOlive-Basement 12/02/15 0.0 0.0 0.0 507NOlive-Stord drain in Basement 12/02/15 0.0 0.0	507NOlive	507NOlive-Front porch	11/25/15	0.0	0.0			0.0
507NOlive 507NOlive-SS1 11/25/15 0.0 0.0 20.9 -0.08 0.0 507NOlive 507NOlive-SS2 11/25/15 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS3 11/25/15 27.0 0.0 20.9 -0.06 0.0 507NOlive 507NOlive-SS4 11/25/15 66.0 0.0 20.9 -0.08 0.0 507NOlive 507NOlive-SS5 11/25/15 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS6 11/25/15 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS7 11/25/15 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-Basement 12/02/15 0.0 0.0 0.0 507NOlive-Floor drain in Basement 12/02/15 0.0 0.0 0.0 507NOlive-Front porch 12/02/15 0.0 0.0	507NOlive	507NOlive-Kitchen	11/25/15	0.0	0.0			0.0
507NOlive 507NOlive-SS1 11/25/15 0.0 0.0 20.9 -0.08 0.0 507NOlive 507NOlive-SS2 11/25/15 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS3 11/25/15 27.0 0.0 20.9 -0.06 0.0 507NOlive 507NOlive-SS4 11/25/15 66.0 0.0 20.9 -0.08 0.0 507NOlive 507NOlive-SS5 11/25/15 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS6 11/25/15 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS7 11/25/15 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-Basement 12/02/15 0.0 0.0 0.0 507NOlive-Floor drain in Basement 12/02/15 0.0 0.0 0.0 507NOlive-Front porch 12/02/15 0.0 0.0	507NOlive	507NOlive-Living room	11/25/15	0.0	0.0			0.0
507NOlive 507NOlive-SS3 11/25/15 27.0 0.0 20.9 -0.06 0.0 507NOlive 507NOlive-SS4 11/25/15 66.0 0.0 20.9 -0.08 0.0 507NOlive 507NOlive-SS5 11/25/15 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS6 11/25/15 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS7 11/25/15 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-Basement 12/02/15 0.0 0.0 0.0 507NOlive 507NOlive-Dininng Room 12/02/15 0.0 0.0 0.0 507NOlive 507NOlive-Floor drain in Basement 12/02/15 0.0 0.0 0.0 507NOlive 507NOlive-Front porch 12/02/15 0.0 0.0 0.0 507NOlive 507NOlive-Kitchen 1	507NOlive		11/25/15	0.0	0.0	20.9	-0.08	0.0
507NOlive 507NOlive-SS4 11/25/15 66.0 0.0 20.9 -0.08 0.0 507NOlive 507NOlive-SS5 11/25/15 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS6 11/25/15 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS7 11/25/15 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-Basement 12/02/15 0.0 0.0 0.0 507NOlive 507NOlive-Dininng Room 12/02/15 0.0 0.0 0.0 507NOlive 507NOlive-Floor drain in Basement 12/02/15 0.0 0.0 0.0 507NOlive 507NOlive-Front porch 12/02/15 0.0 0.0 0.0 507NOlive-Kitchen 12/02/15 0.0 0.0 0.0	507NOlive	507NOlive-SS2	11/25/15	0.0	0.0	20.9	0.00	0.0
507NOlive 507NOlive-SS5 11/25/15 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS6 11/25/15 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS7 11/25/15 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-Basement 12/02/15 0.0 0.0 0.0 507NOlive 507NOlive-Dininng Room 12/02/15 0.0 0.0 0.0 507NOlive 507NOlive-Floor drain in Basement 12/02/15 0.0 0.0 0.0 507NOlive 507NOlive-Front porch 12/02/15 0.0 0.0 0.0 507NOlive-Kitchen 12/02/15 0.0 0.0 0.0	507NOlive	507NOlive-SS3	11/25/15	27.0	0.0	20.9	-0.06	0.0
507NOlive 507NOlive-SS6 11/25/15 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS7 11/25/15 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-Basement 12/02/15 0.0 0.0 0.0 507NOlive 507NOlive-Dininng Room 12/02/15 0.0 0.0 0.0 507NOlive 507NOlive-Floor drain in Basement 12/02/15 0.0 0.0 0.0 507NOlive 507NOlive-Front porch 12/02/15 0.0 0.0 0.0 507NOlive-Kitchen 12/02/15 0.0 0.0 0.0	507NOlive	507NOlive-SS4	11/25/15	66.0	0.0	20.9	-0.08	0.0
507NOlive 507NOlive-SS7 11/25/15 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-Basement 12/02/15 0.0 0.0 0.0 507NOlive 507NOlive-Dininng Room 12/02/15 0.0 0.0 0.0 507NOlive 507NOlive-Floor drain in Basement 12/02/15 0.0 0.0 0.0 507NOlive 507NOlive-Front porch 12/02/15 0.0 0.0 0.0 507NOlive 507NOlive-Kitchen 12/02/15 0.0 0.0 0.0	507NOlive	507NOlive-SS5	11/25/15	0.0	0.0	20.9	0.00	0.0
507NOlive 507NOlive-Basement 12/02/15 0.0 0.0 0.0 507NOlive 507NOlive-Dininng Room 12/02/15 0.0 0.0 0.0 507NOlive 507NOlive-Floor drain in Basement 12/02/15 0.0 0.0 0.0 507NOlive 507NOlive-Front porch 12/02/15 0.0 0.0 0.0 507NOlive 507NOlive-Kitchen 12/02/15 0.0 0.0 0.0	507NOlive	507NOlive-SS6	11/25/15	0.0	0.0	20.9	0.00	0.0
507NOlive 507NOlive-Dininng Room 12/02/15 0.0 0.0 0.0 507NOlive 507NOlive-Floor drain in Basement 12/02/15 0.0 0.0 0.0 507NOlive 507NOlive-Front porch 12/02/15 0.0 0.0 0.0 507NOlive 507NOlive-Kitchen 12/02/15 0.0 0.0 0.0	507NOlive	507NOlive-SS7	11/25/15	0.0	0.0	20.9	0.00	0.0
507NOlive 507NOlive-Floor drain in Basement 12/02/15 0.0 0.0 0.0 507NOlive 507NOlive-Front porch 12/02/15 0.0 0.0 0.0 507NOlive 507NOlive-Kitchen 12/02/15 0.0 0.0 0.0	507NOlive	507NOlive-Basement	12/02/15	0.0	0.0			0.0
507NOlive 507NOlive-Front porch 12/02/15 0.0 0.0 0.0 507NOlive 507NOlive-Kitchen 12/02/15 0.0 0.0 0.0	507NOlive	507NOlive-Dininng Room	12/02/15	0.0	0.0			0.0
507NOlive 507NOlive-Kitchen 12/02/15 0.0 0.0 0.0	507NOlive	507NOlive-Floor drain in Basement	12/02/15	0.0	0.0			0.0
	507NOlive	507NOlive-Front porch	12/02/15	0.0	0.0			0.0
507NOlive 507NOlive-Living room 12/02/15 0.0 0.0 0.0	507NOlive	507NOlive-Kitchen	12/02/15	0.0	0.0			0.0
	507NOlive	507NOlive-Living room	12/02/15	0.0	0.0			0.0

FID TVPH Concentration, Direct

Location Group			C	oncentration, Direc	از			
507NOlive 507NOlive-SS1 12/02/15 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS2 12/02/15 90.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS3 12/02/15 110 0.0 20.9 -0.09 0.0 507NOlive 507NOlive-SS4 12/02/15 110 0.0 20.9 -0.10 0.0 507NOlive 507NOlive-SS5 12/02/15 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS6 12/02/15 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS6 12/02/15 0.0 0.0 20.9 0.00 0.0 507NOlive-Basement 12/07/15 0.0 0.0 20.9 0.00 0.0 507NOlive-Basement 12/07/15 0.0 0.0 0.0 - - 0.0 507NOlive-Basement 12/07/15 0.0 0.0 0.0 0.0 0.0 0.0 507NOlive-Basement 12/07/15 0.0 0.0 0.0 0.0 0.0 507NOlive 507NOlive-SS4 12/07/15 0.0 0.0 20.9 0.01 0.0 507NOlive 507NOlive-SS6 12/07/15 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-Basement 12/07/15 0.0 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-Basement 12/07/15 0.0 0.0 0.0 0.0 0.0 507NOlive 507NOlive-Basement 12/16/15	Location Group	Location ID	Date Sampled	Read	LEL	Oxygen	Pressure	Total Organic Vapor by PID
507NOlive 507NOlive-SS2 12/02/15 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS3 12/02/15 110 0.0 20.9 -0.10 0.0 507NOlive 507NOlive-SS5 12/02/15 110 0.0 20.9 -0.10 0.0 507NOlive 507NOlive-SS5 12/02/15 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS6 12/02/15 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS7 12/02/15 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS7 12/02/15 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-Basement 12/07/15 0.0 0.0 0.0 0.0 507NOlive 507NOlive-Basement 12/07/15 0.0 0.0 0.0 0.0 507NOlive 507NOlive-Floor drain in Basement 12/07/15 0.0 0.0 0.0 0.0 507NOlive 507NOlive-Floor drain in Basement 12/07/15 0.0 0.0 0.0 0.0 507NOlive 507NOlive-Kitchen 12/07/15 0.0 0.0 0.0 0.0 0.0 507NOlive 507NOlive-Kitchen 12/07/15 0.0 0.0 0.0 0.0 0.0 507NOlive 507NOlive-SS1 12/07/15 0.0 0.0 0.0 0.0				(ppmv)	(%)	(%)	(in-H2O)	(ppmv)
507NOlive	507NOlive	507NOlive-SS1	12/02/15	0.0	0.0	20.9	0.00	0.0
507NOlive 507NOlive-SS4 12/02/15 0.0 0.0 20.9 -0.10 0.0 507NOlive 507NOlive-SS5 12/02/15 0.0 0.0 20.9 0.00 0.0 0.0 507NOlive 507NOlive-SS6 12/02/15 0.0 0.0 20.9 0.00 0.0 0.0 507NOlive 507NOlive-Basement 12/07/15 0.0 0.0 0.0 0.0 0.0 507NOlive 507NOlive-Basement 12/07/15 0.0 0.0 0.0 0.0 0.0 0.0 507NOlive-Bosement 12/07/15 0.0	507NOlive	507NOlive-SS2	12/02/15	0.0	0.0	20.9	0.00	0.0
507NOlive 507NOlive-SSS 12/02/15 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SSS6 12/02/15 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SSS7 12/02/15 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-Dining Room 12/07/15 0.0 0.0 - - 0.0 507NOlive 507NOlive-Floor drain in Basement 12/07/15 0.0 0.0 - - 0.0 507NOlive 507NOlive-Floor porch 12/07/15 0.0 0.0 - - 0.0 507NOlive 507NOlive-Floor porch 12/07/15 0.0 0.0 - - 0.0 507NOlive 507NOlive-Floor porch 12/07/15 0.0 0.0 - - 0.0 507NOlive 507NOlive-SS1 12/07/15 0.0 0.0 0.0 - - 0.0 507NOlive 507NOlive-SS3 12/07/15 0.0	507NOlive	507NOlive-SS3	12/02/15	90.0	0.0	20.9	-0.09	0.0
\$67NOlive \$67NOlive-SS6 12/02/15 0.0 0.0 20.9 0.00 0.0 567NOlive-SS7 12/02/15 0.0 0.0 20.9 0.00 0.0 0.0 567NOlive-SS7 12/02/15 0.0	507NOlive	507NOlive-SS4	12/02/15	110	0.0	20.9	-0.10	0.0
507NOlive 507NOlive-Basement 12/02/15 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-Basement 12/07/15 0.0 0.0 - - 0.0 507NOlive 507NOlive-Dining Room 12/07/15 0.0 0.0 - - 0.0 507NOlive 507NOlive-Front porch 12/07/15 0.0 0.0 - - 0.0 507NOlive 507NOlive-Front porch 12/07/15 0.0 0.0 - - 0.0 507NOlive 507NOlive-Living room 12/07/15 0.0 0.0 - - 0.0 507NOlive 507NOlive-SS1 12/07/15 0.0 0.0 - - 0.0 507NOlive 507NOlive-SS2 12/07/15 0.0 0.0 20.9 -0.10 0.0 507NOlive 507NOlive-SS3 12/07/15 0.0 0.0 20.9 -0.07 0.0 507NOlive 507NOlive-SS4 12/07/15 9.0 0.0 <td< td=""><td>507NOlive</td><td>507NOlive-SS5</td><td>12/02/15</td><td>0.0</td><td>0.0</td><td>20.9</td><td>0.00</td><td>0.0</td></td<>	507NOlive	507NOlive-SS5	12/02/15	0.0	0.0	20.9	0.00	0.0
507NOlive 507NOlive-Dinining Room 12/07/15 0.0 0.0 0.0 507NOlive 507NOlive-Floor drain in Basement 12/07/15 0.0 0.0 0.0 507NOlive-Floor drain in Basement 12/07/15 0.0 0.0 0.0 507NOlive-Floor drain in Basement 12/07/15 0.0 0.0 0.0 507NOlive 507NOlive-Living room 12/07/15 0.0 0.0 0.0 507NOlive 507NOlive-SS1 12/07/15 0.0 0.0 0.0 507NOlive 507NOlive-SS2 12/07/15 0.0 0.0 20.9 -0.10 0.0 507NOlive 507NOlive-SS3 12/07/15 0.0 0.0 20.9 -0.07 0.0 507NOlive 507NOlive-SS4 12/07/15 91.0 0.0 20.9 -0.07 0.0 507NOlive 507NOlive-SS5 12/07/15 0.0 0.0 20.	507NOlive	507NOlive-SS6	12/02/15	0.0	0.0	20.9	0.00	0.0
507NOlive 507NOlive-Dining Room 12/07/15 0.0 0.0 0.0 507NOlive 507NOlive-Floor drain in Basement 12/07/15 0.0 0.0 0.0 507NOlive 507NOlive-Floor porch 12/07/15 0.0 0.0 0.0 507NOlive 507NOlive-Living room 12/07/15 0.0 0.0 0.0 507NOlive 507NOlive-SS1 12/07/15 0.0 0.0 0.0 507NOlive 507NOlive-SS2 12/07/15 0.0 0.0 20.9 -0.10 0.0 507NOlive 507NOlive-SS3 12/07/15 0.0 0.0 20.9 -0.07 0.0 507NOlive 507NOlive-SS4 12/07/15 46.0 0.0 20.9 -0.01 0.0 507NOlive 507NOlive-SS5 12/07/15 9.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS7 12/07/15 0.0	507NOlive	507NOlive-SS7	12/02/15	0.0	0.0	20.9	0.00	0.0
507NOlive 507NOlive-Front porch 12/07/15 0.0 0.0 0.0 507NOlive 507NOlive-Front porch 12/07/15 0.0 0.0 0.0 507NOlive 507NOlive-Living room 12/07/15 0.0 0.0 0.0 507NOlive 507NOlive-SS1 12/07/15 0.0 0.0 20.9 -0.10 0.0 507NOlive 507NOlive-SS2 12/07/15 0.0 0.0 20.9 -0.07 0.0 507NOlive 507NOlive-SS3 12/07/15 0.0 0.0 20.9 -0.07 0.0 507NOlive 507NOlive-SS3 12/07/15 46.0 0.0 20.9 -0.09 0.0 507NOlive 507NOlive-SS4 12/07/15 91.0 0.0 20.9 -0.01 0.0 507NOlive 507NOlive-SS6 12/07/15 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS7 12/07/15 0.0 0.0	507NOlive	507NOlive-Basement	12/07/15	0.0	0.0			0.0
507NOlive 507NOlive-Front porch 12/07/15 0.0 0.0 0.0 507NOlive 507NOlive-Kitchen 12/07/15 0.0 0.0 0.0 507NOlive 507NOlive-Living room 12/07/15 0.0 0.0 0.0 507NOlive 507NOlive-SS1 12/07/15 0.0 0.0 20.9 -0.10 0.0 507NOlive 507NOlive-SS3 12/07/15 0.0 0.0 20.9 -0.07 0.0 507NOlive 507NOlive-SS3 12/07/15 0.0 0.0 20.9 -0.09 0.0 507NOlive 507NOlive-SS4 12/07/15 91.0 0.0 20.9 -0.01 0.0 507NOlive 507NOlive-SS5 12/07/15 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS7 12/07/15 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS7 12/07/15 0.0 0.0	507NOlive	507NOlive-Dininng Room	12/07/15	0.0	0.0			0.0
507NOlive 507NOlive-Kitchen 12/07/15 0.0 0.0 0.0 507NOlive 507NOlive-Living room 12/07/15 0.0 0.0 0.0 507NOlive 507NOlive-SS1 12/07/15 0.0 0.0 20.9 -0.10 0.0 507NOlive 507NOlive-SS2 12/07/15 0.0 0.0 20.9 -0.07 0.0 507NOlive 507NOlive-SS3 12/07/15 46.0 0.0 20.9 -0.09 0.0 507NOlive 507NOlive-SS4 12/07/15 91.0 0.0 20.9 -0.11 0.0 507NOlive 507NOlive-SS5 12/07/15 0.0 0.0 20.9 -0.01 0.0 507NOlive 507NOlive-SS6 12/07/15 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS7 12/07/15 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-Bathroom in Basement 12/16/15 0.0	507NOlive	507NOlive-Floor drain in Basement	12/07/15	0.0	0.0			0.0
507NOlive 507NOlive-Living room 12/07/15 0.0 0.0 0.0 507NOlive 507NOlive-SS1 12/07/15 0.0 0.0 20.9 -0.10 0.0 507NOlive 507NOlive-SS2 12/07/15 0.0 0.0 20.9 -0.07 0.0 507NOlive 507NOlive-SS3 12/07/15 46.0 0.0 20.9 -0.09 0.0 507NOlive 507NOlive-SS4 12/07/15 91.0 0.0 20.9 -0.11 0.0 507NOlive 507NOlive-SS5 12/07/15 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS6 12/07/15 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS7 12/07/15 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-Bathroom in Basement 12/16/15 0.0 0.0 0.0 507NOlive 507NOlive-Choruter room 12/16/15 0.0	507NOlive	507NOlive-Front porch	12/07/15	0.0	0.0			0.0
507NOlive 507NOlive-SS1 12/07/15 0.0 0.0 20.9 -0.10 0.0 507NOlive 507NOlive-SS2 12/07/15 0.0 0.0 20.9 -0.07 0.0 507NOlive 507NOlive-SS3 12/07/15 46.0 0.0 20.9 -0.09 0.0 507NOlive 507NOlive-SS4 12/07/15 91.0 0.0 20.9 -0.11 0.0 507NOlive 507NOlive-SS5 12/07/15 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS6 12/07/15 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS7 12/07/15 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-Basement 12/16/15 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-Basement 12/16/15 0.0 0.0 0.0 507NOlive 507NOlive-Basement 12/16/15 0.0 0.0	507NOlive	507NOlive-Kitchen	12/07/15	0.0	0.0			0.0
507NOlive 507NOlive-SS2 12/07/15 0.0 0.0 20.9 -0.07 0.0 507NOlive 507NOlive-SS3 12/07/15 46.0 0.0 20.9 -0.09 0.0 507NOlive 507NOlive-SS4 12/07/15 91.0 0.0 20.9 -0.11 0.0 507NOlive 507NOlive-SS5 12/07/15 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS6 12/07/15 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-Basement 12/16/15 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-Bathroom in Basement 12/16/15 0.0 0.0 0.0 507NOlive 507NOlive-Bathroom in Basement 12/16/15 0.0 0.0 0.0 507NOlive 507NOlive-Bathroom in Basement 12/16/15 0.0 0.0 0.0 507NOlive 507NOlive-Front porch 12/16/15	507NOlive	507NOlive-Living room	12/07/15	0.0	0.0			0.0
507NOlive 507NOlive-SS2 12/07/15 0.0 0.0 20.9 -0.07 0.0 507NOlive 507NOlive-SS3 12/07/15 46.0 0.0 20.9 -0.09 0.0 507NOlive 507NOlive-SS4 12/07/15 91.0 0.0 20.9 -0.11 0.0 507NOlive 507NOlive-SS5 12/07/15 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS6 12/07/15 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-Basement 12/16/15 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-Bathroom in Basement 12/16/15 0.0 0.0 0.0 507NOlive 507NOlive-Bathroom in Basement 12/16/15 0.0 0.0 0.0 507NOlive 507NOlive-Bathroom in Basement 12/16/15 0.0 0.0 0.0 507NOlive 507NOlive-Front porch 12/16/15	507NOlive	507NOlive-SS1	12/07/15	0.0	0.0	20.9	-0.10	0.0
507NOlive 507NOlive-SS4 12/07/15 91.0 0.0 20.9 -0.11 0.0 507NOlive 507NOlive-SS5 12/07/15 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS6 12/07/15 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS7 12/07/15 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-Basement 12/16/15 0.0 0.0 0.0 507NOlive 507NOlive-Bathroom in Basement 12/16/15 0.0 0.0 0.0 507NOlive 507NOlive-Computer room 12/16/15 0.0 0.0 0.0 507NOlive 507NOlive-Floor drain in Basement 12/16/15 0.0 0.0 0.0 507NOlive 507NOlive-Floor porch 12/16/15 0.0 0.0 0.0 507NOlive 507NOlive-Kitchen 12/16/15 0.0	507NOlive	507NOlive-SS2	12/07/15	0.0		20.9	-0.07	
507NOlive 507NOlive-SS4 12/07/15 91.0 0.0 20.9 -0.11 0.0 507NOlive 507NOlive-SS5 12/07/15 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS6 12/07/15 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS7 12/07/15 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-Basement 12/16/15 0.0 0.0 0.0 507NOlive 507NOlive-Bathroom in Basement 12/16/15 0.0 0.0 0.0 507NOlive 507NOlive-Computer room 12/16/15 0.0 0.0 0.0 507NOlive 507NOlive-Floor drain in Basement 12/16/15 0.0 0.0 0.0 507NOlive 507NOlive-Floor porch 12/16/15 0.0 0.0 0.0 507NOlive 507NOlive-Kitchen 12/16/15 0.0	507NOlive	507NOlive-SS3	12/07/15	46.0	0.0	20.9	-0.09	0.0
507NOlive 507NOlive-SS5 12/07/15 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS6 12/07/15 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS7 12/07/15 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-Bashroom in Basement 12/16/15 0.0 0.0 0.0 507NOlive 507NOlive-Bathroom in Basement 12/16/15 0.0 0.0 0.0 507NOlive 507NOlive-Computer room 12/16/15 0.0 0.0 0.0 507NOlive 507NOlive-Floor drain in Basement 12/16/15 0.0 0.0 0.0 507NOlive 507NOlive-Front porch 12/16/15 0.0 0.0 0.0 507NOlive 507NOlive-Kitchen 12/16/15 0.0 0.0 0.0 507NOlive	507NOlive	507NOlive-SS4	12/07/15	91.0		20.9	-0.11	0.0
507NOlive 507NOlive-SS7 12/07/15 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-Basement 12/16/15 0.0 0.0 0.0 507NOlive 507NOlive-Bathroom in Basement 12/16/15 0.0 0.0 0.0 507NOlive 507NOlive-Computer room 12/16/15 0.0 0.0 0.0 507NOlive 507NOlive-Floor drain in Basement 12/16/15 0.0 0.0 0.0 507NOlive 507NOlive-Front porch 12/16/15 0.0 0.0 0.0 507NOlive 507NOlive-Kitchen 12/16/15 0.0 0.0 0.0 507NOlive 507NOlive-Living room 12/16/15 0.0 0.0 0.0 507NOlive 507NOlive-SS1 12/16/15 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS3 12/16/15 0.0 </td <td>507NOlive</td> <td>507NOlive-SS5</td> <td>12/07/15</td> <td>0.0</td> <td>0.0</td> <td>20.9</td> <td>0.00</td> <td>0.0</td>	507NOlive	507NOlive-SS5	12/07/15	0.0	0.0	20.9	0.00	0.0
507NOlive 507NOlive-SS7 12/07/15 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-Basement 12/16/15 0.0 0.0 0.0 507NOlive 507NOlive-Bathroom in Basement 12/16/15 0.0 0.0 0.0 507NOlive 507NOlive-Computer room 12/16/15 0.0 0.0 0.0 507NOlive 507NOlive-Floor drain in Basement 12/16/15 0.0 0.0 0.0 507NOlive 507NOlive-Front porch 12/16/15 0.0 0.0 0.0 507NOlive 507NOlive-Kitchen 12/16/15 0.0 0.0 0.0 507NOlive 507NOlive-Kitchen 12/16/15 0.0 0.0 0.0 507NOlive 507NOlive-Kitchen 12/16/15 0.0 0.0 0.0 507NOlive 507NOlive-SS1 12/16/15	507NOlive	507NOlive-SS6	12/07/15	0.0	0.0	20.9	0.00	0.0
507NOlive 507NOlive-Basement 12/16/15 0.0 0.0 0.0 507NOlive 507NOlive-Bathroom in Basement 12/16/15 0.0 0.0 0.0 507NOlive 507NOlive-Computer room 12/16/15 0.0 0.0 0.0 507NOlive 507NOlive-Floor drain in Basement 12/16/15 0.0 0.0 0.0 507NOlive 507NOlive-Front porch 12/16/15 0.0 0.0 0.0 507NOlive 507NOlive-Kitchen 12/16/15 0.0 0.0 0.0 507NOlive 507NOlive-Living room 12/16/15 0.0 0.0 0.0 507NOlive 507NOlive-SS1 12/16/15 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS2 12/16/15 0.0 0.0 20.9 0.06 0.0 507NOlive 507NOlive-SS4 12/16/15 <td>507NOlive</td> <td>507NOlive-SS7</td> <td>12/07/15</td> <td>0.0</td> <td>0.0</td> <td>20.9</td> <td>0.00</td> <td>0.0</td>	507NOlive	507NOlive-SS7	12/07/15	0.0	0.0	20.9	0.00	0.0
507NOlive 507NOlive-Computer room 12/16/15 0.0 0.0 0.0 507NOlive 507NOlive-Floor drain in Basement 12/16/15 0.0 0.0 0.0 507NOlive 507NOlive-Front porch 12/16/15 0.0 0.0 0.0 507NOlive 507NOlive-Kitchen 12/16/15 0.0 0.0 0.0 507NOlive 507NOlive-Living room 12/16/15 0.0 0.0 0.0 507NOlive 507NOlive-SS1 12/16/15 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS2 12/16/15 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS3 12/16/15 28.0 0.0 20.9 -0.06 0.0 507NOlive 507NOlive-SS4 12/16/15 14.0 0.0 20.9 -0.07 0.0 507NOlive 507NOlive-SS6 12/16/15 0.0	507NOlive	507NOlive-Basement	12/16/15	0.0				
507NOlive 507NOlive-Floor drain in Basement 12/16/15 0.0 0.0 0.0 507NOlive 507NOlive-Front porch 12/16/15 0.0 0.0 0.0 507NOlive 507NOlive-Kitchen 12/16/15 0.0 0.0 0.0 507NOlive 507NOlive-Living room 12/16/15 0.0 0.0 0.0 507NOlive 507NOlive-SS1 12/16/15 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS2 12/16/15 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS3 12/16/15 28.0 0.0 20.9 -0.06 0.0 507NOlive 507NOlive-SS4 12/16/15 14.0 0.0 20.9 -0.07 0.0 507NOlive 507NOlive-SS5 12/16/15 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS6 12/16/15 0.0	507NOlive	507NOlive-Bathroom in Basement	12/16/15	0.0	0.0			0.0
507NOlive 507NOlive-Floor drain in Basement 12/16/15 0.0 0.0 0.0 507NOlive 507NOlive-Front porch 12/16/15 0.0 0.0 0.0 507NOlive 507NOlive-Kitchen 12/16/15 0.0 0.0 0.0 507NOlive 507NOlive-Living room 12/16/15 0.0 0.0 0.0 507NOlive 507NOlive-SS1 12/16/15 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS2 12/16/15 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS3 12/16/15 28.0 0.0 20.9 -0.06 0.0 507NOlive 507NOlive-SS4 12/16/15 14.0 0.0 20.9 -0.07 0.0 507NOlive 507NOlive-SS5 12/16/15 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS6 12/16/15 0.0	507NOlive	507NOlive-Computer room	12/16/15	0.0	0.0			0.0
507NOlive 507NOlive-Kitchen 12/16/15 0.0 0.0 0.0 507NOlive 507NOlive-Living room 12/16/15 0.0 0.0 0.0 507NOlive 507NOlive-SS1 12/16/15 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS2 12/16/15 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS3 12/16/15 28.0 0.0 20.9 -0.06 0.0 507NOlive 507NOlive-SS4 12/16/15 14.0 0.0 20.9 -0.07 0.0 507NOlive 507NOlive-SS5 12/16/15 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS6 12/16/15 0.0 0.0 20.9 0.00 0.0	507NOlive	507NOlive-Floor drain in Basement	12/16/15	0.0	0.0			0.0
507NOlive 507NOlive-Living room 12/16/15 0.0 0.0 0.0 507NOlive 507NOlive-SS1 12/16/15 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS2 12/16/15 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS3 12/16/15 28.0 0.0 20.9 -0.06 0.0 507NOlive 507NOlive-SS4 12/16/15 14.0 0.0 20.9 -0.07 0.0 507NOlive 507NOlive-SS5 12/16/15 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS6 12/16/15 0.0 0.0 20.9 0.00 0.0	507NOlive	507NOlive-Front porch	12/16/15	0.0	0.0			0.0
507NOlive 507NOlive-SS1 12/16/15 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS2 12/16/15 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS3 12/16/15 28.0 0.0 20.9 -0.06 0.0 507NOlive 507NOlive-SS4 12/16/15 14.0 0.0 20.9 -0.07 0.0 507NOlive 507NOlive-SS5 12/16/15 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS6 12/16/15 0.0 0.0 20.9 0.00 0.0	507NOlive	507NOlive-Kitchen	12/16/15	0.0	0.0			0.0
507NOlive 507NOlive-SS2 12/16/15 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS3 12/16/15 28.0 0.0 20.9 -0.06 0.0 507NOlive 507NOlive-SS4 12/16/15 14.0 0.0 20.9 -0.07 0.0 507NOlive 507NOlive-SS5 12/16/15 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS6 12/16/15 0.0 0.0 20.9 0.00 0.0	507NOlive	507NOlive-Living room	12/16/15	0.0	0.0			0.0
507NOlive 507NOlive-SS3 12/16/15 28.0 0.0 20.9 -0.06 0.0 507NOlive 507NOlive-SS4 12/16/15 14.0 0.0 20.9 -0.07 0.0 507NOlive 507NOlive-SS5 12/16/15 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS6 12/16/15 0.0 0.0 20.9 0.00 0.0	507NOlive	507NOlive-SS1	12/16/15	0.0	0.0	20.9	0.00	0.0
507NOlive 507NOlive-SS4 12/16/15 14.0 0.0 20.9 -0.07 0.0 507NOlive 507NOlive-SS5 12/16/15 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS6 12/16/15 0.0 0.0 20.9 0.00 0.0	507NOlive	507NOlive-SS2	12/16/15	0.0	0.0	20.9	0.00	0.0
507NOlive 507NOlive-SS4 12/16/15 14.0 0.0 20.9 -0.07 0.0 507NOlive 507NOlive-SS5 12/16/15 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS6 12/16/15 0.0 0.0 20.9 0.00 0.0	507NOlive	507NOlive-SS3	12/16/15	28.0	0.0	20.9	-0.06	0.0
507NOlive 507NOlive-SS5 12/16/15 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS6 12/16/15 0.0 0.0 20.9 0.00 0.0	507NOlive	507NOlive-SS4	12/16/15	14.0	0.0	20.9	-0.07	
507NOlive 507NOlive-SS6 12/16/15 0.0 0.0 20.9 0.00 0.0	507NOlive	507NOlive-SS5	12/16/15	0.0	0.0	20.9	0.00	0.0
507NOlive 507NOlive-SS7 12/16/15 0.0 0.0 20.9 0.00 0.0	507NOlive	507NOlive-SS6	12/16/15	0.0		20.9		
	507NOlive	507NOlive-SS7	12/16/15	0.0	0.0	20.9	0.00	0.0

FID TVPH Concentration, Direct

Location Group	Location ID	Date Sampled	Read	LEL	Oxygen	Pressure	Total Organic Vapor by PID
•		·	(ppmv)	(%)	(%)	(in-H2O)	(ppmv)
507NOlive	507NOlive-Basement	01/06/16	0.0	0.0			0.0
507NOlive	507NOlive-Bathroom in Basement	01/06/16	0.0	0.0			0.0
507NOlive	507NOlive-Computer room	01/06/16	0.0	0.0			0.0
507NOlive	507NOlive-E Porch	01/06/16	0.0	0.0			0.0
507NOlive	507NOlive-Floor drain in Basement	01/06/16	0.0	0.0			0.0
507NOlive	507NOlive-Front porch	01/06/16	0.0	0.0			0.0
507NOlive	507NOlive-Kitchen	01/06/16	0.0	0.0			0.0
507NOlive	507NOlive-Living room	01/06/16	0.0	0.0			0.0
507NOlive	507NOlive-SS1	01/06/16					
507NOlive	507NOlive-SS2	01/06/16	0.0	0.0	20.9	0.00	0.0
507NOlive	507NOlive-SS3	01/06/16	4.2	0.0	20.9	-0.07	0.0
507NOlive	507NOlive-SS4	01/06/16	17.3	0.0	20.9	-0.08	0.0
507NOlive	507NOlive-SS5	01/06/16	0.0	0.0	20.9	0.00	0.0
507NOlive	507NOlive-SS6	01/06/16	0.0	0.0	20.9	0.00	0.0
507NOlive	507NOlive-SS7	01/06/16	0.0	0.0	20.9	0.00	0.0
507NOlive	507NOlive-Basement	01/13/16	0.0	0.0			0.0
507NOlive	507NOlive-Computer room	01/13/16	0.0	0.0			0.0
507NOlive	507NOlive-Floor drain in Basement	01/13/16	0.0	0.0			0.0
507NOlive	507NOlive-Front porch	01/13/16	0.0	0.0			0.0
507NOlive	507NOlive-Kitchen	01/13/16	0.0	0.0			0.0
507NOlive	507NOlive-Living room	01/13/16	0.0	0.0			0.0
507NOlive	507NOlive-SS1	01/13/16	0.0	0.0	20.9	0.00	0.0
507NOlive	507NOlive-SS2	01/13/16	0.0	0.0	20.0	-0.06	0.0
507NOlive	507NOlive-SS3	01/13/16	3.3	0.0	20.9	-0.09	0.0
507NOlive	507NOlive-SS4	01/13/16	7.2	0.0	20.9	-0.10	0.0
507NOlive	507NOlive-SS5	01/13/16	0.0	0.0	20.0	0.00	0.0
507NOlive	507NOlive-SS6	01/13/16	0.0	0.0	20.9	0.00	0.0
507NOlive	507NOlive-SS7	01/13/16	0.0	0.0	20.9	0.00	0.0
507NOlive	507NOlive-Basement	01/27/16	0.0	0.0			0.0
507NOlive	507NOlive-Dininng Room	01/27/16	0.0	0.0			0.0
507NOlive	507NOlive-Floor drain in Basement	01/27/16	0.0	0.0			0.0
507NOlive	507NOlive-Front porch	01/27/16	0.0	0.0			0.0
507NOlive	507NOlive-Kitchen	01/27/16	0.0	0.0			0.0
507NOlive	507NOlive-Living room	01/27/16	0.0	0.0			0.0

FID TVPH Concentration, Direct

Location Group			C	oncentration, Direc	il			
507NOlive 507NOlive-SS1 01/27/16 0.0 0.0 20.9 0.00 0.0 507NOlive-SS2 01/27/16 0.0 0.0 20.9 0.00 0.0 507NOlive-SS3 01/27/16 9.0 0.0 20.9 0.00 0.0 507NOlive-SS3 01/27/16 54.0 0.0 20.9 -0.07 0.0 507NOlive 507NOlive-SS5 01/27/16 54.0 0.0 20.9 -0.07 0.0 507NOlive 507NOlive-SS5 01/27/16 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS6 01/27/16 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS7 01/27/16 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS7 01/27/16 0.0 0.0 20.9 0.00 0.0 507NOlive-SS7 01/27/16 0.0 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-Computer room 02/03/16 0.0 0.0 0.0 507NOlive 507NOlive-Computer room 02/03/16 0.0 0.0 0.0 507NOlive 507NOlive-SS1 02/03/16 0.0 0.0 0.0 507NOlive 507NOlive-SS1 02/03/16 0.0 0.0 0.0 0.0 507NOlive 507NOlive-SS1 02/03/16 0.0 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS2 02/03/16 0.0 0.0 20.9 0.05 0.0 507NOlive 507NOlive-SS3 02/03/16 0.0 0.0 20.9 0.05 0.0 507NOlive 507NOlive-SS3 02/03/16 0.0 0.0 20.9 0.08 0.0 507NOlive 507NOlive-SS5 02/03/16 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS5 02/03/16 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS6 02/03/16 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS6 02/03/16 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS7 02/03/16 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS6 02/03/16 0.0	Location Group	Location ID	Date Sampled	Read	LEL	Oxygen	Pressure	Total Organic Vapor by PID
507NOlive 507NOlive-SS2 01/27/16 0.0 0.0 20.9 0.00 0.0 0.0 507NOlive-SS3 01/27/16 9.0 0.0 20.9 -0.05 0.0 0.0 507NOlive-SS4 01/27/16 54.0 0.0 20.9 -0.07 0.0 0.0 507NOlive-SS5 01/27/16 0.0 0.0 20.9 0.00 0.0 0.0 507NOlive-SS6 01/27/16 0.0 0.0 20.9 0.00 0.0 0.0 507NOlive-SS6 01/27/16 0.0 0.0 20.9 0.00 0.0 0.0 507NOlive-SS7 01/27/16 0.0 0.0 20.9 0.00 0.0 0.0 507NOlive-SS7 01/27/16 0.0 0.0 20.9 0.00 0.0 0.0 507NOlive-SS7 01/27/16 0.0 0.0 0.0 0.0 0.				(ppmv)	(%)	(%)	(in-H2O)	(ppmv)
507NOlive	507NOlive	507NOlive-SS1	01/27/16	0.0	0.0	20.9	0.00	0.0
507NOlive 507NOlive-SS5 01/27/16 54.0 0.0 20.9 0.07 0.0 507NOlive 507NOlive-SS5 01/27/16 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS7 01/27/16 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS7 01/27/16 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-Computer room 02/03/16 0.0 0.0 0.0 0.0 507NOlive 507NOlive-Front porch 02/03/16 0.0 0.0 0.0 0.0 507NOlive 507NOlive-Front porch 02/03/16 0.0 0.0 0.0 0.0 0.0 507NOlive 507NOlive-Indig room 02/03/16 0.0 0.0 0.0 0.0 0.0 507NOlive 507NOlive-SS1 02/03/16 0.0 0.0 0.0 0.0 0.0 507NOlive 507NOlive-SS1 02/03/16 0.0 0.0 0.0 0.0 0.0 507NOlive 507NOlive-SS2 02/03/16 0.0 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS3 02/03/16 0.0 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS3 02/03/16 0.0 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS4 02/03/16 0.0 0.0 20.9 0.09 0.0 507NOlive 507NOlive-SS5 02/03/16 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS5 02/03/16 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS7 02/03/16 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS7 02/03/16 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS7 02/03/16 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-Basement 02/10/16 1.6 0.0 0.0 0.0 0.0 507NOlive 507NOlive-Floor drain in Basement 02/10/16 0.0 0.0 0.0 0.0 507NOlive 507NOlive-SS1 02/10/16 0.0 0.0 0.0 0.0 507NOlive 507NOlive-SS3 02/10/16 0.0 0.0 0.0 0.0 507NOlive 507NOlive-SS3 02/10/16 0.0 0.0 0.0 0.0 507NOlive 507NOlive-SS4 02/10/16 0.0 0.0 0.0 0.0 507NOlive 507NOlive-SS4 02/10/16 0.0 0.0 0.0 0.0 507NOl	507NOlive	507NOlive-SS2	01/27/16	0.0	0.0	20.9	0.00	0.0
507NOlive 507NOlive-SS6 01/27/16 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS6 01/27/16 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS7 01/27/16 0.0 0.0 0.0 20.9 0.00 0.0 0.0 507NOlive 507NOlive-SS7 01/27/16 0.0	507NOlive	507NOlive-SS3	01/27/16	9.0	0.0	20.9	-0.05	0.0
S07NOlive S07NOlive-SS6 01/27/16 0.0 0.0 20.9 0.00 0.0 507NOlive S07NOlive-SS7 01/27/16 0.0 0.0 0.0 20.9 0.00 0.0 507NOlive-SS6 02/03/16 0.0	507NOlive	507NOlive-SS4	01/27/16	54.0	0.0	20.9	-0.07	0.0
\$07NOlive \$07NOlive-SS7 \$01/27/16 \$0.0 \$0	507NOlive	507NOlive-SS5	01/27/16	0.0	0.0	20.9	0.00	0.0
507NOlive 507NOlive-Dimpler room 02/03/16 0.0 0.0 0.0 507NOlive 507NOlive-Dimpler room 02/03/16 0.0 0.0 0.0 507NOlive 507NOlive-Living room 02/03/16 0.0 0.0 0.0 507NOlive 507NOlive-SS1 02/03/16 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS2 02/03/16 0.0 0.0 20.9 -0.05 0.0 507NOlive 507NOlive-SS3 02/03/16 34.0 0.0 20.9 -0.08 0.0 507NOlive 507NOlive-SS4 02/03/16 14.0 0.0 20.9 -0.09 0.0 507NOlive 507NOlive-SS5 02/03/16 0.0 0.0 20.9 -0.09 0.0 507NOlive 507NOlive-SS7 02/03/16 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS7 02/03/16 0.0 0.0	507NOlive	507NOlive-SS6	01/27/16	0.0	0.0	20.9	0.00	0.0
507NOlive 507NOlive-Computer room 02/03/16 0.0 0.0 0.0 507NOlive 507NOlive-Eriorin prorch 02/03/16 0.0 0.0 0.0 507NOlive 507NOlive-SS1 02/03/16 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS2 02/03/16 0.0 0.0 20.9 -0.05 0.0 507NOlive 507NOlive-SS3 02/03/16 0.0 0.0 20.9 -0.05 0.0 507NOlive 507NOlive-SS3 02/03/16 14.0 0.0 20.9 -0.08 0.0 507NOlive 507NOlive-SS4 02/03/16 14.0 0.0 20.9 -0.09 0.0 507NOlive 507NOlive-SS6 02/03/16 0.0 0.0 20.9 0.00 0.0 507NOlive-SS6 02/03/16 0.0 0.0 20.9 0.00 0.0 507NOlive-SS7 02/03/16 0.0 0.0 20.9 0.00 <t< td=""><td>507NOlive</td><td>507NOlive-SS7</td><td>01/27/16</td><td>0.0</td><td>0.0</td><td>20.9</td><td>0.00</td><td>0.0</td></t<>	507NOlive	507NOlive-SS7	01/27/16	0.0	0.0	20.9	0.00	0.0
507NOlive 507NOlive-Front porch 02/03/16 0.0 0.0 0.0 507NOlive 507NOlive-Living room 02/03/16 0.0 0.0 0.0 507NOlive 507NOlive-SS1 02/03/16 0.0 0.0 20.9 0.05 0.0 507NOlive 507NOlive-SS2 02/03/16 0.0 0.0 20.9 -0.05 0.0 507NOlive 507NOlive-SS3 02/03/16 34.0 0.0 20.9 -0.08 0.0 507NOlive 507NOlive-SS5 02/03/16 0.0 0.0 20.9 -0.09 0.0 507NOlive 507NOlive-SS5 02/03/16 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS6 02/03/16 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS7 02/03/16 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-Basement 02/10/16 1.6 0.0	507NOlive	507NOlive-Basement	02/03/16	0.0	0.0			0.0
507NOlive 507NOlive -Living room 02/03/16 0.0 0.0 0.0 507NOlive 507NOlive-SS1 02/03/16 0.0 0.0 20.9 -0.05 0.0 507NOlive 507NOlive-SS2 02/03/16 0.0 0.0 20.9 -0.05 0.0 507NOlive 507NOlive-SS3 02/03/16 34.0 0.0 20.9 -0.08 0.0 507NOlive 507NOlive-SS5 02/03/16 14.0 0.0 20.9 -0.09 0.0 507NOlive 507NOlive-SS6 02/03/16 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS6 02/03/16 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS7 02/03/16 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-Basement 02/10/16 1.6 0.0 - - - 0.0 507NOlive 507NOlive-Front porch 02/10/16 0.0	507NOlive	507NOlive-Computer room	02/03/16	0.0	0.0			0.0
507NOlive 507NOlive-SS1 02/03/16 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS2 02/03/16 0.0 0.0 20.9 -0.05 0.0 507NOlive 507NOlive-SS3 02/03/16 34.0 0.0 20.9 -0.08 0.0 507NOlive 507NOlive-SS4 02/03/16 14.0 0.0 20.9 -0.09 0.0 507NOlive 507NOlive-SS5 02/03/16 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS6 02/03/16 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS7 02/03/16 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS7 02/03/16 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SB0 02/10/16 1.6 0.0 0.0	507NOlive	507NOlive-Front porch	02/03/16	0.0	0.0			0.0
507NOlive 507NOlive-SS2 02/03/16 0.0 0.0 20.9 -0.05 0.0 507NOlive 507NOlive-SS3 02/03/16 34.0 0.0 20.9 -0.08 0.0 507NOlive 507NOlive-SS4 02/03/16 14.0 0.0 20.9 -0.09 0.0 507NOlive 507NOlive-SS5 02/03/16 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS6 02/03/16 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS7 02/03/16 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-Basement 02/10/16 1.6 0.0 0.0 507NOlive 507NOlive-Boordrain in Basement 02/10/16 0.0 0.0 0.0 507NOlive 507NOlive-Front porch 02/10/16 0.0 0.0 0.0 507NOlive 507NOlive-Kitchen 02/10/16 0.0	507NOlive	507NOlive-Living room	02/03/16	0.0	0.0			0.0
507NOlive 507NOlive-SS3 02/03/16 34.0 0.0 20.9 -0.08 0.0 507NOlive 507NOlive-SS4 02/03/16 14.0 0.0 20.9 -0.09 0.0 507NOlive 507NOlive-SS5 02/03/16 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS6 02/03/16 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS7 02/03/16 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-Basement 02/10/16 1.6 0.0 0.0 507NOlive 507NOlive-Basement 02/10/16 1.6 0.0 0.0 507NOlive 507NOlive-Basement 02/10/16 1.6 0.0 0.0 507NOlive 507NOlive-Front porch 02/10/16 1.6 0.0 0.0 507NOlive 507NOlive-Kitchen 02/10/16 3.0 0.0	507NOlive	507NOlive-SS1	02/03/16	0.0	0.0	20.9	0.00	0.0
507NOlive 507NOlive-SS4 02/03/16 14.0 0.0 20.9 -0.09 0.0 507NOlive 507NOlive-SS5 02/03/16 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS6 02/03/16 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-Basement 02/03/16 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-Basement 02/10/16 1.6 0.0 0.0 507NOlive 507NOlive-Dining Room 02/10/16 1.6 0.0 0.0 507NOlive 507NOlive-Floor drain in Basement 02/10/16 1.6 0.0 0.0 507NOlive 507NOlive-Front porch 02/10/16 1.6 0.0 0.0 507NOlive 507NOlive-Kitchen 02/10/16 3.0 0.0 0.0 507NOlive 507NOlive-SS1 02/10/16 3.0	507NOlive	507NOlive-SS2	02/03/16	0.0	0.0	20.9	-0.05	0.0
507NOlive 507NOlive-SS5 02/03/16 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS6 02/03/16 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS7 02/03/16 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-Basement 02/10/16 1.6 0.0 0.0 507NOlive 507NOlive-Dininng Room 02/10/16 0.0 0.0 0.0 507NOlive 507NOlive-Floor drain in Basement 02/10/16 1.6 0.0 0.0 507NOlive 507NOlive-Front porch 02/10/16 0.0 0.0 0.0 507NOlive 507NOlive-Kitchen 02/10/16 3.0 0.0 0.0 507NOlive 507NOlive-SS1 02/10/16 3.0 0.0 0.0 0.0 507NOlive 507NOlive-SS3 02/10/16 21.5 </td <td>507NOlive</td> <td>507NOlive-SS3</td> <td>02/03/16</td> <td>34.0</td> <td>0.0</td> <td>20.9</td> <td>-0.08</td> <td>0.0</td>	507NOlive	507NOlive-SS3	02/03/16	34.0	0.0	20.9	-0.08	0.0
507NOlive 507NOlive-SS6 02/03/16 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS7 02/03/16 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-Basement 02/10/16 1.6 0.0 0.0 507NOlive 507NOlive-Dining Room 02/10/16 1.6 0.0 0.0 507NOlive 507NOlive-Floor drain in Basement 02/10/16 1.6 0.0 0.0 507NOlive 507NOlive-Front porch 02/10/16 0.0 0.0 0.0 507NOlive 507NOlive-Kitchen 02/10/16 3.0 0.0 0.0 507NOlive 507NOlive-Living room 02/10/16 3.0 0.0 0.0 507NOlive 507NOlive-SS1 02/10/16 3.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS3 02/10/16 21.5 <t< td=""><td>507NOlive</td><td>507NOlive-SS4</td><td>02/03/16</td><td>14.0</td><td>0.0</td><td>20.9</td><td>-0.09</td><td>0.0</td></t<>	507NOlive	507NOlive-SS4	02/03/16	14.0	0.0	20.9	-0.09	0.0
507NOlive 507NOlive-SS7 02/03/16 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-Basement 02/10/16 1.6 0.0 0.0 507NOlive 507NOlive-Dining Room 02/10/16 0.0 0.0 0.0 507NOlive 507NOlive-Floor drain in Basement 02/10/16 1.6 0.0 0.0 507NOlive 507NOlive-Front porch 02/10/16 0.0 0.0 0.0 507NOlive 507NOlive-Kitchen 02/10/16 3.0 0.0 0.0 507NOlive 507NOlive-Living room 02/10/16 3.0 0.0 0.0 507NOlive 507NOlive-SS1 02/10/16 3.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS2 02/10/16 21.5 0.0 20.9 0.06 0.0 507NOlive 507NOlive-SS3 02/10/16 <td< td=""><td>507NOlive</td><td>507NOlive-SS5</td><td>02/03/16</td><td>0.0</td><td>0.0</td><td>20.9</td><td>0.00</td><td>0.0</td></td<>	507NOlive	507NOlive-SS5	02/03/16	0.0	0.0	20.9	0.00	0.0
507NOlive 507NOlive-Basement 02/10/16 1.6 0.0 0.0 507NOlive 507NOlive-Dining Room 02/10/16 0.0 0.0 0.0 507NOlive 507NOlive-Floor drain in Basement 02/10/16 1.6 0.0 0.0 507NOlive 507NOlive-Front porch 02/10/16 0.0 0.0 0.0 507NOlive 507NOlive-Kitchen 02/10/16 3.0 0.0 0.0 507NOlive 507NOlive-Living room 02/10/16 3.0 0.0 0.0 507NOlive 507NOlive-SS1 02/10/16 3.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS2 02/10/16 21.5 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS3 02/10/16 25.0 0.0 20.9 -0.06 0.0 507NOlive 507NOlive-SS5 02/10/16 0.0	507NOlive	507NOlive-SS6	02/03/16	0.0	0.0	20.9	0.00	0.0
507NOlive 507NOlive-Dining Room 02/10/16 0.0 0.0 0.0 507NOlive 507NOlive-Floor drain in Basement 02/10/16 1.6 0.0 0.0 507NOlive 507NOlive-Front porch 02/10/16 0.0 0.0 0.0 507NOlive 507NOlive-Kitchen 02/10/16 3.0 0.0 0.0 507NOlive 507NOlive-Living room 02/10/16 0.0 0.0 0.0 507NOlive 507NOlive-SS1 02/10/16 3.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS2 02/10/16 21.5 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS3 02/10/16 25.0 0.0 20.9 -0.06 0.0 507NOlive 507NOlive-SS4 02/10/16 20 0.0 20.9 -0.06 1.0 507NOlive 507NOlive-SS6 02/10/16 0.0 <	507NOlive	507NOlive-SS7	02/03/16	0.0	0.0	20.9	0.00	0.0
507NOlive 507NOlive-Floor drain in Basement 02/10/16 1.6 0.0 0.0 507NOlive 507NOlive-Front porch 02/10/16 0.0 0.0 0.0 507NOlive 507NOlive-Kitchen 02/10/16 3.0 0.0 0.0 507NOlive 507NOlive-Living room 02/10/16 0.0 0.0 0.0 507NOlive 507NOlive-SS1 02/10/16 3.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS2 02/10/16 21.5 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS3 02/10/16 25.0 0.0 20.9 -0.06 0.0 507NOlive 507NOlive-SS4 02/10/16 25.0 0.0 20.9 -0.06 1.0 507NOlive 507NOlive-SS5 02/10/16 0.0 0.0 20.9 0.00 32.0 507NOlive 507NOlive-SS6 02/10/16 0.0 <t< td=""><td>507NOlive</td><td>507NOlive-Basement</td><td>02/10/16</td><td>1.6</td><td>0.0</td><td></td><td></td><td>0.0</td></t<>	507NOlive	507NOlive-Basement	02/10/16	1.6	0.0			0.0
507NOlive 507NOlive-Front porch 02/10/16 0.0 0.0 0.0 507NOlive 507NOlive-Kitchen 02/10/16 3.0 0.0 0.0 507NOlive 507NOlive-Living room 02/10/16 0.0 0.0 0.0 507NOlive 507NOlive-SS1 02/10/16 3.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS2 02/10/16 21.5 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS3 02/10/16 25.0 0.0 20.9 -0.06 0.0 507NOlive 507NOlive-SS4 02/10/16 200 0.0 20.9 -0.06 1.0 507NOlive 507NOlive-SS5 02/10/16 0.0 0.0 20.9 0.00 32.0 507NOlive 507NOlive-SS6 02/10/16 0.0 0.0 20.9 0.00 5.0 507NOlive 507NOlive-Basement <	507NOlive	507NOlive-Dininng Room	02/10/16	0.0	0.0			0.0
507NOlive 507NOlive-Kitchen 02/10/16 3.0 0.0 0.0 507NOlive 507NOlive-Living room 02/10/16 0.0 0.0 0.0 507NOlive 507NOlive-SS1 02/10/16 3.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS2 02/10/16 21.5 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS3 02/10/16 25.0 0.0 20.9 -0.06 0.0 507NOlive 507NOlive-SS4 02/10/16 200 0.0 20.9 -0.06 1.0 507NOlive 507NOlive-SS5 02/10/16 0.0 0.0 20.9 0.00 32.0 507NOlive 507NOlive-SS6 02/10/16 0.0 0.0 20.9 0.00 5.0 507NOlive 507NOlive-Basement 02/17/16 0.0 0.0 0.0 507NOlive-Bathroom in Basement 02/17/16 0.0 0.0	507NOlive	507NOlive-Floor drain in Basement	02/10/16	1.6	0.0			0.0
507NOlive 507NOlive-Living room 02/10/16 0.0 0.0 0.0 507NOlive 507NOlive-SS1 02/10/16 3.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS2 02/10/16 21.5 0.0 20.9 0.06 0.0 507NOlive 507NOlive-SS3 02/10/16 25.0 0.0 20.9 -0.06 0.0 507NOlive 507NOlive-SS4 02/10/16 200 0.0 20.9 -0.06 1.0 507NOlive 507NOlive-SS5 02/10/16 0.0 0.0 20.9 0.00 32.0 507NOlive 507NOlive-SS6 02/10/16 0.0 0.0 20.9 0.00 5.0 507NOlive 507NOlive-Basement 02/17/16 0.0 0.0 0.0 507NOlive-Bathroom in Basement 02/17/16 0.0 0.0 0.0	507NOlive	507NOlive-Front porch	02/10/16	0.0	0.0			0.0
507NOlive 507NOlive-SS1 02/10/16 3.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS2 02/10/16 21.5 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS3 02/10/16 25.0 0.0 20.9 -0.06 0.0 507NOlive 507NOlive-SS4 02/10/16 200 0.0 20.9 -0.06 1.0 507NOlive 507NOlive-SS5 02/10/16 0.0 0.0 20.9 0.00 32.0 507NOlive 507NOlive-SS6 02/10/16 0.0 0.0 20.9 0.00 5.0 507NOlive 507NOlive-Sasement 02/17/16 0.0 0.0 0.0 507NOlive-Basthroom in Basement 02/17/16 0.0 0.0 0.0	507NOlive	507NOlive-Kitchen	02/10/16	3.0	0.0			0.0
507NOlive 507NOlive-SS2 02/10/16 21.5 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS3 02/10/16 25.0 0.0 20.9 -0.06 0.0 507NOlive 507NOlive-SS4 02/10/16 200 0.0 20.9 -0.06 1.0 507NOlive 507NOlive-SS5 02/10/16 0.0 0.0 20.9 0.00 32.0 507NOlive 507NOlive-SS6 02/10/16 0.0 0.0 20.9 0.00 5.0 507NOlive 507NOlive-Sasement 02/17/16 0.0 0.0 0.0 507NOlive-Bathroom in Basement 02/17/16 0.0 0.0 0.0	507NOlive	507NOlive-Living room	02/10/16	0.0	0.0			0.0
507NOlive 507NOlive-SS3 02/10/16 25.0 0.0 20.9 -0.06 0.0 507NOlive 507NOlive-SS4 02/10/16 200 0.0 20.9 -0.06 1.0 507NOlive 507NOlive-SS5 02/10/16 0.0 0.0 20.9 0.00 32.0 507NOlive 507NOlive-SS6 02/10/16 0.0 0.0 20.9 0.00 5.0 507NOlive 507NOlive-SS7 02/10/16 0.0 0.0 20.9 0.00 3.0 507NOlive 507NOlive-Basement 02/17/16 0.0 0.0 0.0 507NOlive-Bathroom in Basement 02/17/16 0.0 0.0 0.0	507NOlive	507NOlive-SS1	02/10/16	3.0	0.0	20.9	0.00	0.0
507NOlive 507NOlive-SS4 02/10/16 200 0.0 20.9 -0.06 1.0 507NOlive 507NOlive-SS5 02/10/16 0.0 0.0 20.9 0.00 32.0 507NOlive 507NOlive-SS6 02/10/16 0.0 0.0 20.9 0.00 5.0 507NOlive 507NOlive-SS7 02/10/16 0.0 0.0 20.9 0.00 3.0 507NOlive 507NOlive-Basement 02/17/16 0.0 0.0 0.0 507NOlive-Bathroom in Basement 02/17/16 0.0 0.0 0.0	507NOlive	507NOlive-SS2	02/10/16	21.5	0.0	20.9	0.00	0.0
507NOlive 507NOlive-SS5 02/10/16 0.0 0.0 20.9 0.00 32.0 507NOlive 507NOlive-SS6 02/10/16 0.0 0.0 20.9 0.00 5.0 507NOlive 507NOlive-SS7 02/10/16 0.0 0.0 20.9 0.00 3.0 507NOlive 507NOlive-Basement 02/17/16 0.0 0.0 0.0 507NOlive 507NOlive-Bathroom in Basement 02/17/16 0.0 0.0 0.0	507NOlive	507NOlive-SS3	02/10/16	25.0	0.0	20.9	-0.06	0.0
507NOlive 507NOlive-SS6 02/10/16 0.0 0.0 20.9 0.00 5.0 507NOlive 507NOlive-SS7 02/10/16 0.0 0.0 20.9 0.00 3.0 507NOlive 507NOlive-Basement 02/17/16 0.0 0.0 0.0 507NOlive 507NOlive-Bathroom in Basement 02/17/16 0.0 0.0 0.0	507NOlive	507NOlive-SS4	02/10/16	200	0.0	20.9	-0.06	1.0
507NOlive 507NOlive-SS7 02/10/16 0.0 0.0 20.9 0.00 3.0 507NOlive 507NOlive-Basement 02/17/16 0.0 0.0 0.0 507NOlive 507NOlive-Bathroom in Basement 02/17/16 0.0 0.0 0.0	507NOlive	507NOlive-SS5	02/10/16	0.0	0.0	20.9	0.00	32.0
507NOlive 507NOlive-Basement 02/17/16 0.0 0.0 0.0 507NOlive 507NOlive-Bathroom in Basement 02/17/16 0.0 0.0 0.0	507NOlive	507NOlive-SS6	02/10/16	0.0	0.0	20.9	0.00	5.0
507NOlive 507NOlive-Bathroom in Basement 02/17/16 0.0 0.0 0.0	507NOlive	507NOlive-SS7	02/10/16	0.0	0.0	20.9	0.00	3.0
	507NOlive	507NOlive-Basement	02/17/16	0.0	0.0			0.0
507NOlive 507NOlive-Computer room 02/17/16 0.0 0.0 0.0	507NOlive	507NOlive-Bathroom in Basement	02/17/16	0.0	0.0			0.0
	507NOlive	507NOlive-Computer room	02/17/16	0.0	0.0			0.0

FID TVPH Concentration, Direct

		C	oncentration, Direc	il			
Location Group	Location ID	Date Sampled	Read	LEL	Oxygen	Pressure	Total Organic Vapor by PID
			(ppmv)	(%)	(%)	(in-H2O)	(ppmv)
507NOlive	507NOlive-Floor drain in Basement	02/17/16	0.0	0.0			0.0
507NOlive	507NOlive-Front porch	02/17/16	0.0	0.0			0.0
507NOlive	507NOlive-Kitchen	02/17/16	0.0	0.0			0.0
507NOlive	507NOlive-Living room	02/17/16	0.0	0.0			0.0
507NOlive	507NOlive-SS1	02/17/16	0.0	0.0	20.0	0.00	0.0
507NOlive	507NOlive-SS2	02/17/16	10.8	0.0	20.9	0.00	0.0
507NOlive	507NOlive-SS3	02/17/16	17.0	0.0	20.9	-0.07	0.0
507NOlive	507NOlive-SS4	02/17/16	95.0	0.0	20.9	-0.08	0.0
507NOlive	507NOlive-SS5	02/17/16	0.0	0.0	20.9	0.00	0.0
507NOlive	507NOlive-SS6	02/17/16	0.0	0.0	20.9	0.00	0.0
507NOlive	507NOlive-SS7	02/17/16	0.0	0.0	20.9	0.00	0.0
507NOlive	507NOlive-Basement	02/24/16	0.0	0.0			0.0
507NOlive	507NOlive-Bathroom in Basement	02/24/16	0.0	0.0			0.0
507NOlive	507NOlive-Computer room	02/24/16	0.0	0.0			0.0
507NOlive	507NOlive-Dininng Room	02/24/16	0.0	0.0			0.0
507NOlive	507NOlive-Floor drain in Basement	02/24/16	0.0	0.0			0.0
507NOlive	507NOlive-Front porch	02/24/16	0.0	0.0			0.0
507NOlive	507NOlive-Kitchen	02/24/16	0.0	0.0			0.0
507NOlive	507NOlive-Living room	02/24/16	0.0	0.0			0.0
507NOlive	507NOlive-SS1	02/24/16	0.0	0.0	20.9	0.00	0.0
507NOlive	507NOlive-SS2	02/24/16	0.0	0.0	20.9	-0.07	0.0
507NOlive	507NOlive-SS3	02/24/16	28.0	0.0	20.9	-0.12	0.0
507NOlive	507NOlive-SS4	02/24/16	70.0	0.0	20.9	-0.14	0.0
507NOlive	507NOlive-SS5	02/24/16	0.0	0.0	20.9	-0.07	0.0
507NOlive	507NOlive-SS6	02/24/16	0.0	0.0	20.9	0.00	0.0
507NOlive	507NOlive-SS7	02/24/16	0.0	0.0	20.9	0.00	0.0
507NOlive	507NOlive-Basement	03/02/16	0.0	0.0			0.0
507NOlive	507NOlive-Bathroom in Basement	03/02/16	0.0	0.0			0.0
507NOlive	507NOlive-Computer room	03/02/16	0.0	0.0			0.0
507NOlive	507NOlive-Floor drain in Basement	03/02/16	0.0	0.0			0.0
507NOlive	507NOlive-Front porch	03/02/16	0.0	0.0			0.0
507NOlive	507NOlive-Kitchen	03/02/16	0.0	0.0			0.0
507NOlive	507NOlive-Living room	03/02/16	0.0	0.0			0.0
507NOlive	507NOlive-SS1	03/02/16	0.0	0.0	20.9	0.00	0.0

FID TVPH Concentration, Direct

Location Group			C	oncentration, Direc	از			
507NOlive	Location Group	Location ID	Date Sampled	Read	LEL	Oxygen	Pressure	Total Organic Vapor by PID
SOTNOlive SOTNOlive-SS3 O3/02/16 19.0 O.0 20.9 O.00 O.0 O.0 SOTNOlive SOTNOlive-SS4 O3/02/16 0.0 O.0 20.9 O.00 O.0				(ppmv)	(%)	(%)	(in-H2O)	(ppmv)
SOTNOlive SOTNOlive-SS5 O3/02/16 O.0 O.0 20.9 O.00 O.0 O.0 SOTNOlive SOTNOlive-SS5 O3/02/16 O.0 O.0 O.0 20.9 O.00 O.0 O.0 SOTNOlive SOTNOlive-SS6 O3/02/16 O.0 O.0 O.0 20.9 O.00 O.0 O.0 SOTNOlive SOTNOlive-Basement O3/02/16 O.0	507NOlive	507NOlive-SS2	03/02/16	0.0	0.0	20.9	0.00	0.0
SOTNOlive SOTNOlive-SS5 O3/02/16 O.0 O.0 20.9 O.00 O.0 SOTNOlive SOTNOlive-SS6 O3/02/16 O.0 O.0 O.0 20.9 O.00 O.0 O.0 SOTNOlive-SS7 O3/02/16 O.0 O.0 O.0 20.9 O.00 O.0 O.0 SOTNOlive SOTNOlive-SS7 O3/02/16 O.0 507NOlive	507NOlive-SS3	03/02/16	19.0	0.0	20.9	0.00	0.0	
S07NOlive S07NOlive-SS7 03/02/16 0.0 0.0 20.9 0.00 0.0 507NOlive S07NOlive-SS7 03/02/16 0.0 0.0 20.9 0.00 0.0 0.0 507NOlive-SS7 03/02/16 0.0	507NOlive	507NOlive-SS4	03/02/16	41.0	0.0	20.9	0.00	0.0
507NOlive 507NOlive-SS7 03/02/16 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-Basthroom in Basement 03/09/16 0.0 0.0 0.0 507NOlive 507NOlive-Computer room 03/09/16 0.0 0.0 0.0 507NOlive 507NOlive-Floor drain in Basement 03/09/16 0.0 0.0 0.0 507NOlive 507NOlive-Floor drain in Basement 03/09/16 0.0 0.0 0.0 507NOlive 507NOlive-Floor drain in Basement 03/09/16 0.0 0.0 0.0 507NOlive 507NOlive-Living room 03/09/16 0.0 0.0 0.0 507NOlive 507NOlive-SS1 03/09/16 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS2 03/09/16 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS3 03/	507NOlive	507NOlive-SS5	03/02/16	0.0	0.0	20.9	0.00	0.0
507NOlive 507NOlive-Basement 03/09/16 0.0 0.0 0.0 507NOlive 507NOlive-Camputer room 03/09/16 0.0 0.0 0.0 507NOlive 507NOlive-Computer room 03/09/16 0.0 0.0 0.0 507NOlive 507NOlive-Floor drain in Basement 03/09/16 0.0 0.0 0.0 507NOlive 507NOlive-Floor drain in Basement 03/09/16 0.0 0.0 0.0 507NOlive 507NOlive-Iviring room 03/09/16 0.0 0.0 0.0 507NOlive 507NOlive-SS1 03/09/16 0.0 0.0 20.9 0.0 0.0 507NOlive 507NOlive-SS2 03/09/16 0.0 0.0 20.9 0.0 0.0 507NOlive 507NOlive-SS3 03/09/16 5.0 0.0 20.9 0.0 0.0 507NOlive 507NOlive-SS5 03/09/16 5.	507NOlive	507NOlive-SS6	03/02/16	0.0	0.0	20.9	0.00	0.0
507NOlive 507NOlive-Bathroom in Basement 03/09/16 0.0 0.0 0.0 507NOlive 507NOlive-Computer room 03/09/16 0.0 0.0 0.0 507NOlive 507NOlive-Iron toproch 03/09/16 0.0 0.0 0.0 507NOlive 507NOlive-Living room 03/09/16 0.0 0.0 0.0 507NOlive 507NOlive-Living room 03/09/16 0.0 0.0 0.0 507NOlive 507NOlive-SS1 03/09/16 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS2 03/09/16 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS3 03/09/16 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS3 03/09/16 5.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS5 03/09/16 0.0	507NOlive	507NOlive-SS7	03/02/16	0.0	0.0	20.9	0.00	0.0
507NOlive 507NOlive-Computer room 03/09/16 0.0 0.0 0.0 507NOlive 507NOlive-Floor drain in Basement 03/09/16 0.0 0.0 0.0 507NOlive 507NOlive-Ficht porch 03/09/16 0.0 0.0 0.0 507NOlive 507NOlive-Living room 03/09/16 0.0 0.0 0.0 507NOlive 507NOlive-SS1 03/09/16 0.0 0.0 0.0 507NOlive 507NOlive-SS2 03/09/16 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS3 03/09/16 5.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS4 03/09/16 5.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS5 03/09/16 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS7 03/09/16 0.0 0.	507NOlive	507NOlive-Basement	03/09/16	0.0	0.0			0.0
507NOlive 507NOlive-Floor drain in Basement 03/09/16 0.0 0.0 0.0 507NOlive 507NOlive-Front porch 03/09/16 0.0 0.0 0.0 507NOlive 507NOlive-Living room 03/09/16 0.0 0.0 0.0 507NOlive 507NOlive-SS1 03/09/16 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS2 03/09/16 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS3 03/09/16 5.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS3 03/09/16 5.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS4 03/09/16 12.0 0.0 20.9 0.00 0.0 507NOlive-SS6 03/09/16 0.0 0.0 20.9 0.00 0.0 507NOlive-SS7 03/09/16 0.0 0.0 20.9 0.00	507NOlive	507NOlive-Bathroom in Basement	03/09/16	0.0	0.0			0.0
507NOlive 507NOlive-Front porch 03/09/16 0.0 0.0 - - 0.0 507NOlive 507NOlive-Kitchen 03/09/16 0.0 0.0 - - 0.0 507NOlive 507NOlive-SS1 03/09/16 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS2 03/09/16 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS3 03/09/16 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS3 03/09/16 5.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS4 03/09/16 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS5 03/09/16 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS6 03/09/16 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS7 03/09/16 0.0 0.0 20.9 <td>507NOlive</td> <td>507NOlive-Computer room</td> <td>03/09/16</td> <td>0.0</td> <td>0.0</td> <td></td> <td></td> <td>0.0</td>	507NOlive	507NOlive-Computer room	03/09/16	0.0	0.0			0.0
507NOlive 507NOlive-Living room 03/09/16 0.0 0.0 0.0 507NOlive 507NOlive-Living room 03/09/16 0.0 0.0 0.0 507NOlive 507NOlive-SS1 03/09/16 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS2 03/09/16 5.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS3 03/09/16 5.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS4 03/09/16 12.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS5 03/09/16 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS6 03/09/16 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-Basement 03/16/16 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-Basement 03/16/16 0.0 0.0	507NOlive	507NOlive-Floor drain in Basement	03/09/16	0.0	0.0			0.0
507NOlive 507NOlive-Living room 03/09/16 0.0 0.0 0.0 507NOlive 507NOlive-SS1 03/09/16 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS2 03/09/16 5.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS4 03/09/16 12.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS5 03/09/16 12.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS6 03/09/16 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS7 03/09/16 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-Basement 03/16/16 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-Basthroom in Basement 03/16/16 0.0 0.0 0.0 507NOlive 507NOlive-Computer room 03/16/16 0.0	507NOlive	507NOlive-Front porch	03/09/16	0.0	0.0			0.0
507NOlive 507NOlive-SS1 03/09/16 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS2 03/09/16 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS3 03/09/16 5.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS4 03/09/16 12.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS5 03/09/16 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS6 03/09/16 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS7 03/09/16 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-Basement 03/16/16 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-Basement 03/16/16 0.0 0.0 0.0 507NOlive 507NOlive-Computer room 03/16/16 0.0 0.0	507NOlive	507NOlive-Kitchen	03/09/16	0.0	0.0			0.0
507NOlive 507NOlive-SS2 03/09/16 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS3 03/09/16 5.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS4 03/09/16 12.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS5 03/09/16 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS6 03/09/16 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS7 03/09/16 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-Basement 03/16/16 0.0 0.0 0.0 507NOlive 507NOlive-Basthroom in Basement 03/16/16 0.0 0.0 0.0 507NOlive 507NOlive-Bathroom in Basement 03/16/16 0.0 0.0 0.0 507NOlive 507NOlive-Floor drain in Basement 03/16/16	507NOlive	507NOlive-Living room	03/09/16	0.0	0.0			0.0
507NOlive 507NOlive-SS3 03/09/16 5.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS4 03/09/16 12.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS5 03/09/16 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS6 03/09/16 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS7 03/09/16 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-Basement 03/16/16 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-Basthroom in Basement 03/16/16 0.0 0.0 0.0 507NOlive 507NOlive-Computer room 03/16/16 0.0 0.0 0.0 507NOlive 507NOlive-Floor drain in Basement 03/16/16 0.0 0.0 0.0 507NOlive 507NOlive-Kitchen 03/16/16 0.0	507NOlive	507NOlive-SS1	03/09/16	0.0	0.0	20.9	0.00	0.0
507NOlive 507NOlive-SS4 03/09/16 12.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS5 03/09/16 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS6 03/09/16 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS67 03/09/16 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-Basement 03/16/16 0.0 0.0 0.0 507NOlive 507NOlive-Bathroom in Basement 03/16/16 0.0 0.0 0.0 507NOlive 507NOlive-Computer room 03/16/16 0.0 0.0 0.0 507NOlive 507NOlive-Front porch 03/16/16 0.0 0.0 0.0 507NOlive 507NOlive-Living room 03/16/16 0.0 0.0 0.0 507NOlive 507NOlive-SS1 03/16/16 0.0 <t< td=""><td>507NOlive</td><td>507NOlive-SS2</td><td>03/09/16</td><td>0.0</td><td>0.0</td><td>20.9</td><td>0.00</td><td>0.0</td></t<>	507NOlive	507NOlive-SS2	03/09/16	0.0	0.0	20.9	0.00	0.0
507NOlive 507NOlive-SS5 03/09/16 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS6 03/09/16 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS7 03/09/16 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-Basement 03/16/16 0.0 0.0 0.0 507NOlive 507NOlive-Bathroom in Basement 03/16/16 0.0 0.0 0.0 507NOlive 507NOlive-Computer room 03/16/16 0.0 0.0 0.0 507NOlive 507NOlive-Floor drain in Basement 03/16/16 0.0 0.0 0.0 507NOlive 507NOlive-Front porch 03/16/16 0.0 0.0 0.0 507NOlive 507NOlive-Kitchen 03/16/16 0.0 0.0 0.0 507NOlive 507NOlive-SS1 03/16/16	507NOlive	507NOlive-SS3	03/09/16	5.0	0.0	20.9	0.00	0.0
507NOlive 507NOlive-SS6 03/09/16 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS7 03/09/16 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-Basement 03/16/16 0.0 0.0 0.0 507NOlive 507NOlive-Computer room 03/16/16 0.0 0.0 0.0 507NOlive 507NOlive-Computer room 03/16/16 0.0 0.0 0.0 507NOlive 507NOlive-Floor drain in Basement 03/16/16 0.0 0.0 0.0 507NOlive 507NOlive-Front porch 03/16/16 0.0 0.0 0.0 507NOlive 507NOlive-Kitchen 03/16/16 0.0 0.0 0.0 507NOlive 507NOlive-Living room 03/16/16 0.0 0.0 0.0 507NOlive 507NOlive-SS1 03/16/16 0.0	507NOlive	507NOlive-SS4	03/09/16	12.0	0.0	20.9	0.00	0.0
507NOlive 507NOlive-SS7 03/09/16 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-Basement 03/16/16 0.0 0.0 0.0 507NOlive 507NOlive-Bathroom in Basement 03/16/16 0.0 0.0 0.0 507NOlive 507NOlive-Computer room 03/16/16 0.0 0.0 0.0 507NOlive 507NOlive-Floor drain in Basement 03/16/16 0.0 0.0 0.0 507NOlive 507NOlive-Front porch 03/16/16 0.0 0.0 0.0 507NOlive 507NOlive-Kitchen 03/16/16 0.0 0.0 0.0 507NOlive 507NOlive-SS1 03/16/16 0.0 0.0 0.0 507NOlive 507NOlive-SS2 03/16/16 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS3 03/16/16 3.0	507NOlive	507NOlive-SS5	03/09/16	0.0	0.0	20.9	0.00	0.0
507NOlive 507NOlive-Basement 03/16/16 0.0 0.0 0.0 507NOlive 507NOlive-Bathroom in Basement 03/16/16 0.0 0.0 0.0 507NOlive 507NOlive-Computer room 03/16/16 0.0 0.0 0.0 507NOlive 507NOlive-Floor drain in Basement 03/16/16 0.0 0.0 0.0 507NOlive 507NOlive-Front porch 03/16/16 0.0 0.0 0.0 507NOlive 507NOlive-Kitchen 03/16/16 0.0 0.0 0.0 507NOlive 507NOlive-Living room 03/16/16 0.0 0.0 0.0 507NOlive 507NOlive-SS1 03/16/16 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS2 03/16/16 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS4 03/16/16 <td>507NOlive</td> <td>507NOlive-SS6</td> <td>03/09/16</td> <td>0.0</td> <td>0.0</td> <td>20.9</td> <td>0.00</td> <td>0.0</td>	507NOlive	507NOlive-SS6	03/09/16	0.0	0.0	20.9	0.00	0.0
507NOlive 507NOlive-Bathroom in Basement 03/16/16 0.0 0.0 0.0 507NOlive 507NOlive-Computer room 03/16/16 0.0 0.0 0.0 507NOlive 507NOlive-Floor drain in Basement 03/16/16 0.0 0.0 0.0 507NOlive 507NOlive-Front porch 03/16/16 0.0 0.0 0.0 507NOlive 507NOlive-Kitchen 03/16/16 0.0 0.0 0.0 507NOlive 507NOlive-Living room 03/16/16 0.0 0.0 0.0 507NOlive 507NOlive-SS1 03/16/16 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS2 03/16/16 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS4 03/16/16 4.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS5 03/16/16 0.0 <td>507NOlive</td> <td>507NOlive-SS7</td> <td>03/09/16</td> <td>0.0</td> <td>0.0</td> <td>20.9</td> <td>0.00</td> <td>0.0</td>	507NOlive	507NOlive-SS7	03/09/16	0.0	0.0	20.9	0.00	0.0
507NOlive 507NOlive-Computer room 03/16/16 0.0 0.0 0.0 507NOlive 507NOlive-Floor drain in Basement 03/16/16 0.0 0.0 0.0 507NOlive 507NOlive-Front porch 03/16/16 0.0 0.0 0.0 507NOlive 507NOlive-Kitchen 03/16/16 0.0 0.0 0.0 507NOlive 507NOlive-Living room 03/16/16 0.0 0.0 0.0 507NOlive 507NOlive-SS1 03/16/16 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS2 03/16/16 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS3 03/16/16 3.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS4 03/16/16 4.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS5 03/16/16 0.0 <t< td=""><td>507NOlive</td><td>507NOlive-Basement</td><td>03/16/16</td><td>0.0</td><td>0.0</td><td></td><td></td><td>0.0</td></t<>	507NOlive	507NOlive-Basement	03/16/16	0.0	0.0			0.0
507NOlive 507NOlive-Floor drain in Basement 03/16/16 0.0 0.0 0.0 507NOlive 507NOlive-Front porch 03/16/16 0.0 0.0 0.0 507NOlive 507NOlive-Kitchen 03/16/16 0.0 0.0 0.0 507NOlive 507NOlive-Living room 03/16/16 0.0 0.0 0.0 507NOlive 507NOlive-SS1 03/16/16 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS2 03/16/16 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS3 03/16/16 3.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS4 03/16/16 4.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS5 03/16/16 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS6 03/16/16 0.0 0.0<	507NOlive	507NOlive-Bathroom in Basement	03/16/16	0.0	0.0			0.0
507NOlive 507NOlive-Front porch 03/16/16 0.0 0.0 0.0 507NOlive 507NOlive-Kitchen 03/16/16 0.0 0.0 0.0 507NOlive 507NOlive-Living room 03/16/16 0.0 0.0 0.0 507NOlive 507NOlive-SS1 03/16/16 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS2 03/16/16 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS3 03/16/16 3.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS4 03/16/16 4.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS5 03/16/16 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS6 03/16/16 0.0 0.0 20.9 0.00 0.0	507NOlive	507NOlive-Computer room	03/16/16	0.0	0.0			0.0
507NOlive 507NOlive-Kitchen 03/16/16 0.0 0.0 0.0 507NOlive 507NOlive-Living room 03/16/16 0.0 0.0 0.0 507NOlive 507NOlive-SS1 03/16/16 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS2 03/16/16 3.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS3 03/16/16 4.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS4 03/16/16 4.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS5 03/16/16 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS6 03/16/16 0.0 0.0 20.9 0.00 0.0	507NOlive	507NOlive-Floor drain in Basement	03/16/16	0.0	0.0			0.0
507NOlive 507NOlive-Living room 03/16/16 0.0 0.0 0.0 507NOlive 507NOlive-SS1 03/16/16 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS2 03/16/16 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS3 03/16/16 3.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS4 03/16/16 4.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS5 03/16/16 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS6 03/16/16 0.0 0.0 20.9 0.00 0.0	507NOlive	507NOlive-Front porch	03/16/16	0.0	0.0			0.0
507NOlive 507NOlive-SS1 03/16/16 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS2 03/16/16 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS3 03/16/16 3.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS4 03/16/16 4.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS5 03/16/16 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS6 03/16/16 0.0 0.0 20.9 0.00 0.0	507NOlive	507NOlive-Kitchen	03/16/16	0.0	0.0			0.0
507NOlive 507NOlive-SS2 03/16/16 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS3 03/16/16 3.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS4 03/16/16 4.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS5 03/16/16 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS6 03/16/16 0.0 0.0 20.9 0.00 0.0	507NOlive	507NOlive-Living room	03/16/16	0.0	0.0			0.0
507NOlive 507NOlive-SS3 03/16/16 3.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS4 03/16/16 4.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS5 03/16/16 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS6 03/16/16 0.0 0.0 20.9 0.00 0.0	507NOlive	507NOlive-SS1	03/16/16	0.0	0.0	20.9	0.00	0.0
507NOlive 507NOlive-SS4 03/16/16 4.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS5 03/16/16 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS6 03/16/16 0.0 0.0 20.9 0.00 0.0	507NOlive	507NOlive-SS2	03/16/16	0.0	0.0	20.9	0.00	0.0
507NOlive 507NOlive-SS5 03/16/16 0.0 0.0 20.9 0.00 0.0 507NOlive 507NOlive-SS6 03/16/16 0.0 0.0 20.9 0.00 0.0	507NOlive	507NOlive-SS3	03/16/16	3.0	0.0	20.9	0.00	0.0
507NOlive 507NOlive-SS6 03/16/16 0.0 0.0 20.9 0.00 0.0	507NOlive	507NOlive-SS4	03/16/16	4.0	0.0	20.9	0.00	0.0
	507NOlive	507NOlive-SS5	03/16/16	0.0	0.0	20.9	0.00	0.0
507NOlive 507NOlive-SS7 03/16/16 0.0 0.0 20.9 0.00 0.0	507NOlive	507NOlive-SS6	03/16/16	0.0	0.0	20.9	0.00	0.0
	507NOlive	507NOlive-SS7	03/16/16	0.0	0.0	20.9	0.00	0.0

FID TVPH Concentration, Direct

Location Group	Location ID	Date Sampled	Read	LEL	Oxygen	Pressure	Total Organic Vapor by PID
			(ppmv)	(%)	(%)	(in-H2O)	(ppmv)
507NOlive	507NOlive-Basement	03/23/16	0.0	0.0			0.0
507NOlive	507NOlive-Bathroom in Basement	03/23/16	0.0	0.0			0.0
507NOlive	507NOlive-Computer room	03/23/16	0.0	0.0			0.0
507NOlive	507NOlive-Dininng Room	03/23/16	0.0	0.0			0.0
507NOlive	507NOlive-Floor drain in Basement	03/23/16	0.0	0.0			0.0
507NOlive	507NOlive-Front porch	03/23/16	0.0	0.0			0.0
507NOlive	507NOlive-Living room	03/23/16	0.0	0.0			0.0
507NOlive	507NOlive-SS1	03/23/16	0.0	0.0	20.9	0.00	0.0
507NOlive	507NOlive-SS2	03/23/16	0.0	0.0	20.9	0.00	0.0
507NOlive	507NOlive-SS3	03/23/16	3.0	0.0	20.9	0.00	0.0
507NOlive	507NOlive-SS4	03/23/16	0.0	0.0	20.9	0.00	0.0
507NOlive	507NOlive-SS5	03/23/16	0.0	0.0	20.9	0.00	0.0
507NOlive	507NOlive-SS6	03/23/16	0.0	0.0	20.9	0.00	0.0
507NOlive	507NOlive-SS7	03/23/16	0.0	0.0	20.9	0.00	0.0
507NOlive	507NOlive-Basement	03/30/16	0.0	0.0			0.0
507NOlive	507NOlive-Bathroom in Basement	03/30/16	0.0	0.0			0.0
507NOlive	507NOlive-Computer room	03/30/16	0.0	0.0			0.0
507NOlive	507NOlive-Floor drain in Basem	03/30/16	0.0	0.0			0.0
507NOlive	507NOlive-Front porch	03/30/16	0.0	0.0			0.0
507NOlive	507NOlive-Kitchen	03/30/16	0.0	0.0			0.0
507NOlive	507NOlive-Living room	03/30/16	0.0	0.0			0.0
507NOlive	507NOlive-SS1	03/30/16	0.0	0.0	20.9	0.00	0.0
507NOlive	507NOlive-SS2	03/30/16	0.0	0.0	20.9	0.00	0.0
507NOlive	507NOlive-SS3	03/30/16	14.0	0.0	20.9	0.00	0.0
507NOlive	507NOlive-SS4	03/30/16	2.0	0.0	20.9	0.00	0.0
507NOlive	507NOlive-SS5	03/30/16	0.0	0.0	20.9	0.00	0.0
507NOlive	507NOlive-SS6	03/30/16	0.0	0.0	20.9	0.00	0.0
507NOlive	507NOlive-SS7	03/30/16	0.0	0.0	20.9	0.00	0.0
610NOldStLouis	610NOldStLouis-Back entrance	10/28/15	2.1	0.0			0.0
610NOldStLouis	610NOldStLouis-Basement	10/28/15	3.2	0.0			0.0
610NOldStLouis	610NOldStLouis-Sump in basement	10/28/15	3.0	0.0			0.0
610NOldStLouis	610NOldStLouis-SS1	10/28/15	0.0	0.0	12.1	0.00	0.0
610NOldStLouis	610NOldStLouis-SS2	10/28/15	0.0	0.0	10.4	0.00	0.0
610NOldStLouis	610NOldStLouis-SS3	10/28/15	0.0	0.0	11.5	0.00	0.0

FID TVPH Concentration, Direct

		C	oncentration, Direc	il			
Location Group	Location ID	Date Sampled	Read	LEL	Oxygen	Pressure	Total Organic Vapor by PID
			(ppmv)	(%)	(%)	(in-H2O)	(ppmv)
610NOldStLouis	610NOldStLouis-Back entrance	11/04/15	1.9	0.0			0.0
610NOldStLouis	610NOldStLouis-Basement	11/04/15	3.7	0.0			0.0
610NOldStLouis	610NOldStLouis-Sump in basement	11/04/15	3.7	0.0			0.0
610NOldStLouis	610NOldStLouis-SS1	11/04/15	0.0	0.0	13.1	0.00	0.0
610NOldStLouis	610NOldStLouis-SS2	11/04/15	0.0	0.0	11.7	0.00	0.0
610NOldStLouis	610NOldStLouis-SS3	11/04/15	0.0	0.0	13.2	0.00	0.0
610NOldStLouis	610NOldStLouis-Back entrance	11/11/15	0.0	0.0			0.0
610NOldStLouis	610NOldStLouis-Basement	11/11/15	2.0	0.0			0.0
610NOldStLouis	610NOldStLouis-Sump in basement	11/11/15	2.5	0.0			0.0
610NOldStLouis	610NOldStLouis-SS1	11/11/15	0.0	0.0	20.9	0.00	0.0
610NOldStLouis	610NOldStLouis-SS2	11/11/15	0.0	0.0	10.8	0.00	0.0
610NOldStLouis	610NOldStLouis-SS3	11/11/15	1.2	0.0	13.1	0.00	0.0
610NOldStLouis	610NOldStLouis-Back entrance	12/02/15	1.3	0.0			0.0
610NOldStLouis	610NOldStLouis-Basement	12/02/15	1.7	0.0			0.0
610NOldStLouis	610NOldStLouis-Sump in basement	12/02/15	1.5	0.0			0.0
610NOldStLouis	610NOldStLouis-SS1	12/02/15	0.0	0.0	13.6	0.00	0.0
610NOldStLouis	610NOldStLouis-SS2	12/02/15	0.0	0.0	11.6	0.00	0.0
610NOldStLouis	610NOldStLouis-SS3	12/02/15	0.0	0.0	17.9	0.00	0.0
610NOldStLouis	610NOldStLouis-Back entrance	12/16/15	2.3	0.0			0.0
610NOldStLouis	610NOldStLouis-Basement	12/16/15	7.0	0.0			0.0
610NOldStLouis	610NOldStLouis-Sump in basement	12/16/15	4.4	0.0			0.0
610NOldStLouis	610NOldStLouis-SS1	12/16/15	4.5	0.0	11.9	0.00	0.0
610NOldStLouis	610NOldStLouis-SS2	12/16/15	0.0	0.0	10.3	0.00	0.0
610NOldStLouis	610NOldStLouis-SS3	12/16/15	0.0	0.0	13.3	0.00	0.0
610NOldStLouis	610NOldStLouis-Back entrance	01/06/16	2.2	0.0			0.0
610NOldStLouis	610NOldStLouis-Basement	01/06/16	4.1	0.0			0.0
610NOldStLouis	610NOldStLouis-Sump in basement	01/06/16	4.1	0.0			0.0
610NOldStLouis	610NOldStLouis-SS1	01/06/16	8.3	0.0	4.8	0.00	0.0
610NOldStLouis	610NOldStLouis-SS2	01/06/16	9.0	0.0	2.5	0.00	0.0
610NOldStLouis	610NOldStLouis-SS3	01/06/16	0.0	0.0	11.8	0.00	0.0
610NOldStLouis	610NOldStLouis-Back entrance	01/13/16	1.8	0.0			0.0
610NOldStLouis	610NOldStLouis-Basement	01/13/16	3.3	0.0			0.0
610NOldStLouis	610NOldStLouis-Sump in basement	01/13/16	3.1	0.0			0.0
610NOldStLouis	610NOldStLouis-SS1	01/13/16	0.0	0.0	10.1	0.00	0.0

FID TVPH

Location Group	Location ID	Date Sampled	Read	LEL	Ovivaon	Pressure	Total Organic Vapor by PID
Location Group	Editation ID	Date Sampled	(ppmv)	(%)	Oxygen (%)	(in-H2O)	(ppmv)
610NOldStLouis	610NOldStLouis-SS2	01/13/16	5.6	0.0	7.2	0.00	0.0
610NOldStLouis	610NOldStLouis-SS3	01/13/16	3.8	0.0	14.4	0.00	0.0
610NOldStLouis	610NOldStLouis-Back entrance	01/27/16	1.8	0.0			0.0
610NOldStLouis	610NOldStLouis-Basement	01/27/16	2.9	0.0			0.0
610NOldStLouis	610NOldStLouis-Sump in basement	01/27/16	3.0	0.0			0.0
610NOldStLouis	610NOldStLouis-SS1	01/27/16	0.0	0.0	6.5	0.00	0.0
610NOldStLouis	610NOldStLouis-SS2	01/27/16	0.0	0.0	3.3	0.00	0.0
610NOldStLouis	610NOldStLouis-SS3	01/27/16	0.0	0.0	13.7	0.00	0.0
610NOldStLouis	610NOldStLouis-Back entrance	02/03/16	1.6	0.0			0.0
610NOldStLouis	610NOldStLouis-Basement	02/03/16	2.2	0.0			0.0
610NOldStLouis	610NOldStLouis-Sump in basement	02/03/16	2.1	0.0			0.0
610NOldStLouis	610NOldStLouis-SS1	02/03/16	0.0	0.0	7.0	0.00	0.0
610NOldStLouis	610NOldStLouis-SS2	02/03/16	0.0	0.0	4.0	0.00	0.0
610NOldStLouis	610NOldStLouis-SS3	02/03/16	0.0	0.0	12.0	0.00	0.0

Notes:

- Sub slab measurements were not collected when water was pulled from probe, intial pressure measurements are indicative of water
- Field equipment includes a dwyer series 475 micromanometer, Thermo Scientific TVA1000 FID (flame ionization detector) equiped with PID (photoionization detector), and a REA Systems multiRAE four gas meter
- Additional action is required when FID concentrations exceed 10 ppmv in the indoor air or 350 ppmv in the sub slab in- H_2O inches of water

% - percent

%LEL - percent lower explosive limit

ppmv - parts per million by volume

-- - not analyzed

TVPH - total volatile petroleum hydrocarbons

FID - flame ionization detector

APPENDIX G

APPENDIX G-1. QUARTERLY IN-HOME EFFECTIVENESS MONITORING DETECTIONS SUMMARY HARTFORD PETROLEUM RELEASE SITE, HARTFORD, ILLINOIS

				Direct Rea	ad Results		Tedlar Bag Results					
Location	Date Sampled	Pressure (in-H2O)	Oxygen (%)	LEL (%)	Total Organic Vapor PID (ppmv)	FID TVPH Concentration (ppmv)	Oxygen (%)	Carbon Dioxide (%)	LEL (%)	Total Organic Vapor PID (ppmv)	FID TVPH Concentration (ppmv)	Methar (ppmv
107WBirch-Basement	02/10/16			0.0	0.0	0.0						
107WBirch-Crawl Space under fa	02/10/16			0.0	0.0	0.0						
107WBirch-Floor drain Basement	02/10/16			0.0	0.0	0.0						
107WBirch-Living Room	02/10/16			0.0	0.0	0.0						
107WBirch-Shower floor drain B	02/10/16			0.0	0.0	0.0						
107WBirch-SS1	02/10/16	0.00	19.8	0.0	0.0	0.0						
107WBirch-SS2	02/10/16	0.00	19.9	0.0	0.0	0.0						
107WBirch-SS3	02/10/16	0.00	20.9	0.0	0.0	1.0						
116EWatkins-Back Porch	11/10/15			0.0		0.0						
116EWatkins-Basement	11/10/15			0.0		1.0						
116EWatkins-Basement-Bathroom	11/10/15			0.0	-	1.0						
116EWatkins-Basement-Crawl spa	11/10/15		 	0.0	-	0.0				 		
116EWatkins-Basement-Floor dra	11/10/15		 	0.0	 	0.0		 	 			
116EWatkins-Basement-Floor dra	11/10/15			0.0	-	0.0						
116EWatkins-Basement-Office	11/10/15											
				0.0	-	0.0						
116EWatkins-Bathroom	11/10/15			0.0	-	0.0						
116EWatkins-Dining room	11/10/15			0.0	-	0.0						
116EWatkins-Front porch	11/10/15			0.0		0.0						
116EWatkins-Laundry Room	11/10/15			0.0		0.0						
116EWatkins-Living room	11/10/15			0.0		0.0						
116EWatkins-SS1	11/10/15	0.00	20.9	0.0		0.0						
116EWatkins-SS2	11/10/15	0.00	20.9	0.0		0.0						
116EWatkins-SS3	11/10/15	0.00	20.9	0.0		0.0						
117WBirch-Back/N porch	11/11/15			0.0		0.0						
117WBirch-Basement	11/11/15			0.0		3.4						
117WBirch-Floor Drain	11/11/15			0.0		4.3						
117WBirch-SS1	11/11/15	0.00	17.9	0.0		0.0						
117WBirch-SS2	11/11/15	0.00	20.5	0.0		0.0						
117WBirch-SS3	11/11/15	0.00	20.9	0.0		1.5						
118EElm-Basement-Store room ne	11/16/15			0.0		1.2						
118EEIm-E Basement	11/16/15			0.0		1.2						
118EEIm-Front Porch	11/16/15			0.0		1.3						
118EElm-Kitchen	11/16/15			0.0		1.6						
118EElm-Laundry Room floor dra	11/16/15	<u></u>		0.0		1.2						
118EElm-Living Room	11/16/15		 	0.0	-	1.6		 		 	 	
118EElm-NE drain in basement	11/16/15			0.0	 	1.0		 	 	 		
118EEIm-SE room in basement	11/16/15			0.0	-	1.2						
118EEIm-SE room in basement 118EEIm-W basement/bedroom	11/16/15											
			 17.0	0.0		1.0						
118EElm-SS1	11/16/15	0.00	17.3	0.0	-	0.0						
118EEIm-SS2	11/16/15	0.00	6.0	0.0	_	0.0						
118EElm-SS3	11/16/15	0.00	17.9	0.0		0.0						
119WBirch-Back/N entrance	02/11/16			0.0	0.0	0.0						
119WBirch-Basement Central Roo	02/11/16			0.0	0.0	0.0						
119WBirch-Basement N Room	02/11/16			0.0	0.0	0.0						
119WBirch-Basement shower drai	02/11/16			0.0	0.0	0.0						
119WBirch-Basement WC Room	02/11/16			0.0	0.0	0.0						
119WBirch-Rear porch	02/11/16			0.0	0.0	0.0						

201606_01-QrtlyIn-HomeMonDet_APP-G1

APPENDIX G-1. QUARTERLY IN-HOME EFFECTIVENESS MONITORING DETECTIONS SUMMARY HARTFORD PETROLEUM RELEASE SITE, HARTFORD, ILLINOIS

Location 119WBirch-S room in Basement 119WBirch-SS1 119WBirch-SS2 119WBirch-SS3 119WBirch-Back/N entrance 119WBirch-Basement Central Roo	02/11/16 02/11/16 02/11/16 02/11/16	Pressure (in-H2O) 0.00	Oxygen (%) 	LEL (%)	Total Organic Vapor PID	FID TVPH Concentration	Overgon	O - uh - u- Di- uid-		Total Organic Vapor	FID TVPH	
119WBirch-SS1 119WBirch-SS2 119WBirch-SS3 119WBirch-Back/N entrance	02/11/16 02/11/16	0.00		(,,,	(ppmv)	(ppmv)	Oxygen (%)	Carbon Dioxide (%)	LEL (%)	PID (ppmv)	Concentration (ppmv)	Methar (ppmv
119WBirch-SS2 119WBirch-SS3 119WBirch-Back/N entrance	02/11/16			0.0	0.0	1.0						
119WBirch-SS3 119WBirch-Back/N entrance		0.00	20.9	0.0	0.0	0.0						
119WBirch-Back/N entrance	02/11/16	0.00	20.9	0.0	0.0	0.0						
		0.00	20.4	0.0	0.0	0.0						
119WBirch-Basement Central Roo	11/12/15			0.0		0.0						
	11/12/15			0.0		2.4						
119WBirch-Basement N Room	11/12/15			0.0		1.5						
119WBirch-Basement shower drai	11/12/15			0.0		2.8						
119WBirch-Basement WC Room	11/12/15			0.0		2.2						
119WBirch-Rear porch	11/12/15			0.0		0.0						
119WBirch-S room in Basement	11/12/15			0.0		3.1						
119WBirch-SS1	11/12/15	0.00	19.8	0.0	 	0.0				 		
119WBirch-SS2	11/12/15	0.00	20.9	0.0								
						5.0						
119WBirch-SS3	11/12/15	0.00	20.1	0.0		0.0						
125EForest-Back/N porch	11/13/15			0.0		3.0						
125EForest-Basement	11/13/15			0.0		2.8						
125EForest-Basement NW room	11/13/15			0.0		3.0						
125EForest-Drain in Basement p	11/13/15			0.0		3.1						
125EForest-SS1	11/13/15	0.00	20.9	0.0		0.0						
125EForest-SS3	11/13/15	0.00	19.2	0.0		0.0						
126EElm-Basement	02/10/16			0.0	0.0	1.5						
126EEIm-Basement floor drain	02/10/16			0.0	0.0	1.5						
126EElm-SS1	02/10/16	0.00	17.9	0.0	0.0	0.0						
126EElm-SS2	02/10/16	0.00	17.7	0.0	0.0	0.0						
126EEIm-SS3	02/10/16	0.00	18.0	0.0	0.0	0.0				-		
127EElm-Basement	11/10/15			0.0		1.1						
127EElm-Basement Washer drain	11/10/15			0.0		1.2						
127EElm-SS1	11/10/15	0.00	20.9	0.0	 	0.0			 	-		
127EEIm-SS2	11/10/15	0.00	20.9	0.0		0.0						
127EEIII-332 127EEIm-SS3	11/10/15	0.00	20.5	0.0		0.0						
127EEIM-553	11/10/15	0.00	20.5	0.0		0.0						
128WCherry-Back/S porch	11/10/15			0.0		1.2						
128WCherry-Basement	11/10/15			0.0		1.8						
128WCherry-Basement floor drai	11/10/15			0.0		1.2						
128WCherry-Kitchen	11/10/15			0.0		1.3						
128WCherry-SS1	11/10/15	0.00	19.8	0.0		0.0						
128WCherry-SS2	11/10/15	0.00	18.8	0.0		0.0						
128WCherry-SS3	11/10/15	0.00	19.7	0.0		0.0						
129WBirch-Basement	11/11/15			0.0	-	0.0				-		
129WBirch-Basement-central roo	11/11/15			0.0		0.0						
129WBirch-Basement-CW central	11/11/15			0.0		0.0						
129WBirch-Basement-furnace roo	11/11/15			0.0		2.3						
129WBirch-Basement-game room	11/11/15			0.0		0.0						
129WBirch-Basement-laundry roo	11/11/15		 	0.0		0.0						
129WBirch-Basement-NE bedroom	11/11/15		 	0.0		0.0			 			
29WBirch-Basement-NE Room by	11/11/15			0.0		0.0						
29WBirch-Basement-NE Room by	11/11/15	 	 	0.0	 	0.0						

201606_01-QrtlyIn-HomeMonDet_APP-G1

APPENDIX G-1. QUARTERLY IN-HOME EFFECTIVENESS MONITORING DETECTIONS SUMMARY HARTFORD PETROLEUM RELEASE SITE, HARTFORD, ILLINOIS

Location Date Sampled		Direct Read Results					Tedlar Bag Results					
	Date Sampled	Pressure (in-H2O)	Oxygen (%)	LEL (%)	Total Organic Vapor PID (ppmv)	FID TVPH Concentration (ppmv)	Oxygen (%)	Carbon Dioxide (%)	LEL (%)	Total Organic Vapor PID (ppmv)	FID TVPH Concentration (ppmv)	Methar (ppmv
129WBirch-Basement-NW bedroom	11/11/15			0.0		0.0						
129WBirch-Basement-NW room	11/11/15			0.0		0.0						
29WBirch-Basement-S Game Room	11/11/15			0.0		1.2						
129WBirch-Basement-Shower Drai	11/11/15			0.0		0.0						
129WBirch-Kitchen	11/11/15			0.0		0.0						
129WBirch-NE Family Room	11/11/15			0.0		0.0						
129WBirch-SS1	11/11/15	0.00	14.0	0.0		0.0						
129WBirch-SS2	11/11/15	0.00	19.9	0.0		0.0						
129WBirch-SS3	11/11/15	0.00	18.7	0.0		0.0						
309NOlive-Back entrance	02/08/16			0.0	0.0	0.0						
309NOlive-Back/W room	02/08/16			0.0	0.0	0.0						
309NOlive-Basement	02/08/16			0.0	0.0	0.0						
309NOlive-Bathroom	02/08/16			0.0	0.0	0.0						
309NOlive-Dining room/Kitchen	02/08/16	<u></u>		0.0	0.0	0.0				<u></u>		
309NOlive-Drain	02/08/16		 	0.0	0.0	0.0				 	 	
309NOlive-Drain in Basement	02/08/16		 	0.0	0.0	0.0		 		 	 	
309NOlive-Brain in Basement 309NOlive-Front/E porch	02/08/16			0.0	0.0	0.0		 				
309NOlive-Kitchen	02/08/16				0.0							
309NOlive-Nicrien 309NOlive-N central room				0.0		0.0						
	02/08/16			0.0	0.0	0.0						
309NOlive-NE room	02/08/16			0.0	0.0	0.0						
309NOlive-S central room	02/08/16			0.0	0.0	0.0						
309NOlive-SE room	02/08/16			0.0	0.0	0.0						
309NOlive-Sump in basement	02/08/16			0.0	0.0	0.0						
309NOlive-SS1	02/08/16	0.00	20.9	0.0	0.0	0.0						
309NOlive-SS2	02/08/16	0.00	12.8	5.0	9.2	3,280						
309NOlive-SS2	02/08/16						11.6	2.9	5.0	9.2	3,280	2,45
309NOlive-SS2	02/08/16						19.9	1.2	0.0	0.6	53	53
309NOlive-SS3	02/08/16	0.00	20.1	0.0	1.0	1.8						
309NOlive-SS2	02/09/16						20.5	1.0	0.0	0.0	65.0	65.
309NOlive-SS2	02/11/16						20.8	0.0	0.0	1.7	0.0	0.0
507NOlive-Basement	11/11/15			0.0		0.0						
507NOlive-Floor drain in Basem	11/11/15			0.0		0.0						
507NOlive-Front porch	11/11/15			0.0		0.0						
507NOlive-Kitchen	11/11/15			0.0		0.0						
507NOlive-Living room	11/11/15			0.0		0.0						
507NOlive-SS1	11/11/15	-0.05	20.9	0.0		0.0						
507NOlive-SS2	11/11/15	0.00	20.9	0.0		0.0						
507NOlive-SS3	11/11/15	-0.08	20.9	0.0		62.3						
507NOlive-SS4	11/11/15	-0.08	20.9	0.0		57.4						
507NOlive-SS5	11/11/15	0.00	20.9	0.0		0.0						
507NOlive-SS6	11/11/15	0.00	20.9	0.0	 	0.0	 	 				
507NOlive-SS7	11/11/15	0.00	20.9	0.0	 	0.0					 	
507NOlive-Basement	02/10/16			0.0	0.0	1.6		 -				
507NOlive-Dining Room	02/10/16			0.0	0.0	0.0						
507NOlive-Blinning Room 507NOlive-Floor drain in Basem	02/10/16			0.0	0.0	1.6						
507NOlive-Front porch	02/10/16		 	0.0	0.0	0.0		 	 			
	02/10/10											
507NOlive-Front policii 507NOlive-Kitchen	02/10/16			0.0	0.0	3.0						

3 of 4

APPENDIX G-1. QUARTERLY IN-HOME EFFECTIVENESS MONITORING DETECTIONS SUMMARY HARTFORD PETROLEUM RELEASE SITE, HARTFORD, ILLINOIS

				Direct Rea	ad Results					Tedlar Bag Results		
Location	Date Sampled	Pressure (in-H2O)	Oxygen (%)	LEL (%)	Total Organic Vapor PID (ppmv)	FID TVPH Concentration (ppmv)	Oxygen (%)	Carbon Dioxide (%)	LEL (%)	Total Organic Vapor PID (ppmv)	FID TVPH Concentration (ppmv)	Methane (ppmv)
507NOlive-SS1	02/10/16	0.00	20.9	0.0	0.0	3.0						
507NOlive-SS2	02/10/16	0.00	20.9	0.0	0.0	21.5						
507NOlive-SS3	02/10/16	-0.06	20.9	0.0	0.0	25.0						
507NOlive-SS4	02/10/16	-0.06	20.9	0.0	1.0	200						
507NOlive-SS5	02/10/16	0.00	20.9	0.0	32.0	0.0						
507NOlive-SS6	02/10/16	0.00	20.9	0.0	5.0	0.0						
507NOlive-SS7	02/10/16	0.00	20.9	0.0	3.0	0.0						
610NOldStLouis-Back entrance	11/11/15			0.0		0.0						
610NOldStLouis-Basement	11/11/15			0.0		2.0						
610NOldStLouis-Sump in basemen	11/11/15			0.0		2.5						
610NOldStLouis-SS1	11/11/15	0.00	20.9	0.0		0.0						
610NOldStLouis-SS2	11/11/15	0.00	10.8	0.0		0.0						
610NOldStLouis-SS3	11/11/15	0.00	13.1	0.0		1.2						

Notes

- Sub slab measurements were not collected when water was pulled from probe, intial pressure measurements are indicative of water
- Field equipment includes a dwyer series 475 micromanometer, Thermo Scientific TVA1000 FID (flame ionization detector) equiped with PID (photoionization detector), and a REA Systems multiRAE four gas meter
- Additional action is required when FID concentrations exceed 10 ppmv in the indoor air or 350 ppmv in the sub slab in-H₂O inches of water

% - percent

LEL - Lower Explosive Limit

ppmv - parts per million by volume

-- - not analyzed

TVPH - total volatile petroleum hydrocarbons

FID - flame ionization detector

201606_01-QrtlyIn-HomeMonDet_APP-G1

Location ID	Date Sampled	Static Pressure/ Vacuum	Estimated Soil Gas Permeability	Probe Specific Capacity
		(in-H ₂ O)	(cm ²)	(cm³/s⋅in H ₂ O)
400MCh arm / CC4	44/40/0045	0.00	0.005.00	00.00
100WCherry-SS1	11/12/2015	0.00	3.89E-06	-33.33
100WCherry-SS1	2/8/2016	0.00	9.72E-07	-8.33
100WCherry-SS2	11/12/2015	0.00	7.79E-06	-66.66
100WCherry-SS2	2/8/2016	0.00	6.47E-07	-5.55
101EBirch-SS1	11/10/2015	0.00	4.32E-06	-37.03
101EBirch-SS1	2/8/2016	0.00	1.11E-06	-9.52
101EBirch-SS2	11/10/2015	0.00	1.69E-06	-14.48
101EBirch-SS2				
	2/8/2016			
101EBirch-SS3	11/10/2015	0.00	1.14E-06	-9.80
101EBirch-SS3	2/8/2016	0.00	9.59E-08	-0.83
101EForest-SS1	11/10/2015	0.00	2.78E-06	-23.80
101EForest-SS1	2/9/2016	0.00	2.29E-06	-19.60
101EForest-SS2	11/10/2015	0.00	2.99E-06	-25.63
101EForest-SS2	2/9/2016	0.00	1.85E-06	-15.86
101EForest-SS3	11/10/2015	0.00	1.85E-06	-15.86
101EForest-SS3	2/9/2016	0.00	1.77E-06	-15.14
1012101651-333	2/9/2016	0.00	1.77E-00	-15.14
101EWatkins-SS1	11/12/2015	0.00	1.88E-07	-1.61
101EWatkins-SS1	2/11/2016	0.00	1.61E-07	-1.38
101EWatkins-SS2	11/12/2015	0.00	4.22E-07	-3.61
101EWatkins-SS2	2/11/2016	0.00		-2.77
			3.23E-07	
101EWatkins-SS3	11/12/2015	0.00	3.54E-06	-30.29
101EWatkins-SS3	2/11/2016	0.00	6.47E-07	-5.55
102EDate-SS1	11/10/2015	0.00	4.87E-06	-41.66
102EDate-SS1	2/9/2016	0.00	3.54E-06	-30.29
102EDate-SS2	11/10/2015	0.00	1.95E-05	-166.65
102EDate-SS2	2/9/2016	-0.05	3.54E-06	-30.29
102EDate-SS3	11/10/2015	0.00	6.49E-06	-55.55
102EDate-SS3	2/9/2016	-0.05	2.59E-06	-22.21
102EDate-SS4	11/10/2015	0.00	4.87E-06	-41.66
102EDate-SS4				
102EDate-334	2/9/2016	0.00	2.43E-06	-20.83
107WBirch-SS1	11/11/2015	0.00	2.06E-07	-1.76
107WBirch-SS1	2/10/2016	0.00	1.24E-07	-1.07
107WBirch-SS2	11/11/2015	0.00	1.08E-05	-92.57
107WBirch-SS2	2/10/2016	0.00	2.59E-06	-22.21
107WBirch-SS3	11/11/2015	0.00	6.49E-06	-55.55
107WBirch-SS3	2/10/2016	0.00	3.54E-06	-30.29
107WE0700+ SS2	11/10/2015	0.00	1 005 05	02.57
107WForest-SS2	11/10/2015	0.00	1.08E-05	-92.57
107WForest-SS2	2/8/2016	0.00	1.30E-06	-11.10
107WForest-SS3	11/10/2015	0.00	7.79E-06	-66.66
107WForest-SS3	2/8/2016	0.00	1.30E-06	-11.10
111WDate-SS1	11/11/2015	0.00	2.78E-06	-23.80
111WDate-SS1	2/9/2016	0.00	2.43E-06	-20.83
111WDate-SS2	11/11/2015	0.00	5.56E-06	-47.61
111WDate-SS2	2/9/2016	0.00	2.78E-06	-23.80
111112410 002	21312010	0.00	2.1 OL-00	20.00

Location ID	Date Sampled	Static Pressure/ Vacuum	Estimated Soil Gas Permeability	Probe Specific Capacity
		(in-H ₂ O)	(cm ²)	(cm³/s⋅in H ₂ O)
444WD-+- CC2	44/44/0045	0.00	0.005.00	00.00
111WDate-SS3	11/11/2015	0.00	3.89E-06	-33.33
111WDate-SS3	2/9/2016	0.00	2.05E-06	-17.54
112WBirch-SS1	11/11/2015	-0.05	3.54E-06	-30.29
112WBirch-SS2	11/11/2015	0.00	4.87E-06	-41.66
112WBirch-SS3	11/11/2015	0.00	6.07E-07	-5.20
112WBirch-SS4	11/11/2015	0.00	9.73E-06	-83.33
114EForest-SS1	11/12/2015	0.00	9.73E-06	-83.33
114EForest-SS2	11/12/2015	0.00	1.25E-06	-10.74
114EForest-SS3	11/12/2015	0.00	6.70E-07	-5.74
11421 01031 000	11/12/2010	0.00	0.702 07	0.74
116EWatkins-SS1	11/10/2015	0.00	9.73E-06	-83.33
116EWatkins-SS2	11/10/2015	0.00	4.32E-06	-37.03
116EWatkins-SS3	11/10/2015	0.00	1.44E-06	-12.34
117WBirch-SS1	11/11/2015	0.00	1.30E-05	-111.10
117WBirch-SS1	2/10/2016	0.00	2.05E-06	-17.54
117WBirch-SS2	11/11/2015	0.00	1.85E-06	-15.86
117WBirch-SS2	2/10/2016	0.00	2.05E-06	-17.54
117WBirch-SS3	11/11/2015	0.00	3.24E-06	-27.77
117WBirch-SS3	2/10/2016	0.00	3.54E-06	-30.29
117 44 5 11 011 000	2/10/2010	0.00	3.5 1 L-00	-30.23
118EElm-SS1	11/16/2015	0.00	8.10E-08	-0.73
118EElm-SS2	11/16/2015	0.00	8.23E-07	-7.09
118EElm-SS3	11/16/2015	0.00	2.53E-08	-0.25
118WBirch-SS1	11/10/2015	0.00	6.49E-06	-55.55
118WBirch-SS2	11/10/2015	0.00	6.49E-06	-55.55
118WBirch-SS3	11/10/2015	0.00	1.02E-07	-0.88
118WCherry-SS1	11/12/2015	0.00	4.87E-06	-41.66
118WCherry-SS1	2/11/2016	0.00	6.47E-07	-5.55
118WCherry-SS2	11/12/2015	0.00	2.78E-06	-23.80
118WCherry-SS2	2/11/2016	0.00	2.43E-06	-20.83
118WCherry-SS3	11/12/2015	0.00	3.89E-06	-33.33
118WCherry-SS3	2/11/2016	0.00	2.99E-06	-25.63
118WElm-SS1	11/10/2015	0.00	1.44E-06	-12.34
118WElm-SS1	2/8/2016	0.00	7.77E-07	-6.66
118WElm-SS2	11/10/2015	0.00	5.98E-07	-5.12
118WElm-SS2	2/8/2016	0.00	6.47E-07	-5.55
118WElm-SS3	11/10/2015	0.00	7.48E-08	-0.64
118WElm-SS3	2/8/2016	0.00	1.61E-07	-1.38
110M/Dirah 004	44/40/0045	0.00	4.405.00	0.00
119WBirch-SS1	11/12/2015	0.00	4.46E-08	-0.39
119WBirch-SS1	2/11/2016	0.00	5.82E-09	-0.05
119WBirch-SS2	11/12/2015	0.00	1.56E-06	-13.33
119WBirch-SS2	2/11/2016	0.00	1.77E-06	-15.14
119WBirch-SS3	11/12/2015	0.00	1.85E-06	-15.86
119WBirch-SS3	2/11/2016	0.00	1.85E-06	-15.86

Location ID	Date Sampled	Static Pressure/ Vacuum	Estimated Soil Gas Permeability	Probe Specific Capacity
		(in-H ₂ O)	(cm ²)	(cm³/s⋅in H ₂ O)
119WCherry-SS1	11/12/2015	-0.07	1.34E-06	-11.49
119WCherry-SS2	11/12/2015	-0.13	9.97E-07	-8.54
119WCherry-SS3	11/12/2015	-0.18	7.62E-07	-6.53
119WDate-SS1	11/11/2015	0.00	2.16E-06	-18.51
119WDate-SS1	2/10/2016	0.00	1.62E-06	-13.88
119WDate-SS2	11/11/2015	0.00		
119WDate-SS2		0.00	2.05E-06	-17.54 -8.33
119WDate-SS3	2/10/2016		9.72E-07	
	11/11/2015	0.00	2.78E-06	-23.80
119WDate-SS3	2/10/2016	0.00	1.95E-06	-16.66
122WCherry-SS1	11/10/2015	0.00	8.10E-07	-6.94
122WCherry-SS1	2/9/2016	0.00	3.88E-07	-3.33
122WCherry-SS2	11/10/2015	0.00	2.99E-06	-25.63
122WCherry-SS2	2/9/2016	0.00	2.05E-06	-17.54
122WCherry-SS3	11/10/2015	0.00	1.44E-06	-12.34
122WCherry-SS3	2/9/2016	0.00	1.77E-06	-15.14
123EElm-SS1	11/12/2015	0.00	2.52E-09	-0.03
123EElm-SS2	11/12/2015	0.00	1.30E-05	-111.10
123EElm-SS3	11/12/2015	0.00	7.79E-06	-66.66
120001111-000	11/12/2010	0.00	7.73L-00	-00.00
125EForest-SS1	11/13/2015	0.00	1.64E-08	-0.14
125EForest-SS3	11/13/2015	0.00	6.36E-08	-0.55
125WBirchRear-SS1	2/8/2016	0.00	9.72E-07	-8.33
125WBirchRear-SS2	2/8/2016	0.00	4.31E-07	-3.70
	2/0/2010	0.00	1.012 07	0.70
125WBirch-SS1	2/8/2016	0.00	3.23E-07	-2.77
125WBirch-SS2	2/8/2016	0.00	5.55E-07	-4.75
125WBirch-SS3	2/8/2016	0.00	7.77E-07	-6.66
126EElm-SS1	11/10/2015	0.00	2.02E-07	-1.74
126EElm-SS1	2/10/2016	0.00	2.98E-07	-2.56
126EElm-SS2	11/15/2015	0.00	6.49E-06	-55.55
126EElm-SS2	2/10/2016	0.00	3.89E-06	-33.33
126EElm-SS3	11/10/2015	0.00	5.56E-06	-47.61
126EElm-SS3	2/10/2016	0.00	3.54E-06	-30.29
	2,10,2010	0.00	0.012 00	00.20
127EElm-SS1	11/10/2015	0.00	1.67E-07	-1.43
127EElm-SS1	2/8/2016	0.00	1.84E-07	-1.58
127EElm-SS2	11/10/2015	0.00	3.18E-07	-2.72
127EElm-SS2	2/8/2016	0.00	6.47E-07	-5.55
127EElm-SS3	11/10/2015	0.00	1.62E-06	-13.88
127EElm-SS3	2/8/2016	0.00	9.72E-07	-8.33
128WCherry-SS1	11/10/2015	0.00	1.98E-07	-1.70
128WCherry-SS2	11/10/2015	0.00	2.26E-07	-1.94
128WCherry-SS3	11/10/2015	0.00	1.18E-06	-10.09
120 W OHEH y-300	11/10/2013	0.00	1.10L-00	-10.03
129WBirch-SS1	11/11/2015	0.00	5.47E-07	-4.69

Location ID	Date Sampled	Static Pressure/ Vacuum	Estimated Soil Gas Permeability	Probe Specific Capacity
		(in-H ₂ O)	(cm ²)	(cm ³ /s⋅in H ₂ O)
129WBirch-SS1	2/40/2046	0.00	2 20 5 06	22.22
	2/10/2016	0.00	3.89E-06	-33.33
129WBirch-SS2	11/11/2015	0.00	7.62E-07	-6.53
129WBirch-SS2	2/10/2016	0.00	1.77E-06	-15.14
129WBirch-SS3	11/11/2015	0.00	3.66E-07	-3.14
129WBirch-SS3	2/10/2016	0.00	6.47E-07	-5.55
134EWatkins-SS1	2/8/2016	0.00	4.31E-07	-3.70
134EWatkins-SS2	2/8/2016	0.00	4.31E-07	-3.70
134EWatkins-SS3	2/8/2016	0.00	3.53E-07	-3.02
104EWalking COO	2/0/2010	0.00	3.33L-07	-3.02
135EForest-SS1	2/10/2016	0.00	7.77E-07	-6.66
135EForest-SS2	2/10/2016	0.00	2.29E-06	-19.60
135EForest-SS3	2/10/2016	0.00	2.16E-06	-18.51
142EWatkins-SS1	11/11/2015	0.00	3.67E-08	-0.32
142EWatkins-SS2	11/11/2015	0.00	1.62E-06	-13.88
142EWatkins-SS3	11/11/2015	0.00	2.67E-08	-0.23
142L Walkins-005	11/11/2013	0.00	2.07 L-00	-0.23
201NOlive-SS1	11/9/2015	0.00	5.56E-06	-47.61
201NOlive-SS2	11/9/2015	0.00	4.32E-06	-37.03
201NOlive-SS3	11/9/2015	0.00	1.56E-07	-1.34
309NOlive-SS1	11/10/2015	0.00	5 92E 00	0.05
		0.00	5.82E-09	-0.05
309NOlive-SS1	2/8/2016	0.00	4.17E-09	-0.04
309NOlive-SS2	11/10/2015	0.00	3.24E-06	-27.77
309NOlive-SS2	2/8/2016	0.00	2.29E-06	-19.60
309NOlive-SS3	11/10/2015	0.00	3.69E-07	-3.17
309NOlive-SS3	2/8/2016	0.00	3.53E-07	-3.02
310NDelmar-SS1	11/10/2015	0.00	3.84E-07	-3.29
310NDelmar-SS1	2/9/2016	-0.05	6.47E-07	-5.55
310NDelmar-SS2	11/10/2015	0.00	4.87E-06	-41.66
310NDelmar-SS2	2/9/2016	-0.05	2.43E-06	-20.83
310NDelmar-SS3	11/10/2015	0.00	2.29E-06	-19.60
310NDelmar-SS3	2/9/2016	-0.06	2.99E-06	-25.63
310NDelmar-SS4	11/10/2015	0.00	2.16E-06	-18.51
310NDelmar-SS4	2/9/2016	-0.06	2.59E-06	-22.21
310NDelmar-SS5	11/10/2015	0.00	1.30E-06	-11.10
310NDelmar-SS5	2/9/2016	-0.06	2.43E-06	-20.83
FOANOlina CC4	44/40/0045	0.00	0.505.00	0.00
501NOlive-SS1	11/12/2015	0.00	2.52E-09	-0.03
501NOlive-SS1	2/10/2016	-0.07	2.29E-06	-19.60
501NOlive-SS2	11/12/2015	0.08	2.52E-09	-0.03
501NOlive-SS2	2/10/2016	-0.12	7.77E-07	-6.66
501NOlive-SS3	11/12/2015			
501NOlive-SS3	2/10/2016	0.00	2.78E-06	-23.80
504NDelmar-SS1	11/11/2015	0.00	2.99E-06	-25.63
504NDelmar-SS2	11/11/2015	-0.17	1.05E-06	-9.00
504NDelmar-SS3	11/11/2015	0.00	2.78E-06	-23.80
2220	/ 1 // 2010	0.00	02 00	20.00

Location ID	Date Sampled	Static Pressure/ Vacuum	Estimated Soil Gas Permeability	Probe Specific Capacity
		(in-H ₂ O)	(cm ²)	(cm³/s∙in H ₂ O)
50711011 004				
507NOlive-SS1	11/11/2015	0.00	6.23E-09	-0.06
507NOlive-SS1	2/10/2016	0.00	2.54E-09	-0.03
507NOlive-SS2	11/11/2015	-0.05	4.87E-06	-41.66
507NOlive-SS2	2/10/2016	0.00	2.43E-06	-20.83
507NOlive-SS3	11/11/2015	-0.08	2.99E-06	-25.63
507NOlive-SS3	2/10/2016	-0.06	1.85E-06	-15.86
507NOlive-SS4	11/11/2015	-0.08	2.59E-06	-22.21
507NOlive-SS5	11/11/2015	0.00	4.87E-06	-41.66
507NOlive-SS5	2/10/2016	0.00	1.95E-06	-16.66
507NOlive-SS6	11/11/2015	0.00	9.97E-07	-8.54
507NOlive-SS7	11/11/2015	0.00	2.52E-09	-0.03
516NDelmar-SS1	11/11/2015	-0.09	2.29E-06	-19.60
516NDelmar-SS1	2/10/2016	0.00	2.29E-06	-19.60
516NDelmar-SS2	11/11/2015	-0.09	2.29E-06	-19.60
516NDelmar-SS2	2/10/2016	0.00	2.16E-06	-18.51
516NDelmar-SS3	11/11/2015	-0.08	1.25E-06	-10.74
516NDelmar-SS3	2/10/2016	0.00	9.72E-07	-8.33
516NDelmar-SS4	11/11/2015	-0.09	1.62E-06	-13.88
516NDelmar-SS4	2/10/2016	0.00	9.72E-07	-8.33
518NDelmar-SS1	11/11/2015	-0.11	1.14E-06	-9.80
518NDelmar-SS1	2/10/2016	-0.07	9.72E-07	-8.33
518NDelmar-SS2	11/11/2015	-0.11	2.03E-07	-1.75
518NDelmar-SS2	2/10/2016	0.00	2.58E-07	-1.75 -2.21
518NDelmar-SS3	11/11/2015	-0.26	2.89E-08	-0.25
518NDelmar-SS3				
5 TOINDellillar-333	2/10/2016	0.23	1.16E-08	-0.10
610NOldStLouis-SS1	11/10/2015	0.00	2.62E-07	-2.24
610NOldStLouis-SS2	11/10/2015	0.00	4.32E-06	-37.03
610NOldStLouis-SS3	11/10/2015	0.00	2.87E-07	-2.46
619NOlive-SS1	2/9/2016	0.00	2.58E-07	-2.21
619NOlive-SS2		0.00		
619NOlive-SS3	2/9/2016		1.38E-07	-1.18
019NOllve-333	2/9/2016	0.00	2.43E-06	-20.83
715NDelmar-CC1	11/13/2015	-0.23	1.28E-07	-1.10
715NDelmar-CC1	2/11/2016	-0.20	2.15E-07	-1.84
715NDelmar-CC10	11/13/2015	-0.33	9.97E-07	-8.54
715NDelmar-CC10	2/11/2016	-0.26	6.47E-07	-5.55
715NDelmar-CC11	11/13/2015	-0.22	7.06E-07	-6.05
715NDelmar-CC11	2/11/2016	-0.23	5.55E-07	-4.75
715NDelmar-CC12	11/13/2015	0.00	2.65E-09	-0.03
715NDelmar-CC12	2/11/2016	0.00	8.34E-09	-0.08
715NDelmar-CC2	11/13/2015	0.00	4.87E-06	-41.66
715NDelmar-CC2	2/11/2016	-0.17	6.47E-07	-5.55
715NDelmar-CC3	11/13/2015	0.00	7.55E-08	-0.65
715NDelmar-CC3	2/11/2016	-0.12	1.28E-07	-1.10
715NDelmar-CC4	11/13/2015	0.00	6.49E-06	-55.55
715NDelmar-CC4	2/11/2016	0.00	2.59E-06	-33.33 -22.21
715NDelmar-CC4	11/13/2015	0.00	9.73E-06	-83.33
7 TOTADOMINATOOS	11/13/2013	0.00	3.7 JL-00	-00.00

Location ID	Date Sampled	Static Pressure/ Vacuum (in-H ₂ O)	Estimated Soil Gas Permeability (cm²)	Probe Specific Capacity (cm³/s⋅in H₂O)
715NDelmar-CC5	2/11/2016	0.00	2.59E-06	-22.21
715NDelmar-CC6	11/13/2015	0.00	4.32E-06	-37.03
715NDelmar-CC6	2/11/2016	-0.16	4.32E-00 9.72E-07	-37.03 -8.33
715NDelmar-CC7		****	*** == **	
	11/13/2015	0.00	1.34E-06	-11.49
715NDelmar-CC7	2/11/2016	-0.09	7.77E-07	-6.66
715NDelmar-CC7D	11/13/2015	0.00	8.10E-07	-6.94
715NDelmar-CC7D	2/11/2016	-0.12	6.47E-07	-5.55
715NDelmar-CC8	11/13/2015	0.00	2.16E-06	-18.51
715NDelmar-CC8	2/11/2016	-0.08	9.72E-07	-8.33
715NDelmar-CC9	11/13/2015	0.00	2.54E-09	-0.03
715NDelmar-CC9	2/11/2016	0.00	1.55E-08	-0.14

Notes:

-- - water in sub-slab probe

in-H₂O - inches of water

cm² - square centimeters

cm³/s·in H₂O - cubic centimeters per second per inch of water

APPENDIX H

FID TVPH
Concentration, Direct

		oncentration, Direct				
Location ID	Date Sampled	Read	LEL	Oxygen	Pressure	Total Organic Vapor by PI
		(ppmv)	(%)	(%)	(in-H2O)	(ppmv)
100WCherry-Bathroom	12/01/15	2.2	0.0			0.0
100WCherry-Central Room	12/01/15	2.2	0.0	 	 	0.0
100WCherry-Central work area	12/01/15	2.2	0.0			0.0
100WCherry-Front counter	12/01/15	2.2	0.0			0.0
100WCherry-Front desk	12/01/15	2.2	0.0	 		0.0
100WCherry-Front entrance	12/01/15	2.2	0.0	 		0.0
100WCherry-Restroom	12/01/15	2.2	0.0	 		0.0
100WCherry-Restroom	12/01/15	2.2	0.0			0.0
100WCherry-SW room	12/01/15	2.2	0.0	 		0.0
100WCherry-SS1	12/01/15	0.0	0.0	20.9	0.00	0.0
100WCherry-SS1	12/01/15	0.0	0.0	20.9	0.00	0.0
100WCherry-SS2	12/01/15	0.0	0.0	20.9	0.00	0.0
101EBirch-Basement	12/01/15	2.1	0.0			0.0
101EBirch-Drain in basement	12/01/15	2.1	0.0			0.0
101EBirch-N drain Basement	12/01/15	2.1	0.0			0.0
101EBirch-NW Bedroom Basement	12/01/15	2.1	0.0			0.0
101EBirch-S Drain Basement	12/01/15	2.1	0.0			0.0
101EBirch-SS1	12/01/15	0.0	0.0	20.9	0.00	0.0
101EBirch-SS2	12/01/15	0.0	0.0		0.23	
101EBirch-SS3	12/01/15		0.0		0.07	
111WDate-Basement	12/01/15	2.4	0.0			0.0
111WDate-Basement floor drain	12/01/15	4.2	0.0			0.0
111WDate-Crawl space-S of Base	12/01/15	0.0	0.0			0.0
111WDate-NE Room Basement	12/01/15	2.4	0.0			0.0
111WDate-NW room-Former Kitche	12/01/15	2.5	0.0			0.0
111WDate-SS1	12/01/15	0.0	0.0	17.6	0.00	0.0
111WDate-SS2	12/01/15	0.0	0.0	20.0	0.00	0.0
111WDate-SS3	12/01/15	0.0	0.0	19.4	0.00	0.0
116EWatkins-Basement	12/01/15	2.7	0.0			0.0
116EWatkins-Basement-Bathroom	12/01/15	2.7	0.0			0.0
116EWatkins-Basement-Crawl spa	12/01/15	0.0	0.0			0.0

FID TVPH
Concentration, Direct

Location ID	Date Sampled	Read	LEL	Oxygen	Pressure	Total Organic Vapor by PIE
2004101112	_ato campion	(ppmv)	(%)	(%)	(in-H2O)	(ppmv)
116EWatkins-Basement-Floor dra	12/01/15	2.5	0.0			0.0
116EWatkins-Basement-Floor dra	12/01/15	2.3	0.0			0.0
116EWatkins-Basement-Office	12/01/15	2.5	0.0			0.0
116EWatkins-Dining room	12/01/15	3.4	0.0			0.0
116EWatkins-Front porch	12/01/15	0.0	0.0			0.0
116EWatkins-Kitchen	12/01/15	3.4	0.0			0.0
116EWatkins-Living room	12/01/15	3.4	0.0			0.0
116EWatkins-Shower Drain	12/01/15	0.0	0.0			0.0
116EWatkins-SS1	12/01/15	0.0	0.0	20.9	0.00	0.0
116EWatkins-SS2	12/01/15	0.0	0.0	20.9	0.00	0.0
116EWatkins-SS3	12/01/15	0.0	0.0	20.9	0.00	0.0
116EWatkins-Basement	12/03/15	0.0	0.0			0.0
116EWatkins-Basement-Bathroom	12/03/15	0.0	0.0			0.0
116EWatkins-Basement-Crawl spa	12/03/15	0.0	0.0			0.0
116EWatkins-Basement-Floor dra	12/03/15	0.0	0.0			0.0
116EWatkins-Basement-Floor dra	12/03/15	0.0	0.0			0.0
116EWatkins-Basement-Office	12/03/15	0.0	0.0			0.0
116EWatkins-Dining room	12/03/15	0.0	0.0			0.0
116EWatkins-Front porch	12/03/15	0.0	0.0			0.0
116EWatkins-Kitchen	12/03/15	0.0	0.0			0.0
116EWatkins-Living room	12/03/15	0.0	0.0			0.0
116EWatkins-Shower Drain	12/03/15	0.0	0.0			0.0
116EWatkins-SS1	12/03/15	10.4	0.0	20.9	0.00	0.0
116EWatkins-SS2	12/03/15	0.0	0.0	20.9	0.00	0.0
116EWatkins-SS3	12/03/15	0.0	0.0	20.9	0.00	0.0
117WBirch-Back/N porch	12/02/15	0.0	0.0			0.0
117WBirch-Basement	12/02/15	2.6	0.0			0.0
117WBirch-Floor Drain	12/02/15	2.4	0.0			0.0
117WBirch-SS1	12/02/15	0.0	0.0	20.9	0.00	0.0
117WBirch-SS2	12/02/15	0.0	0.0	20.2	0.00	0.0
117WBirch-SS3	12/02/15	0.0	0.0	20.4	0.00	0.0

201603_In-HomeMonEBMP-26Det_APP-H1 2 of 6

FID TVPH
Concentration, Direct

		oncentration, Direct				
Location ID	Date Sampled	Read	LEL	Oxygen	Pressure	Total Organic Vapor by PID
		(ppmv)	(%)	(%)	(in-H2O)	(ppmv)
117WBirch-Back/N porch	12/04/15	2.3	0.0			0.0
117WBirch-Basement	12/04/15	2.4	0.0			0.0
117WBirch-Floor Drain	12/04/15	2.4	0.0			0.0
117WBirch-SS1	12/04/15	0.0	0.0	20.9	0.00	0.0
117WBirch-SS2	12/04/15	0.0	0.0	19.0	0.00	0.0
117WBirch-SS3	12/04/15	0.0	0.0	19.2	0.00	0.0
117WBirch-Back/N porch	12/07/15	0.0	0.0			0.0
117WBirch-Basement	12/07/15	2.4	0.0			0.0
117WBirch-Floor Drain	12/07/15	2.1	0.0			0.0
117WBirch-SS1	12/07/15	0.0	0.0	20.9	0.00	0.0
117WBirch-SS2	12/07/15	0.0	0.0	20.5	0.00	0.0
117WBirch-SS3	12/07/15	0.0	0.0	20.3	0.00	0.0
125WBirch-Basement E Floor dra	12/01/15	2.7	0.0			0.0
125WBirch-Basement E room	12/01/15	2.8	0.0			0.0
125WBirch-Basement NW Floor dr	12/01/15	2.8	0.0			0.0
125WBirch-Basement NW room	12/01/15	2.8	0.0			0.0
125WBirch-Crawl space	12/01/15	0.0	0.0			0.0
125WBirch-Kitchen	12/01/15	3.1	0.0			0.0
125WBirch-SS1	12/01/15	0.0	0.0	20.1	0.00	0.0
125WBirch-SS2	12/01/15	0.0	0.0	20.5	0.00	0.0
125WBirch-SS3	12/01/15	6.8	0.0	20.9	0.00	0.0
125WBirchRear-Basement	12/01/15	3.2	0.0			0.0
125WBirchRear-Basement Bathroo	12/01/15	3.2	0.0			0.0
125WBirchRear-Crawl space	12/01/15	0.0	0.0			0.0
125WBirchRear-Floor drain in B	12/01/15	3.1	0.0			0.0
125WBirchRear-SS1	12/01/15	3.8	0.0	20.9	0.00	0.0
125WBirchRear-SS2	12/01/15	0.0	0.0	19.2	0.00	0.0
125WBirchRear-Basement	12/03/15	1.4	0.0			0.0
125WBirchRear-Basement Bathroo	12/03/15	1.5	0.0			0.0
125WBirchRear-Crawl space	12/03/15	0.0	0.0			0.0

201603_In-HomeMonEBMP-26Det_APP-H1 3 of 6

FID TVPH
Concentration. Direct

Location ID	Data Camaniad	DI		_	_	
Location ib	Date Sampled	Read	LEL	Oxygen	Pressure	Total Organic Vapor by PID
		(ppmv)	(%)	(%)	(in-H2O)	(ppmv)
125WBirchRear-Floor drain in B	12/03/15	1.4	0.0			0.0
125WBirchRear-SS1	12/03/15	0.0	0.0	20.5	0.00	0.0
125WBirchRear-SS2	12/03/15	0.0	0.0	19.7	0.00	0.0
201NOlive-Basement - NW room (12/01/15	1.4	0.0			0.0
201NOlive-Basement-Drain Plugg	12/01/15	1.4	0.0			0.0
201NOlive-Basement-E Room	12/01/15	1.4	0.0			0.0
201NOlive-Basement-SW Room	12/01/15	1.4	0.0			0.0
201NOlive-Kitchen	12/01/15	2.8	0.0			0.0
201NOlive-Living Room	12/01/15	2.8	0.0			0.0
201NOlive-SE living room	12/01/15	2.8	0.0			0.0
201NOlive-W porch/computer roo	12/01/15	2.8	0.0			0.0
201NOlive-SS1	12/01/15	0.0	0.0	20.9	0.00	0.0
201NOlive-SS2	12/01/15	0.0	0.0	20.9	0.00	0.0
201NOlive-SS3	12/01/15	0.0	0.0	20.9	0.00	0.0
507NOlive-Basement	12/02/15	0.0	0.0			0.0
507NOlive-Dininng Room	12/02/15	0.0	0.0			0.0
507NOlive-Floor drain in Basem	12/02/15	0.0	0.0			0.0
507NOlive-Front porch	12/02/15	0.0	0.0			0.0
507NOlive-Kitchen	12/02/15	0.0	0.0			0.0
507NOlive-Living room	12/02/15	0.0	0.0			0.0
507NOlive-SS1	12/02/15	0.0	0.0	20.9	0.00	0.0
507NOlive-SS2	12/02/15	0.0	0.0	20.9	0.00	0.0
507NOlive-SS3	12/02/15	90.0	0.0	20.9	-0.09	0.0
507NOlive-SS4	12/02/15	110	0.0	20.9	-0.10	0.0
507NOlive-SS5	12/02/15	0.0	0.0	20.9	0.00	0.0
507NOlive-SS6	12/02/15	0.0	0.0	20.9	0.00	0.0
507NOlive-SS7	12/02/15	0.0	0.0	20.9	0.00	0.0
507NOlive-Basement	12/04/15	0.0	0.0			0.0
507NOlive-Bathroom in Basement	12/04/15	0.0	0.0			0.0
507NOlive-Computer room	12/04/15	0.0	0.0			0.0
507NOlive-Floor drain in Basem	12/04/15	0.0	0.0			0.0

201603_In-HomeMonEBMP-26Det_APP-H1 4 of 6

FID TVPH
Concentration. Direct

Concentration, Direct									
Location ID	Date Sampled	Read	LEL	Oxygen	Pressure	Total Organic Vapor by PII			
		(ppmv)	(%)	(%)	(in-H2O)	(ppmv)			
507NOlive-Front porch	12/04/15	0.0	0.0			0.0			
507NOlive-Kitchen	12/04/15	0.0	0.0			0.0			
507NOlive-Living room	12/04/15	0.0	0.0			0.0			
507NOlive-SS1	12/04/15	0.0	0.0	20.9	-0.08	0.0			
507NOlive-SS2	12/04/15	0.0	0.0	20.9	-0.06	0.0			
507NOlive-SS3	12/04/15	20.0	0.0	20.9	-0.07	0.0			
507NOlive-SS4	12/04/15	40.0	0.0	20.9	-0.05	0.0			
507NOlive-SS5	12/04/15	0.0	0.0	20.9	0.00	0.0			
507NOlive-SS6	12/04/15	0.0	0.0	20.9	0.00	0.0			
507NOlive-SS7	12/04/15	0.0	0.0	20.9	0.00	0.0			
507NOlive-Basement	12/07/15	0.0	0.0			0.0			
507NOlive-Dininng Room	12/07/15	0.0	0.0			0.0			
507NOlive-Floor drain in Basem	12/07/15	0.0	0.0			0.0			
507NOlive-Front porch	12/07/15	0.0	0.0			0.0			
507NOlive-Kitchen	12/07/15	0.0	0.0			0.0			
507NOlive-Living room	12/07/15	0.0	0.0			0.0			
507NOlive-SS1	12/07/15	0.0	0.0	20.9	-0.10	0.0			
507NOlive-SS2	12/07/15	0.0	0.0	20.9	-0.07	0.0			
507NOlive-SS3	12/07/15	46.0	0.0	20.9	-0.09	0.0			
507NOlive-SS4	12/07/15	91.0	0.0	20.9	-0.11	0.0			
507NOlive-SS5	12/07/15	0.0	0.0	20.9	0.00	0.0			
507NOlive-SS6	12/07/15	0.0	0.0	20.9	0.00	0.0			
507NOlive-SS7	12/07/15	0.0	0.0	20.9	0.00	0.0			
610NOldStLouis-Back entrance	12/02/15	1.3	0.0			0.0			
610NOldStLouis-Basement	12/02/15	1.7	0.0			0.0			
610NOldStLouis-Sump in basemen	12/02/15	1.5	0.0			0.0			
610NOldStLouis-SS1	12/02/15	0.0	0.0	13.6	0.00	0.0			
610NOldStLouis-SS2	12/02/15	0.0	0.0	11.6	0.00	0.0			
610NOldStLouis-SS3	12/02/15	0.0	0.0	17.9	0.00	0.0			
619NOlive-Basement (E end)	12/01/15	1.2	0.0			0.0			
619NOlive-Basement (W end)	12/01/15	1.2	0.0			0.0			

201603_In-HomeMonEBMP-26Det_APP-H1 5 of 6

FID TVPH Concentration, Direct

Contracting Birect										
Location ID	Date Sampled	Read	LEL	Oxygen	Pressure	Total Organic Vapor by PID				
		(ppmv)	(%)	(%)	(in-H2O)	(ppmv)				
619NOlive-Drain in Basement	12/01/15	1.2	0.0			0.0				
619NOlive-SS1	12/01/15		0.0		0.05					
619NOlive-SS2	12/01/15	0.0	0.0	20.9	0.00	0.0				
619NOlive-SS3	12/01/15	0.0	0.0	18.5	0.00	0.0				

Notes:

- Sub slab measurements were not collected when water was pulled from probe, intial pressure measurements are indicative of water
- Field equipment includes a dwyer series 475 micromanometer, Thermo Scientific TVA1000 FID (flame ionization detector) equiped with PID (photoionization detector), and a REA Systems multiRAE four gas meter
- Additional action is required when FID concentrations exceed 10 ppmv in the indoor air or 350 ppmv in the sub slab in- H_2O inches of water

% - percent

 $\ensuremath{\text{\%LEL}}$ - percent lower explosive limit

ppmv - parts per million by volume

-- - not analyzed

TVPH - total volatile petroleum hydrocarbons

FID - flame ionization detector

201603_In-HomeMonEBMP-26Det_APP-H1 6 of 6

FID TVPH
Concentration Direct

Concentration, Direct									
Location ID	Date Sampled	Read	LEL	Oxygen	Pressure	Total Organic Vapor by PID			
		(ppmv)	(%)	(%)	(in-H2O)	(ppmv)			
116EWatkins-Back Porch	12/17/15	0.0	0.0			0.0			
116EWatkins-Basement	12/17/15	1.4	0.0			0.0			
116EWatkins-Basement-Bathroom	12/17/15	0.0	0.0			0.0			
116EWatkins-Basement-Crawl spa	12/17/15	0.0	0.0			0.0			
116EWatkins-Basement-Floor dra	12/17/15	0.0	0.0			0.0			
116EWatkins-Basement-Floor dra	12/17/15	0.0	0.0			0.0			
116EWatkins-Basement-Office	12/17/15	0.0	0.0			0.0			
116EWatkins-Dining room	12/17/15	0.0	0.0			0.0			
116EWatkins-Front porch	12/17/15	0.0	0.0			0.0			
116EWatkins-Kitchen	12/17/15	0.0	0.0			0.0			
116EWatkins-Living room	12/17/15	0.0	0.0			0.0			
116EWatkins-SS1	12/17/15	0.0	0.0	20.9	0.00	0.0			
116EWatkins-SS2	12/17/15	0.0	0.0	20.9	0.00	0.0			
116EWatkins-SS3	12/17/15	0.0	0.0	20.9	0.00	0.0			
	,,	0.0	0.0	_0.0	0.00	0.0			
117WBirch-Back/N porch	12/16/15	3.4	0.0			0.0			
117WBirch-Basement	12/16/15	5.9	0.0			0.0			
117WBirch-Floor Drain	12/16/15	5.4	0.0			0.0			
117WBirch-SS1	12/16/15								
117WBirch-SS2	12/16/15	0.0	0.0	20.9	0.00	0.0			
117WBirch-SS3	12/16/15	0.0	0.0	17.8	0.00	0.0			
117WBirch-Back/N porch	12/18/15	0.0	0.0			0.0			
117WBirch-Basement	12/18/15	0.0	0.0			0.0			
117WBirch-Floor Drain	12/18/15	0.0	0.0			0.0			
117WBirch-SS1	12/18/15	7.8	0.0	20.9	0.00	0.0			
117WBirch-SS2	12/18/15	19.8	0.0	20.9	0.00	0.0			
117WBirch-SS3	12/18/15	0.0	0.0	17.8	0.00	0.0			
TTT WEIGHT GGG	12/10/10	0.0	0.0	17.0	0.00	0.0			
125WBirch-Basement E Floor dra	12/16/15	1.3	0.0			0.0			
125WBirch-Basement E room	12/16/15	0.0	0.0			0.0			
125WBirch-Basement NW Floor dr	12/16/15	0.0	0.0			0.0			
125WBirch-Basement NW room	12/16/15	1.2	0.0			0.0			
125WBirch-Crawl space	12/16/15	0.0	0.0			0.0			

201603_In-HomeMonEBMP-27Det_APP-H2

FID TVPH

Concentration, Direct									
Location ID	Date Sampled	Read	LEL	Oxygen	Pressure	Total Organic Vapor by PID			
		(ppmv)	(%)	(%)	(in-H2O)	(ppmv)			
125WBirch-Floor drain (with Dr	12/16/15	0.0	0.0			0.0			
125WBirch-Kitchen	12/16/15	0.0	0.0			0.0			
125WBirch-SS1	12/16/15	0.0	0.0	20.9	0.00	0.0			
125WBirch-SS2	12/16/15	0.0	0.0	20.9	0.00	0.0			
125WBirch-SS3	12/16/15	0.0	0.0	20.1	0.00	0.0			
125WBirchRear-Basement	12/18/15	1.7	0.0			0.0			
125WBirchRear-Basement Bathroo	12/18/15	1.4	0.0			0.0			
125WBirchRear-Crawl space	12/18/15	0.0	0.0			0.0			
125WBirchRear-Floor drain in B	12/18/15	1.6	0.0			0.0			
125WBirchRear-SS1	12/18/15	0.0	0.0	20.5	0.00	0.0			
125WBirchRear-SS2	12/18/15	0.0	0.0	20.4	0.00	0.0			
129WBirch-Basement	12/16/15	1.3	0.0			0.0			
129WBirch-Basement-central roo	12/16/15	2.0	0.0			0.0			
129WBirch-Basement-CW central	12/16/15	2.0	0.0			0.0			
129WBirch-Basement-furnace roo	12/16/15	3.4	0.0			0.0			
129WBirch-Basement-laundry roo	12/16/15	2.1	0.0			0.0			
129WBirch-Basement-NE bedroom	12/16/15	2.8	0.0			0.0			
129WBirch-Basement-NE Room by	12/16/15	1.3	0.0			0.0			
129WBirch-Basement-NW bathroom	12/16/15	2.1	0.0			0.0			
129WBirch-Basement-NW bedroom	12/16/15	2.0	0.0			0.0			
129WBirch-Basement-NW room	12/16/15	2.2	0.0			0.0			
129WBirch-Basement-S Game Room	12/16/15	3.1	0.0			0.0			
129WBirch-Basement-Shower Drai	12/16/15	2.0	0.0			0.0			
129WBirch-NE Family Room	12/16/15	0.0	0.0			0.0			
129WBirch-SS1	12/16/15	0.0	0.0	19.9	0.00	0.0			
129WBirch-SS2	12/16/15	0.0	0.0	20.9	0.00	0.0			
129WBirch-SS3	12/16/15	0.0	0.0	19.1	0.00	0.0			
129WBirch-Basement	12/18/15	0.0	0.0			0.0			
129WBirch-Basement-central roo	12/18/15	0.0	0.0			0.0			
129WBirch-Basement-CW central	12/18/15	0.0	0.0			0.0			
129WBirch-Basement-furnace roo	12/18/15	2.7	0.0			0.0			
129WBirch-Basement-game room	12/18/15	0.0	0.0			0.0			

201603_In-HomeMonEBMP-27Det_APP-H2 2 of 5

FID TVPH

	Concentration, Direct										
Location ID	Date Sampled	Read	LEL	Oxygen	Pressure	Total Organic Vapor by PID					
		(ppmv)	(%)	(%)	(in-H2O)	(ppmv)					
129WBirch-Basement-laundry roo	12/18/15	0.0	0.0			0.0					
129WBirch-Basement-NE bedroom	12/18/15	0.0	0.0			0.0					
129WBirch-Basement-NE Room by	12/18/15	0.0	0.0			0.0					
129WBirch-Basement-NW bathroom	12/18/15	0.0	0.0			0.0					
129WBirch-Basement-NW bedroom	12/18/15	0.0	0.0			0.0					
129WBirch-Basement-NW room	12/18/15	0.0	0.0			0.0					
129WBirch-Basement-S Game Room	12/18/15	0.0	0.0			0.0					
129WBirch-Basement-Shower Drai	12/18/15	0.0	0.0			0.0					
129WBirch-NE Family Room	12/18/15	0.0	0.0			0.0					
129WBirch-SS1	12/18/15	0.0	0.0	18.8	0.00	1.3					
129WBirch-SS2	12/18/15	0.0	0.0	20.9	0.00	0.0					
129WBirch-SS3	12/18/15	0.0	0.0	18.9	0.00	1.5					
FOZNOL - December	40/40/45	0.0	0.0			0.0					
507NOlive Basement	12/16/15	0.0	0.0			0.0					
507NOlive-Bathroom in Basement	12/16/15	0.0	0.0			0.0					
507NOlive-Computer room	12/16/15	0.0	0.0			0.0					
507NOlive-Floor drain in Basem	12/16/15	0.0	0.0			0.0					
507NOlive-Front porch	12/16/15	0.0	0.0			0.0					
507NOlive-Kitchen	12/16/15	0.0	0.0			0.0					
507NOlive-Living room	12/16/15	0.0	0.0			0.0					
507NOlive-SS1	12/16/15	0.0	0.0	20.9	0.00	0.0					
507NOlive-SS2	12/16/15	0.0	0.0	20.9	0.00	0.0					
507NOlive-SS3	12/16/15	28.0	0.0	20.9	-0.06	0.0					
507NOlive-SS4	12/16/15	14.0	0.0	20.9	-0.07	0.0					
507NOlive-SS5	12/16/15	0.0	0.0	20.9	0.00	0.0					
507NOlive-SS6	12/16/15	0.0	0.0	20.9	0.00	0.0					
507NOlive-SS7	12/16/15	0.0	0.0	20.9	0.00	0.0					
507NOlive-Basement	12/18/15	0.0	0.0			0.0					
507NOlive-Bathroom in Basement	12/18/15	0.0	0.0			0.0					
507NOlive-Computer room	12/18/15	0.0	0.0			0.0					
507NOlive-Dining Room	12/18/15	0.0	0.0			0.0					
507NOlive-Floor drain in Basem	12/18/15	0.0	0.0			0.0					
507NOlive-Front porch	12/18/15	0.0	0.0			0.0					
507NOlive-Living room	12/18/15	0.0	0.0			0.0					

201603_In-HomeMonEBMP-27Det_APP-H2

FID TVPH

Concentration, Direct									
Location ID	Date Sampled	Read	LEL	Oxygen	Pressure	Total Organic Vapor by PID			
		(ppmv)	(%)	(%)	(in-H2O)	(ppmv)			
507NOlive-SS1	12/18/15	0.0	0.0	20.9	0.00	0.0			
507NOlive-SS2	12/18/15	0.0	0.0	20.9	0.00	0.0			
507NOlive-SS3	12/18/15	10.9	0.0	20.9	-0.08	0.0			
507NOlive-SS4	12/18/15	6.7	0.0	20.9	-0.10	0.0			
507NOlive-SS5	12/18/15	0.0	0.0	20.9	0.00	0.0			
507NOlive-SS6	12/18/15	0.0	0.0	20.9	0.00	0.0			
507NOlive-SS7	12/18/15	0.0	0.0	20.9	0.00	0.0			
610NOldStLouis-Back entrance	12/16/15	2.3	0.0			0.0			
610NOldStLouis-Basement	12/16/15	7.0	0.0			0.0			
610NOldStLouis-Sump in basemen	12/16/15	4.4	0.0			0.0			
610NOldStLouis-SS1	12/16/15	4.5	0.0	11.9	0.00	0.0			
610NOldStLouis-SS2	12/16/15	0.0	0.0	10.3	0.00	0.0			
610NOldStLouis-SS3	12/16/15	0.0	0.0	13.3	0.00	0.0			
610NOldStLouis-Back entrance	12/18/15	1.3	0.0			0.0			
610NOldStLouis-Basement	12/18/15	1.7	0.0			0.0			
610NOldStLouis-Sump in basemen	12/18/15	1.4	0.0			0.0			
610NOldStLouis-SS1	12/18/15	0.0	0.0	12.1	0.00	0.0			
610NOldStLouis-SS2	12/18/15	0.0	0.0	10.0	0.00	0.0			
610NOldStLouis-SS3	12/18/15	0.0	0.0	19.4	0.00	0.0			
619NOlive-Basement	12/16/15	1.3	0.0			0.0			
619NOlive-Basement (E end)	12/16/15	1.3	0.0			0.0			
619NOlive-Basement (W end)	12/16/15	1.3	0.0			0.0			
619NOlive-Drain in Basement	12/16/15	1.3	0.0			0.0			
619NOlive-SS1	12/16/15				30.00				
619NOlive-SS2	12/16/15	0.0	0.0	20.9	0.00	0.0			
619NOlive-SS3	12/16/15				18.00				
619NOlive-Basement	12/18/15	1.4	0.0			0.0			
619NOlive-Basement (E end)	12/18/15	1.4	0.0			0.0			
619NOlive-Basement (W end)	12/18/15	1.3	0.0			0.0			
619NOlive-Drain in Basement	12/18/15	1.2	0.0			0.0			
619NOlive-SS1	12/18/15				0.90				

201603_In-HomeMonEBMP-27Det_APP-H2 4 of 5

FID TVPH

Location ID	Date Sampled	Read (ppmv)	LEL (%)	Oxygen (%)	Pressure (in-H2O)	Total Organic Vapor by PID (ppmv)
619NOlive-SS2	12/18/15			-		
619NOlive-SS3	12/18/15	0.0	0.0	18.6	0.00	0.0

Notes:

- Sub slab measurements were not collected when water was pulled from probe, intial pressure measurements are indicative of water
- Field equipment includes a dwyer series 475 micromanometer, Thermo Scientific TVA1000 FID (flame ionization detector) equiped with PID (photoionization detector), and a REA Systems multiRAE four gas meter
- Additional action is required when FID concentrations exceed 10 ppmv in the indoor air or 350 ppmv in the sub slab in- H_2O inches of water

% - percent

%LEL - percent lower explosive limit

ppmv - parts per million by volume

-- - not analyzed

TVPH - total volatile petroleum hydrocarbons

FID - flame ionization detector

201603_In-HomeMonEBMP-27Det_APP-H2 5 of 5

FID TVPH
Concentration Direct

Concentration, Direct									
Location ID	Date Sampled	Read	LEL	Oxygen	Pressure	Total Organic Vapor by PID			
		(ppmv)	(%)	(%)	(in-H2O)	(ppmv)			
101EBirch-Basement	01/06/16	0.0	0.0			0.0			
101EBirch-N drain Basement	01/06/16	0.0	0.0			0.0			
101EBirch-NW Bedroom Basement	01/06/16	0.0	0.0			0.0			
101EBirch-S Drain Basement	01/06/16	0.0	0.0	 		0.0			
101EBirch-SS1	01/06/16	0.0 	0.0 		0.00	0.0			
101EBirch-SS2	01/06/16	 	 	 	0.00	 			
101EBirch-SS3	01/06/16	6.0	0.0	20.1	-0.18				
TO TEDITAL-555	01/00/10	0.0	0.0	20.1	-0.16				
117WBirch-Back/N porch	01/06/16	2.7	0.0			0.0			
117WBirch-Basement	01/06/16	3.3	0.0			0.0			
117WBirch-Floor Drain	01/06/16	2.3	0.0			0.0			
117WBirch-SS1	01/06/16	26.0	0.0	20.9	0.00	0.0			
117WBirch-SS2	01/06/16	0.0	0.0	20.0	0.00	0.0			
117WBirch-SS3	01/06/16	0.0	0.0	17.3	0.00	0.0			
129WBirch-Basement-CW central	01/06/16	0.0	0.0			0.0			
129WBirch-Basement-furnace roo	01/06/16	1.3	0.0			0.0			
129WBirch-Basement-laundry roo	01/06/16	0.0	0.0			0.0			
129WBirch-Basement-NW bathroom	01/06/16	0.0	0.0			0.0			
129WBirch-Basement-NW bedroom	01/06/16	0.0	0.0			0.0			
129WBirch-Basement-S Game Room	01/06/16	1.3	0.0			0.0			
129WBirch-Basement-Shower Drai	01/06/16	0.0	0.0			0.0			
129WBirch-NE Family Room	01/06/16	0.0	0.0			0.0			
129WBirch-SS1	01/06/16	0.0	0.0	19.7	0.00	0.0			
129WBirch-SS2	01/06/16	0.0	0.0	20.9	0.00	0.0			
129WBirch-SS3	01/06/16	0.0	0.0	17.2	0.00	0.0			
309NOlive-Basement	01/06/16	0.0	0.0			0.0			
309NOlive-Dining room/Kitchen	01/06/16	0.0	0.0			0.0			
309NOlive-Drain	01/06/16		0.0			0.0			
	01/06/16	0.0							
309NOlive N. control room		0.0	0.0			0.0			
309NOlive-N central room	01/06/16	0.0	0.0			0.0			
309NOlive-S central room	01/06/16	0.0	0.0			0.0			

FID TVPH Concentration. Direct

Concentration, Direct									
Location ID	Date Sampled	Read	LEL	Oxygen	Pressure	Total Organic Vapor by PID			
		(ppmv)	(%)	(%)	(in-H2O)	(ppmv)			
309NOlive-SE room	01/06/16	0.0	0.0			0.0			
309NOlive-Sump in basement	01/06/16	0.0	0.0			0.0			
309NOlive-SS1	01/06/16	0.0	0.0	20.9	0.00	0.0			
309NOlive-SS2	01/06/16								
309NOlive-SS3	01/06/16	23.0	0.0	20.9	0.00	0.0			
507NOlive-Basement	01/06/16	0.0	0.0			0.0			
507NOlive-Bathroom in Basement	01/06/16	0.0	0.0			0.0			
507NOlive-Computer room	01/06/16	0.0	0.0			0.0			
507NOlive-E Porch	01/06/16	0.0	0.0			0.0			
507NOlive-Floor drain in Basem	01/06/16	0.0	0.0			0.0			
507NOlive-Front porch	01/06/16	0.0	0.0			0.0			
507NOlive-Kitchen	01/06/16	0.0	0.0			0.0			
507NOlive-Living room	01/06/16	0.0	0.0			0.0			
507NOlive-SS1	01/06/16								
507NOlive-SS2	01/06/16	0.0	0.0	20.9	0.00	0.0			
507NOlive-SS3	01/06/16	4.2	0.0	20.9	-0.07	0.0			
507NOlive-SS4	01/06/16	17.3	0.0	20.9	-0.08	0.0			
507NOlive-SS5	01/06/16	0.0	0.0	20.9	0.00	0.0			
507NOlive-SS6	01/06/16	0.0	0.0	20.9	0.00	0.0			
507NOlive-SS7	01/06/16	0.0	0.0	20.9	0.00	0.0			
610NOldStLouis-Back entrance	01/06/16	2.2	0.0			0.0			
610NOldStLouis-Basement	01/06/16	4.1	0.0			0.0			
610NOldStLouis-Sump in basemen	01/06/16	4.1	0.0			0.0			
610NOldStLouis-SS1	01/06/16	8.3	0.0	4.8	0.00	0.0			
610NOldStLouis-SS2	01/06/16	9.0	0.0	2.5	0.00	0.0			
610NOldStLouis-SS3	01/06/16	0.0	0.0	11.8	0.00	0.0			

Notes:

- Sub slab measurements were not collected when water was pulled from probe, intial pressure measurements are indicative of water
- Field equipment includes a dwyer series 475 micromanometer, Thermo Scientific TVA1000 FID (flame ionization detector) equiped with PID (photoionization detector), and a REA Systems multiRAE four gas meter
- Additional action is required when FID concentrations exceed 10 ppmv in the indoor air or 350 ppmv in the sub slab

201603_In-HomeMonEBMP-28Det_APP-H3 2 of 3

FID TVPH
Concentration. Direct

Location ID	Date Sampled	Read	LEL	Oxygen	Pressure	Total Organic Vapor by PID
		(ppmv)	(%)	(%)	(in-H2O)	(ppmv)

in-H₂O - inches of water

% - percent

%LEL - percent lower explosive limit

ppmv - parts per million by volume

-- - not analyzed

TVPH - total volatile petroleum hydrocarbons

FID - flame ionization detector

201603_In-HomeMonEBMP-28Det_APP-H3 3 of 3